
Phase diagrams of block copolymer melts by dissipative particle dynamics simulations
Alexey A. Gavrilov, Yaroslav V. Kudryavtsev, and Alexander V. Chertovich 
 
Citation: The Journal of Chemical Physics 139, 224901 (2013); doi: 10.1063/1.4837215 
View online: http://dx.doi.org/10.1063/1.4837215 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/139/22?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Note: Effects of polydispersity on the phase behavior of AB diblock and BAB triblock copolymer melts: A
dissipative particle dynamics simulation study 
J. Chem. Phys. 139, 096101 (2013); 10.1063/1.4820235 
 
On the comparisons between dissipative particle dynamics simulations and self-consistent field calculations of
diblock copolymer microphase separation 
J. Chem. Phys. 138, 194904 (2013); 10.1063/1.4804608 
 
Microphase separation in multiblock copolymer melts: Nonconventional morphologies and two-length-scale
switching 
J. Chem. Phys. 124, 054907 (2006); 10.1063/1.2161200 
 
Monte Carlo phase diagram for diblock copolymer melts 
J. Chem. Phys. 124, 024904 (2006); 10.1063/1.2140286 
 
Hydrodynamics and microphase ordering in block copolymers: Are hydrodynamics required for ordered phases
with periodicity in more than one dimension? 
J. Chem. Phys. 121, 11455 (2004); 10.1063/1.1814976 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

93.180.55.218 On: Thu, 16 Apr 2015 14:18:42

http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/956891792/x01/AIP-PT/JCP_ArticleDL_0315/PT_SubscriptionAd_1640x440.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=Alexey+A.+Gavrilov&option1=author
http://scitation.aip.org/search?value1=Yaroslav+V.+Kudryavtsev&option1=author
http://scitation.aip.org/search?value1=Alexander+V.+Chertovich&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4837215
http://scitation.aip.org/content/aip/journal/jcp/139/22?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/139/9/10.1063/1.4820235?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/139/9/10.1063/1.4820235?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/138/19/10.1063/1.4804608?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/138/19/10.1063/1.4804608?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/124/5/10.1063/1.2161200?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/124/5/10.1063/1.2161200?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/124/2/10.1063/1.2140286?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/121/22/10.1063/1.1814976?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/121/22/10.1063/1.1814976?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 139, 224901 (2013)

Phase diagrams of block copolymer melts by dissipative particle
dynamics simulations

Alexey A. Gavrilov,1,2,a) Yaroslav V. Kudryavtsev,3 and Alexander V. Chertovich1

1Physics Department, Lomonosov Moscow State University, Leninskie gory, 1, build. 2,
119991 Moscow, Russia
2Institute for Advanced Energy Related Nanomaterials, University of Ulm, Albert-Einstein-Allee 47 Ulm,
D-89069, Germany
3Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky prosp. 29,
119991 Moscow, Russia

(Received 23 August 2013; accepted 15 November 2013; published online 10 December 2013)

Phase diagrams for monodisperse and polydisperse diblock copolymer melts and a random multi-
block copolymer melt are constructed using dissipative particle dynamics simulations. A thorough
visual analysis and calculation of the static structure factor in several hundreds of points at each
of the diagrams prove the ability of mesoscopic molecular dynamics to predict the phase behavior
of polymer systems as effectively as the self-consistent field-theory and Monte Carlo simulations
do. It is demonstrated that the order-disorder transition (ODT) curve for monodisperse diblocks
can be precisely located by a spike in the dependence of the mean square pressure fluctuation on
χN, where χ is the Flory-Huggins parameter and N is the chain length. For two other copolymer
types, the continuous ODTs are observed. Large polydispersity of both blocks obeying the Flory
distribution in length does not shift the ODT curve but considerably narrows the domains of the
cylindrical and lamellar phases partially replacing them with the wormlike micelle and perforated
lamellar phases, respectively. Instead of the pure 3d-bicontinuous phase in monodisperse diblocks,
which could be identified as the gyroid, a coexistence of the 3d phase and cylindrical micelles is
detected in polydisperse diblocks. The lamellar domain spacing D in monodisperse diblocks fol-
lows the strong-segregation theory prediction, D/N1/2 ∼ (χN)1/6, whereas in polydisperse diblocks
it is almost independent of χN at χN < 100. Completely random multiblock copolymers cannot
form ordered microstructures other than lamellas at any composition. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4837215]

