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Abstract Analysis and simulation are performed for a simplest model of a skate-
board in the absence of rider control. Equations of motion ofthe model are derived.
The problem of integrability of the obtained equations is investigated. The influence
of various parameters of the model on its dynamics and stability is studied.

1 Introduction

Skateboarding is one of the most popular extreme sports of today. However, despite
of the growing number of participants, skateboarding is poorly represented in the
scientific literature. At the late 70th – early 80th of the last century Hubbard [5,
6] proposed several mathematical models describing the motion of the rider on a
skateboard. Hubbard considered the motion of the skateboard in assumption, that
the tilt of the board is small as well as the steering angles. In our paper we give the
further development of the models offered by Hubbard and assume that the tilt of
the board and the steering angles can be finite.

Fig. 1 The Skateboard Side
View
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Fig. 2 The Skateboard Rear
and Top View

The skateboard typically consists of the board, a set of two trucks and four wheels
(Fig. 1). The modern board is generally from 78-83 cm long, 17-21 cm wide and
1-2 cm thick [5]. The most essential elements of a skateboardare the trucks, con-
necting the axles to the board. Angular motion of both the front and rear axles is
constrained to be about their respective nonhorizontal pivot axes (Fig. 1), thus caus-
ing a steering angle of the wheels whenever the axles are not parallel to the plane
of the board (Fig. 2). The vehicle is steered by making use of this static relationship
between steering angles and tilt of the board. The specific construction of the trucks
distinguishes the skateboard from the other types of boards, in particular, from the
snakeboard studied in many papers (see e.g. [9]). In addition, there is a torsional
spring, which exerts a restoring torque between the wheelset and the board propor-
tional to the tilt of the board with respect to the wheelset. We denote the stiffness of
this spring byk1 (Fig. 2).

2 The Problem Formulation. Equations of Motion.

We assume that the rider, modeled as a rigid body, remains perpendicular with re-
spect to the board. Therefore, when the board tilts throughγ, the rider tilts through
the same angle relative to the vertical. Let us introduce an inertial coordinate system
OXYZ in the ground plane. LetFR= a is a distance between the two axle centersF
andR of a skateboard. The position of lineFR with respect to theOXYZ-system is
defined byX andY coordinates of its centreG and by the angleθ between this line
and theOX-axis (Fig. 3).

The tilt of the board is accompanied by rotation of the front wheels clockwise
throughδ f and rotation of the rear wheels anticlockwise throughδr (Fig. 2, 3). The
wheels of a skateboard are assumed to roll without lateral sliding. This condition is
modeled by constraints, which may be shown to be nonholonomic

Ẏ cos
�
θ �δ f

�� Ẋ sin
�
θ �δ f

�+ a
2

θ̇ cosδ f = 0;
Ẏ cos(θ +δr)� Ẋ sin(θ +δr)� a

2
θ̇ cosδr = 0: (1)
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Fig. 3 The Basic Coordinate
Systems

Under these conditions velocities of the pointsF andR will be directed horizon-
tally and perpendicularly to the axles of the wheels and there is a pointP on the line
FR which has zero lateral velocity. Its forward velocity we denote byu. It may be
shown, that (see e.g. [5, 6, 7, 8, 13])

u =�aθ̇ cosδ f cosδr

sin
�
δ f +δr

� ; FP = asinδ f cosδr

sin
�
δ f +δr

� ; θ̇ =�usin
�
δ f +δr

�
acosδ f cosδr

: (2)

Using results obtained in [7, 13] we conclude that the steering anglesδ f andδr

are related to the tilt of the board by the following equations

tanδ f = tanλ f sinγ; tanδr = tanλr sinγ; (3)

whereλ f andλr are the fixed angles which the front and rear axes make with the
horizontal (Fig. 1). Using constraints (3) we can rewrite equations (1) as follows:

Ẋ=ucosθ + �
tanλ f � tanλr

�
2

usinγ sinθ ;
Ẏ =usinθ � �

tanλ f � tanλr
�

2
usinγ cosθ : (4)

Expressions (2) become

FP= a tanλ f

tanλ f+tanλr
= const; θ̇ =��tanλ f+tanλr

�
a

usinγ: (5)