I. INTRODUCTION

For decades, self-assembling in block copolymer systems
remains a field where topics for basic research and oppor-
tunities for practical applications only grow with developing
novel synthetic routes and advanced techniques for studying
the stunning diversity of observable microstructures.1–4 All
the time, field-based methods, particularly the self-consistent
field theory (SCFT),5, 6 dominated in the theoretical studies
of phase behavior. Particle-based approaches utilizing vari-
ous versions of coarse-grained Monte Carlo and molecular
dynamics simulation techniques were involved as an impor-
tant yet auxiliary tool, which enabled detecting the phases that
are in principle available for a particular system and roughly
characterizing their morphology and phase transitions.7, 8 Fi-
nite size effects and time restrictions in modeled systems were
the main factors that prevented researchers from consider-
ing the results of coarse-grained simulations as the full value
data.

Advances in computing facilities, as well as practical
needs for studying many specific polymer systems on a quan-
titative level, led to the formulation of a multiscale mod-
eling paradigm,9 which considers field-based and particle-

a)Author to whom correspondence should be addressed. Electronic mail:
gavrilov@polly.phys.msu.ru

based methods as complementary approaches that should ben-
efit from each other. In the field of block copolymers, this
general tendency stimulated two lines of research. First of
them implies developing hybrid techniques10–13 that involve
the concept of a self-consistent field into the calculation of
interactions in the ensemble of particles. In that way, the
evaluation of interchain interactions becomes a considerably
less time-consuming procedure. The second line, to which
the present investigation belongs, focuses on further devel-
oping various pure particle-based approaches14–22 in order to
overcome computational restrictions by adjusting the level of
coarse-graining, using multiprocessor platforms and parallel
programming codes.

Dissipative particle dynamics (DPD) is a well-
established mesoscopic dynamics method23, 24 utilizing
the bead – spring model of a polymer fluid. It was used for
studying the general features of microstructure formation
in diblock,25–29 triblock,30, 31 multiblock,32–34 multiarm,35

and cyclic36 copolymers, as well as for visualizing ex-
pectable morphologies for several specific diblock37–41 and
multiblock42 copolymer systems. These are only a few of
many recent references to DPD applications, not to mention
studies in which block copolymers were confined in thin films
or adsorbed at liquid/liquid and liquid/solid interfaces or sub-
jected to cross-linking and other chemical transformations.

0021-9606/2013/139(22)/224901/10/$30.00 © 2013 AIP Publishing LLC139, 224901-1
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In spite of its growing popularity, DPD is up to now a
mainly qualitative approach with prevailing visual compari-
son of its results to experimental data. In part, it can be ex-
plained by absence of an internal scale associated with the
particles43 and rather complex procedure of mapping its pa-
rameters onto observable quantities.24 Another possible rea-
son could be related to the lack of benchmarking data on sim-
ple model systems comparing DPD with other methods.

The first purpose of the present study is to provide such
data by constructing the DPD phase diagram for a monodis-
perse AB diblock copolymer melt, which can be compared
to the current SCFT,44 Monte Carlo,19 and previous DPD26–28

phase diagrams for the same system. To this end, an unprece-
dented volume of parallel computations on the modern cluster
is performed.

In recent years, growing attention has been paid to
the role of block polydispersity in self-assembling of
copolymers,45 which becomes a convenient tool for control-
ling their morphology and domain characteristics. Though
the DPD technique was applied to simulate the effects of
polydispersity on the in situ block copolymer formation and
ordering,46, 47 only recently it was first used to study the sim-
plest model of a premade diblock copolymer melt with one
polydisperse block.48 In this work, the situation when both
blocks are polydisperse and their lengths are described by the
most probable (Flory) distribution is considered. The DPD
phase diagram is presented and compared to that of the same
monodisperse melt, as well as to the diagrams obtained for
the polydisperse AB diblock copolymer melts using SCFT49

and Monte Carlo simulations.20

The last diagram in the present paper summarizes our
DPD study of microphase separation in random multiblock
copolymers of different compositions. Recently34 we re-
ported on the possibility of forming an imperfect lamellar
microstructure in the symmetric AB random copolymer melt
under strong50 and superstrong51 segregation conditions. In
this study, our considerations are extended to composition-
ally asymmetric multiblocks in order to find whether any mi-
crostructure other than lamellas is possible. Knowledge of ex-
pected morphologies can be very useful for all who want to
use DPD simulations for predicting self-assembling proper-
ties of real diblock copolymer melts.

II. SIMULATION TECHNIQUE AND MODELS

Simulations were performed using the DPD-VV integra-
tion scheme52 that implements the modified velocity-Verlet
algorithm53 for solving Newton’s equations of motion for in-
teracting particles,

dri

dt
= vi , mi

dvi

dt
= Fi . (1)

Here ri, vi, and mi denote the radius vector, velocity, and mass
of an ith particle. Let the force Fi acting on it be written as a
sum of pairwise additive contributions,

Fi =
∑
j �=i

(
FC

ij + FD
ij + FR

ij

)
, (2)

where the summation is performed over all other particles
within a certain cutoff radius rc. We assume that all quanti-
ties in Eqs. (1) and (2) are dimensionless and for simplicity
set all mi and rc to unity.

The conservative force FC
ij includes a soft core repulsion

force fnb
ij between non-bonded contacting particles and a bond

elasticity force fbij in bead-spring polymer chains,

FC
ij = fnb

ij + fbij , (3)

fnb
ij =

{
aij (1 − rij )r̄ij , rij < 1

0, rij ≥ 1,
fbij = −Kij rij ,

(4)
where rij = ri – rj, rij = |rij |, r̄ij = rij /rij , and aij is a maxi-
mum repulsion between particles i and j attained at ri = rj, Kij

is a spring constant (we take Kij = 4 for neighboring particles
in a chain, as proposed in Ref. 24, and zero for others).

Other constituents of Fi are a dissipative force FD
ij

(friction) and a random force FR
ij ,

FD
ij = − σ 2

2kBT
[ω(rij )]2(vij · r̄ij )r̄ij ,

(5)

FR
ij = σω(rij )

ζ√
δt

r̄ij , ω(r) =
{

1 − r, r ≤ 1

0, r > 1
,

where σ is a noise amplitude, kB is the Boltzmann constant,
T is temperature, vij = vi – vj, ζ is a normally distributed ran-
dom variable with zero mean and unit variance chosen inde-
pendently for each pair of particles, and δt is a time step. We
take that kBT = 1 and introduce a dimensionless time unit as

τ = rc

√
m

kBT
= 1. (6)

The Groot-Warren thermostat defined by Eq. (5), where
the random and dissipative forces serve as a heat source
and sink, respectively, preserves momentum for each pair
of interacting particles. Following Ref. 24 we choose the
noise parameter σ and the reduced particle density ρ0 both
equal to 3 that provides an optimal balance between fast
thermal relaxation and stability of the equilibrium state. In
the same paper it was shown that for ρ0 = 3 one should
take aij for similar particles equal to 25 in order to get a
reasonable compressibility of the DPD liquid, while the
repulsion parameter for dissimilar particles could be related
to the Flory-Huggins interaction parameter χ as follows:

aij = χ/0.306 + 25, i �= j. (7)

The time step for integrating Eq. (1), δt = 0.04, was cho-
sen according to Ref. 24. A simulation box of sizes lx × ly
× lz = 32 × 32 × 32 containing 98 304 (∼105) particles was
used, if otherwise is not specified. The periodic boundary con-
ditions were imposed in all three directions.