Suppose that the board of the skateboard is located a distance h above the line
FR. The length of the board is also equal toa. The board’s center of mass is located
at its center. As to the rider we suppose that the rider’s center of mass is not located
above the board center of mass, but it is located over the central line of the board
a distanced from the front truck. Letl be the height of the rider’s center of mass
above the pointP. Other parameters for the problem are:mb – the mass of the board;
mr – the mass of the rider;Ibx, Iby, Ibz – the principal central moments of inertia of
the board;Irx, Iry, Irz – the principal central moments of inertia of the rider. We
introduce also the following parameters:

Ix = Ibx+ Irx; Iy = Iby+ Iry; Iz = Ibz+ Irz:
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It can be proved (see [7]) that the variablesu andγ satisfy the following differ-
ential equations�

A+(C�2D)sin2 γ +K sin4 γ
�

u̇+B
�
γ̈ cosγ� γ̇2sinγ

�
sinγ++�C�3D+3Ksin2 γ

�
uγ̇ sinγ cosγ = 0;

E γ̈ + �D�K sin2 γ
�

u2sinγ cosγ +B(u̇sinγ +uγ̇ cosγ)cosγ++k1γ� (mbh+mrl)gsinγ = 0: (6)

HereA, : : :, E, K – are functions of the parameters, namely

A = mb+mr; E = Ix+mbh2+mrl2;
B = mbh

2

�
tanλ f � tanλr

�+ mrl
a

�(a�d) tanλ f �d tanλr
� ;

C = mb

4

�
tanλ f�tanλr

�2+ Iz

a2

�
tanλ f+tanλr

�2+mr

a2

�(a�d) tanλ f�d tanλr
�2 ;

D = �
tanλ f+tanλr

�
a

(mbh+mrl) ; K = �
tanλ f+tanλr

�2

a2

�
Iy+mbh2+mrl

2�Iz
� :

Equations (4)-(6) form the close system for the skateboard motion.

3 Stability of uniform straight-line motion of a skateboard

Equations(6) has the particular solution

u = u0 = const; γ = 0; (7)

which corresponds to uniform straight-line motion of a skateboard. Consider the
problem of stability of this particular solution.

Settingu = u0+ ξ and keeping forγ its notation we write the equations of the
perturbed motion

E γ̈ +Bu0γ̇ + �Du2
0+ k1� (mbh+mrl)g

�
γ = Γ ; ξ̇ = Ξ : (8)

HereΓ and Ξ are functions ofγ, γ̇ and ξ , whose development as a series in
powers of said variables starts with terms of at least the second order. Moreover,
these functions identically vanish with respect toξ whenγ = 0 andγ̇ = 0 (this fact
can be verified manually):

Γ (0; 0; ξ ) = 0; Ξ (0; 0; ξ ) = 0:
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The characteristic equation corresponding to the linearized system(8) has the
form:

λ
�
Eλ 2+Bu0λ +Du2

0+ k1� (mbh+mrl)g
�= 0: (9)

When conditions

E > 0; Bu0 > 0; Du2
0+ k1� (mbh+mrl)g > 0 (10)

are fulfilled, equation(9) has one zero-root and two roots in the left half plane. Since
the functionsΓ andΞ identically vanish forγ = 0, γ̇ = 0, then under conditions(10) we have the critical case of one-zero root [3, 11] and solution (7) is stable with
respect toγ, γ̇ andu (asymptotically stable with respect toγ andγ̇).

Since a conditionE > 0 is valid for all values of parameters then conditions of
stability (10) may be finally written in the form:�

mbh
2

�
tanλ f � tanλr

�+ mrl
a

�(a�d) tanλ f �d tanλr
��

u0 > 0; (11)

k1+��tanλ f + tanλr
� u2

0

a
�g

�(mbh+mrl)> 0: (12)

If at least one of the conditions(11)-(12) is not fulfilled then equation(9) has
the root in the right-half plane and solution(7) will be unstable.

We can make now simple conclusions about stability of a straight-line motion
of the skateboard using condition(11)-(12). Note, first of all, that expression on
the left-hand side of inequality(11) containsu0 as a multiplier. This means that
the stability of motion depends on its direction. If one direction of motion is sta-
ble the opposite direction is necessary unstable. Such behavior is peculiar to many
nonholonomic systems. First of all we can mention here the problem of motion of a
rattleback (aka wobblestone or celtic stone, see e.g. [1, 4,10, 12]). In this problem
the stability of permanent rotations of a rattleback also depend on the direction of
rotation.