Three types of AB copolymer melts were modeled in this
study: monodisperse diblock copolymer (below referred to
as m-diblock) with chains of the fixed length N = 16, poly-
disperse diblock copolymer (random or r-diblock), and com-
pletely random multiblock copolymer (r-multiblock) with
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FIG. 1. Block length distributions in the symmetric (f = 0.5) r-diblock and
r-multiblock.

chains containing in average 16 and 32 units, respectively. R-
diblock and r-multiblock were characterized by an exponen-
tial (Flory) distribution of chain lengths and A and B block
lengths. Copolymer composition, which is described by the
molar fraction of A units, f, was varied in a wide interval 0.125
≤ f ≤ 0.5.

Any copolymer of a prescribed composition was syn-
thesized from a set of non-connected identical DPD parti-
cles. Chain-growth polymerization and monomer “coloring”
were used to obtain the desired chain length distributions and
monomer sequences. In the case of m-diblocks, growth of any
chain was terminated as soon as its polymerization degree
reached the value of 16; at full conversion a given part of each
chain (from 2 to 8 units) was designated as an A block to get
a desired composition. R-diblocks were obtained in a differ-
ent way. First of all, DPD particles were marked as A and B
monomers according to a prescribed value of the parameter
f. Then they were polymerized by allowing bond formation
between similar units only, until the number average lengths
of A and B oligomers attain 16f and 16(1 − f), respectively.
The obtained system was converted into AB copolymer melt
of r-diblock type by random coupling of dissimilar oligomer
pairs. R-multiblocks were synthesized as follows. Identical
DPD particles were randomly polymerized until the number
average polymerization degree in the system, N̄ , attained the
value of 32, then monomer units of all chains were marked as
A or B units with the probabilities f and 1 − f, respectively.
As is seen from Figure 1, the block length distributions in
the symmetric (equimolar) r-diblock and r-multiblock indeed
have an exponential type.

The number average block lengths for an infinite r-
multiblock chain are N̄A∞ = (1 − f )−1, N̄B∞ = f −1. If the
infinite macromolecule is randomly cut into chains containing
in average N̄ units, the average block lengths are decreased.
Considering changes in the block length distributions and re-
taining only the terms linear in 1/N̄ we easily find for N̄ � 1,

N̄A = 1

1 − f

(
1 − f

N̄ (1 − f )
+ O

(
1

N̄2

))
,

(8)

N̄B = 1

f

(
1 − 1 − f

N̄f
+ O

(
1

N̄2

))
,

so that a virtual constituting diblock, which is obtained by
cutting all blocks of a multiblock in half, has the length

Nc = N̄A + N̄B

2
≈ 1

2f (1 − f )
− f 3 + (1 − f )3

2N̄f 2(1 − f )2
. (9)

Since simulated chains are rather short, fluctuations can
play an important role in the model system behavior. They
are controlled by a Ginsburg parameter, also known as the
invariant degree of polymerization25 Ninv = b6v−2N̄ = 63

(R3
gρ0/N̄ )2, where b, v, and Rg are the statistical segment size

and volume and the gyration radius of a chain, respectively.
Our simulations for an athermal melt of m-diblocks at ρ0 = 3
yield R2

g = 2.6 (for strictly Gaussian chains with b = 1 there
should be R2

g = 16/6 ≈ 2.67, which is rather close) so that
Ninv = 133, which is of the same order as in a typical Monte
Carlo study.54

In the course of copolymer synthesis, the interaction pa-
rameter aij was set to 25 for all particle pairs, which corre-
sponds to an athermal melt with χ = 0. Therefore, in the ini-
tial state all copolymer melts were characterized by a random
distribution of chains in the simulation box. Then, the value
of χ was instantaneously increased and the system was re-
laxed for 2 × 108 time steps in the case of r-diblocks and for
3 × 107 time steps in two other cases. The final states form
a regular grid in the domain χmin ≤ χ ≤ χmax (m-diblock:
χmin = 0, χmax = 7.65, 64 points; r-diblock: χmin = 0, χmax

= 7.65, 32 points; r-multiblock: χmin = 18.36, χmax = 48.96,
64 points), 0.125 ≤ f ≤ 0.5 (7 points in all the cases) that en-
ables one to construct a phase diagram in the standard χN – f
coordinates. Such diagram contains 448 figurative points for
m-diblocks and r-multiblocks and 224 points for r-diblocks,
which is much more than reported in the literature for any
simulation technique.19, 20, 26–28, 36 All simulations were per-
formed at Lomonosov Moscow State University Supercom-
puter facilities.

III. STRUCTURE ANALYSIS

After relaxation, the final morphology at each point was
thoroughly analyzed by calculating the static structure factor
and checking the positions of the satellite peaks, as well as by
viewing 3D representations of the simulation box from differ-
ent angles. Static structure factor is proportional to the inten-
sity of a scattered beam measured in light, X-ray, electron or
neutron elastic scattering experiments,

S(q) = 1

n

〈∣∣∣∣∣
n∑

j=1

exp(iqr j )

∣∣∣∣∣
2〉

, (10)

where n is the total number of particles and averaging is
performed over the wave vector set {qx, qy, qz} = {2πk/lx,
2πm/ly, 2πp/lz}, where k, m, p are integers from 1 to 32, and
over a sequence of independent system conformations. As a
rule, 50 conformations separated by 10 000 DPD steps were
taken for the averaging. Six types of ordered microstructures
that were observed in simulations are shown in Figure 2.

Analyzing the q-dependence of the structure factor one
can detect a long-range (presence of satellite peaks) or short-
range ordering, estimate the characteristic size of domains
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FIG. 2. Typical snapshots of the observed microstructures. In order to obtain
field-based representations of the structures, the simulation box was divided
into cells of unit volume, the number density was calculated in each of these
cells and plotted on a color scale.

(main peak position) and its dispersion (peak width at half-
height).

The structure factors for ordinary and perforated lamellas
(L and PL) are shown in Figure 3. S(q) dependence for the PL
microstructure contains additional peaks at

√
3,

√
7,

√
11,

FIG. 3. Typical static structure factors for the (top) L and (bottom) PL mi-
crostructures in m-diblocks. Square-root peaks in the bottom figure could be-
long to a hex microstructure formed by perforations. Number of integer peaks
for the L structure is twice as many as that for the PL one because of a higher
χN value in the former case.

which are presumably related to a hexagonal ordering of per-
forations. Though PL is considered as a metastable structure
in the framework of SCFT,55 it is often observed in laboratory
and numerical experiments, which fact is attributed either to
idealizations of the theoretical model, such as assuming in-
finite molecular mass and neglecting fluctuations, or just to
the small difference between energies of PL and concurrent
bicontinuous structures.

Figure 4 demonstrates typical structure factors with the
peak sets characteristic of cylindrical (C) and spherical (S)
micelles ordered in hex and bcc morphologies, respectively.
Whereas cylinders are almost as well studied as lamellas, the
S microstructure in copolymers is rather common only in ex-
perimental systems, where it can be obtained either by order-
disorder transition (ODT)56 or order-order transition (OOT).57

Its identification by SCFT,13 in Monte Carlo19, 20 and even
DPD25, 41 simulations is usually difficult, if not impossible be-
cause of the long equilibration time.

Figure 5 reports on the least ordered structures with ill-
defined peaks on the S(q) dependence. The top picture corre-
sponds to a 3d-bicontinuous microstructure, which could be
provisionally identified as the gyroid (G) phase, as it contains
five of first seven peaks (those at 141/2 and 201/2 are missing).
The bottom plot describes the structure without long-range
order, which we visually associate with wormlike micelles
(WM).

FIG. 4. Typical static structure factors for the (top) C and (bottom) S mi-
crostructures in m-diblocks. Though the peak sets are nearly identical, cylin-
ders and spheres can be easily distinguished visually.
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FIG. 5. Typical static structure factors for the (top) 3d-bicontinuous structure
in m-diblocks and (bottom) wormlike micelles in r-diblocks.