Let us find now conditions of stability of the equilibrium position of a skateboard,
i.e. the particular solution

u0 = 0; γ = 0:
Whenu0= 0 the characteristic equation(9) has one zero-root and two pure imag-

inary roots under the condition

k1� (mbh+mrl)g > 0: (13)

It can be proved (see [5, 6, 7, 13]) that inequality(13) is necessary and sufficient
condition for stability of equilibrium position of the skateboard. Thus we can con-
clude that the equilibrium position of the skateboard will be stable if the torsional
spring constant is sufficient to overcome the destabilizinggravity torque.
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4 Nonlinear dynamics of the skateboard near the equilibrium
position

Assume for the skateboard that we haveu0 = 0; γ = 0, i.e. the skateboard is in
the equilibrium position on the plane. According to the previous results, inequality(13) provides the necessary and sufficient condition for stability of this equilibrium.
Suppose that this condition is fulfilled.

Solving equations(6) with respect to ˙u and γ̈ and assuming thatu, γ and γ̇ are
small, we can write the equations of the perturbed motion taking into account the
terms which are quadratic inu, γ andγ̇:

u̇ = BΩ2

A
γ2; γ̈ +Ω2γ =�Buγ̇

E
; where Ω2 = k1� (mbh+mrl)g

E
(14)

Note, that the linear terms in the second equation of the system(14) have a form
which corresponds to a normal oscillations. For investigation of nonlinear system(14) we reduce it to a normal form [2]. To obtain the normal form of the system(14) first of all we make a change of variables and introduce two complex-conjugate
variablesz1 andz2:

γ = z1� z2

2i
; γ̇ = z1+ z2

2
Ω ; u = z3:

In variableszk, k = 1;2;3 the linear part of the system(14) has a diagonal form
and the derivation of its normal form reduces to separating of resonant terms from
the nonlinearities on the right-hand sides of the transformed system(14). Finally,
the normal form of the system(14) may be written as follows:

ż1 = iΩz1� B
2E

z1z3; ż2 =�iΩz2� B
2E

z2z3; ż3 = BΩ2

2A
z1z2:

Introducing real polar coordinates according to the formulae

z1 = ρ1(cosσ + isinσ) ; z2 = ρ1 (cosσ � isinσ) ; z3 = ρ2

we obtain from system(14) the normalized system of equations of perturbed motion
which is then split into two independent subsystems:

ρ̇1 =� B
2E

ρ1ρ2; ρ̇2 = BΩ2

2A
ρ2

1 ; (15)

σ̇ = Ω : (16)

Terms of order higher than the second in(15) and those higher than the first in
ρk, k = 1;2 in (16) have been omitted here.

In theε-neighborhood of the equilibrium position the right-hand sides of equa-
tions(15) and(16) differ from the respective right-hand sides of the exact equations
of perturbed motion by quantities of orderε3 andε2 respectively. The solutions of
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the exact equations are approximated by the solutions of system(15)-(16) with an
error ofε2 for ρ1, ρ2 and of orderε for σ in a time interval of order 1=ε. Restricting
the calculations to this accuracy, we will consider the approximate system(15)-(16)
instead of the complete equations of perturbed motion.

Equation(16) is immediately integrable. We obtain

σ =Ω t +σ0:
System(15) describes the evolution of the amplitudeρ1 of the board oscillations

and also the evolution of the velocityρ2 of a straight-line motion of the skateboard.
One can see that this system has the first integral

Eρ2
1 + A

Ω2 ρ2
2 = An2

1; (17)

wheren1 is a constant, specified by initial conditions. We will use this integral for
solving of the system(15) and for finding the variablesρ1 andρ2 as functions of
time:ρ1 = ρ1 (t), ρ2 = ρ2 (t). Expressingρ2

1 from the integral(17) and substitute it
to the second equation of the system(15) we get

ρ̇2 = B
2E

�
Ω2n2

1�ρ2
2

� : (18)

The general solution of equation(18) has the following form:

ρ2 (t) = Ωn1

�
1�n2exp

��BΩn1
E t

���
1+n2exp

��BΩn1
E t

�� ; (19)

wheren2 is a nonnegative arbitrary constant. Now, using the integral (17), we can
find the explicit form of the functionρ1 (t):