IV. PHASE DIAGRAMS

A. Monodisperse diblocks

The phase diagram for m-diblocks is plotted in
Figure 6. With 448 figurative points (64 points for each of
7 chosen compositions) for the chains of N = 16 units, it can
be considered as a much more accurate version of the first
DPD phase diagram26 based on the calculations of Groot and
Madden25 for 27 model m-diblocks of N = 4 and 10 units.
The following DPD studies27, 28 were focused, respectively,
on testing an alternative (Lowe-Andersen) thermostat and se-
curing the gyroid phase via adjusting sizes of the simulation
box rather than on mapping an entire phase diagram for m-
diblocks.

The lowest curve in Figure 6 separates the disordered
(D) phase from all others thus marking the ODT at a given
copolymer composition. It can be located either visually or
by appearance of a pronounced main maximum on the S(q)
dependence. Order of the phase transition can be determined
by introducing the instantaneous pressure53 using the Clau-
sius virial theorem

pαβ = 1

V

∑
i

miviαviβ + 1

V

∑
i

∑
j>i

F C
iαrijβ, (11)

which reduces to the scalar (hydrodynamic) pressure p
= Tr(pαβ)/3 for isotropic systems. By averaging over sub-

sequent system configurations, one finds the mean scalar
pressure

p̄ = ρkBT + 1

3V

〈∑
i

∑
j>i

FC
i rij

〉
, (12)

and the mean square fluctuation (variance) δp2 = p2 − p̄2.
Simulations demonstrate that the dependence of δp2 on χN
for any fixed m-diblock composition exhibits a steep increase
(Figure 7, top row) indicating about the first order (discontinu-
ous) transition. Note that in the ordered state pressure fluctua-
tions are markedly non-monotonous with χN for the symmet-
ric copolymer forming lamellas and are weakly decreasing
for the strongly asymmetric m-diblock forming spherical mi-
celles. The dependence of the variance of the internal energy
(which is proportional to the heat capacity of the system) on
χN was also calculated in order to check these conclusions.
Behavior of the corresponding curves plotted in the bottom
row of Figure 7 is similar to that of the pressure variance.

In order to check consistency of the results based on pres-
sure measurements, eigenvalues of the pressure tensor given
Eq. (11) were calculated and found to be equal after the sys-
tem is equilibrated. Another test was related to the reversibil-
ity of the ODT transition. At a given composition, a hystere-
sis of about �χN/2 ≈ 2.0 was detected, which is equal to the
half vertical distance between neighboring figurative points at
the phase diagram, coinciding with the precision in the ODT
location.

Ordered phases (L, PL, 3d, C, and S) and their succes-
sion in Figure 6 are typical for the experimental m-diblock
phase diagrams.2 Phase domains are separated with curves
marking OOTs of continuous type, which do not directly af-
fect pressure and other measurable characteristics. However,
sometimes after detecting a new phase an old one was again
detected in a few points corresponding to higher χN, probably
because of small energy difference between the two phases in
the transition vicinity. To overcome this difficulty in a consis-
tent manner, we assigned a point to a new phase as soon as it
was unambiguously detected for the first time upon bottom-
up shift in the phase diagram. Some of the OOT curves in

FIG. 6. DPD phase diagram for m-diblocks. Dashed lines display an ex-
pected behavior. Markers show the points at which the corresponding mor-
phologies were first observed on increasing χN at fixed f.
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FIG. 7. Dependence of the (top row) pressure variance δp2 and (bottom row) internal energy variance δE2 on χN for the (left, f = 0.5) symmetric and
(right, f = 0.125) strongly asymmetric m-diblocks.

Figure 6 pass through only one of the explored points so that
they cannot be precisely located and therefore are drawn with
dashed lines.