ρ1 (t) = 2

s
An2

1n2

E

exp
��BΩn1

2E t
�

1+n2exp
��BΩn1

E t
� : (20)

Let us consider the properties of the solutions(19), (20) of system(15) and
their relations with the properties of motion of the skateboard. System(15) has an
equilibrium position

ρ1 = 0; ρ2 = Ωn1 (21)

(these particular solutions can be obtained from general functions(19)-(20) if we
suppose in these functionsn2 = 0). The arbitrary constantn1 can be both positive
and negative. The positive values of this constant correspond to straight-line motions
of the skateboard with small velocity in the stable direction and the negative ones –
in the unstable direction. Indeed, if we linearize equations(15) near the equilibrium
position(21) we get



8 Andrey V. Kremnev and Alexander S. Kuleshov

Fig. 4 Evolution of the am-
plitudeρ1 of the board oscil-
lations in time for the case
n1 > 0, n2 � 1.

Fig. 5 Evolution of the ve-
locity ρ2 of the skateboard
in time for the casen1 > 0,
n2 � 1.

ρ̇1 =� B
2E

Ωn1ρ1; ρ̇2 = 0:
Thus, forn1 > 0 the equilibrium position(21) is stable and forn1 < 0 it is unsta-

ble.
Evolution of the functionsρ1 andρ2 give the complete description of behavior of

a skateboard with small velocities. Let us suppose, that at initial instant the system
is near the stable equilibrium position(n1 > 0) andρ2 (0)� 0, i.e.n2� 1 (the case
whenn1 > 0, n2 > 1 is similar to the casen1 < 0, n2 < 1, which will be investigated
below). These initial conditions correspond to the situation when at initial instant
the skateboard takes the small velocity

ρ2 (0) = Ωn1
1�n2

1+n2
(22)

in the stable direction. Then in the course of time the amplitude of oscillations of
the boardρ1 decreases monotonically from its initial value

ρ1(0) = 2n1

1+n2

r
An2

E

to zero, while the velocity of the skateboardρ2 increases in absolute value. In the
limit the skateboard moves in the stable direction with a constant velocityΩn1 (see
Fig. 4, 5).
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Fig. 6 Evolution of the am-
plitudeρ1 of the board oscil-
lations in time for the case
n1 < 0, n2 � 1.

Fig. 7 Evolution of the ve-
locity ρ2 of the skateboard
in time for the casen1 < 0,
n2 � 1.

Suppose now that at the initial instant the system is near theunstable equilibrium
positionn1 < 0. Suppose again, that at the initial instantn2 < 1, i.e.ρ2 (0)< 0 (the
casen1 < 0, n2 > 1 is similar to the casen1 > 0, n2 < 1 which was considered
above). These initial conditions correspond the situationwhen at the initial instant
the skateboard takes the small velocity(22) in the unstable direction. In this case
the limit of the system motions is the same as whenρ2 (0)� 0 but the evolution of
the motion is entirely different. When

0< t < t� = E ln(n2)
BΩn1

the absolute value of the oscillation amplitudeρ1 increases monotonically and the
skateboard moves in the unstable direction with decreasingvelocity. At the instant
t = t� the velocity vanishes and the oscillation amplitudeρ1 reaches its maximum
value

ρ1(t�) =s
An2

1

E
:

Whent > t� the skateboard already moves in the stable direction with anincreas-
ing absolute value of its velocity and the oscillation amplitude decreases monoton-
ically. Thus whenρ2 (0) < 0 during the time of evolution of the motion a change
in the direction of motion of the skateboard occurs (Fig. 6, 7). Similar nonlinear
effects (in particular the change of the direction of motion) were observed earlier in
other problems of nonholonomic mechanics (for example in a classical problem of
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dynamics of a rattleback [1, 4, 10, 12]). Thus, we describe here the basic features of
dynamics of the simplest skateboard model, proposed in [5, 6] and developed by us.

5 Conclusions

In this paper the problem of motion of the skateboard with a rider was examined.
This problem has many common features with other problems ofnonholonomic
dynamics. In particular it was shown that the stability of motion of the skateboard
depends on the direction of motion. Moreover the system can change its direction
of motion. The similar effects have been found earlier in theclassical problem of a
rattleback dynamics.
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