Comparing our result to the current version of SCFT
phase diagram,44 it is easy to see close similarity in the lo-
cation of major domains, except for 3d and PL ones, which
are reduced to a considerably narrower G domain in the theo-
retical case. It should be mentioned that we avoid identifying
the 3d microstructure as G because of certain difficulties with
obtaining the gyroid phase by DPD simulations, which are in
detail described in Ref. 26. In fact, we obtained an evident
G cell in the 23 × 23 × 23 box, which size was chosen ac-
cording to the position of the main maximum qmax in the S(q)
dependence shown in Figure 5: l = 2π

√
6/qmax ≈ 22.7 (in

Ref. 26, where the DPD model with somewhat different nu-
merical parameters was used, a gyroid structure was also ob-
tained in the same specific 23 × 23 × 23 box for f = 0.35
and χN = 50). However, our simulations in the eight time
larger box 46 × 46 × 46, which was also commensurate
with the preferred unit cell, resulted in the formation of a
PL microstructure instead of eight G cells. That is why we
decided to plot the phase diagram (Figure 6) that is based
on the results for the simulation box of standard sizes 32 ×
32 × 32. Visual analysis demonstrated that the obtained 3d
microstructure can be considered as a mixture of gyroid and
double-diamond morphologies, similarly to the AB copoly-

mer bicontinuous microstructures simulated by DPD in the
literature.29, 34, 58 Also we did not make special efforts to de-
tect the bicontinuous orthorhombic (O70) phase and particu-
late close packed spherical (Scp) phase, which are present as
very small domains in the SCFT diagram44 and got some ex-
perimental evidence.59, 60

An obvious virtue of the DPD phase diagram is pre-
dicting the possibility of ODT from the disordered state di-
rectly to the S, C, PL, and L phases. On the contrary, random
phase approximation (RPA),61 which is a mean-field approx-
imation of SCFT at weak segregations, claims that all tran-
sition curves meet at the critical point and the ODT curve
separates D and S phases at any place of the phase dia-
gram. This deficiency can be removed by taking into account
fluctuation corrections,62 which shift SCFT critical point to
(χN )cr = 10.5 + 41.0N

−1/3
inv , fcr = 0.5. The last expression

lacks theoretical support for chains Ninv < 104 and its formal
application at Ninv = 133 yields (χN)cr ≈ 18.5, which is con-
siderably less than the critical point ordinate of 26.4 obtained
in our DPD simulations. The situation is similar to the MC
study of Ref. 54, where the simulated (χN)cr was much higher
than predicted by SCFT despite fluctuation corrections.

Many other parallels can be found by comparing the DPD
and MC19 phase diagrams for m-diblocks. Both methods pre-
dict the same major phases (L, G, C) and the first-order ODT.
However, the nature of MC technique using a lattice with
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FIG. 8. DPD phase diagram for r-diblocks. The domain of C and 3d coex-
isting phases is shaded. Dashed lines display an expected behavior. Markers
show the points at which the corresponding morphologies were first observed
on increasing χN at fixed f.

predetermined spatial symmetry causes some problems,
which are successfully avoided with DPD. For instance, MC
predicts vertical OOT curves, which are not confirmed ex-
perimentally, and cannot detect spherical morphologies in
monodisperse diblocks, which are readily formed in systems
with strong a compositional asymmetry. On its bright side,
MC usually provides well-resolved structure factor peaks for
C, S, and L phases, which, once again, should be attributed to
its lattice nature.

B. Random diblocks

The phase diagram for r-diblocks (both A and B blocks
are polydisperse with PDIA = PDIB ≈ 2) is plotted in
Figure 8. In comparison to m-diblocks (Figure 6), the L do-
main is narrower giving more space to perforated lamellas.
Pure 3d phase is absent but it coexists with the C phase. The
biphasic domain is shaded because such morphology could
correspond to a frozen rather than equilibrium state due to
high χN values. The C domain is considerably narrower than
in Figure 6, neighboring wormlike micelles on its left, a phase
with rather high segregation of A and B units yet revealing no
long-range order.

The ODT curve is slightly shifted up, with the critical
point at (χN)cr ≈ 27.6, fcr = 0.5 so that the difference with
the monodisperse case lies within the error range. The lat-
ter fact contradicts theoretical considerations, which predict
a nearly twofold decrease in (χN)cr either in the mean field
approximation (RPA)63, 64 or with account for the fluctuation
corrections.65 However, it is known that for the diblocks with
only one polydisperse block similar SCFT predictions about
lowering the critical point and the ODT curve in general66–68

clearly disagree with the experimental,69 MC,20, 70 and DPD48

data, which argue that the direction of shifting the ODT curve
depends on the copolymer composition, whereas lowering the
critical point is rather weak if at all exists. Unfortunately, no
experimental or MC modeling results are present in the liter-
ature for the case, when both blocks are highly polydisperse
like in our simulations.

FIG. 9. Dependences of the (top) pressure and (bottom) internal energy vari-
ances on χN for the symmetric (f = 0.5) r-diblock.

Contrary to the monodisperse case, the ODT is not ac-
companied by a spike in fluctuations of the pressure and inter-
nal energy (Figure 9), which means that the transition is of the
second or higher order, the same being related to the OOTs.
Since the WM phase lacks long-range order, the D → WM
transition can be detected only visually with relatively low ac-
curacy, which is reflected by the high error bars in the phase
diagram (Figure 8). Some difficulties are also met with locat-
ing the D → S transition since fine ordering of spheres re-
quires considerably more time than the equilibration of other
microstructures, not to mention that the morphological relax-
ation in random copolymers is much slower than in regular
ones.

Moderate polydispersity of one block (PDIA = 1.3, PDIB

≈ 1) was proved71 to increase stability of the G phase through
spatial redistribution of blocks leading to the relaxation of
“packing frustrations” inherent in that phase. However, fur-
ther increase in PDIA up to 1.5 resulted in leveling the en-
ergies of the G and PL phases,20 while at PDIA = 1.8 the
blend of AB diblocks with different compositions exhibited
macrophase separation.72 Our r-diblocks demonstrate simi-
lar tendencies at even higher polydispersity degrees (PDIA

= PDIB ≈ 2): depending on χN value, they can undergo
the transition L → PL → C without forming a gyroid at
all or L → PL → 3d/C → C including phase coexistence.
Note that the possibility of polydispersity-driven macrophase
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FIG. 10. ODT curves for m-diblocks and r-multiblocks.

separation in systems with a unimodal molecular mass distri-
bution is still an open question.45, 68

C. Random multiblocks

Calculations reveal that the phase diagram for r-
multiblocks contains only D and L domains separated by the
ODT curve, which is plotted in Figure 10 along with the cor-
responding ODT curve for m-diblocks. The ordinate is χN for
diblocks, where N = 16, and χNc for multiblocks, where the
constituting length Nc is composition-dependent and given by
Eq. (9) with N̄ = 32. The critical point for r-multiblocks is
found at (χNc)cr = 40.2 so that for a symmetric copolymer
with Nc ≈ 2 (Eq. (9)) χ cr should be as high as 20.1. Thus, fully
random multiblock AB copolymers undergo microphase sep-
aration only in the case of very high incompatibility of A and
B units, as was predicted by theory73 and MC simulations.74

In the compositionally asymmetric case, even higher values of
χNc are needed to attain the ODT and no other ordered struc-
tures can be formed except lamellas. Similarly to r-diblocks,
the transition for r-multiblocks is higher than of the first order
at any composition.

It is also instructive to compare the domain spacing of
the lamellar structures, D, for three types of AB copolymers
considered in this study (Figure 11). For m-diblocks, the ratio
D/N1/2 is almost independent of χN at χN < 6, as it should
be in the absence of segregation.75 At χN ≈ 10, i.e., still be-
low the transition point, D/N1/2 starts to grow, which reflects
beginning of A and B blocks separation that leads to a corre-
sponding increase in the mean gyration radius of a chain Rg

(Fig. 12). Simultaneously, the mean gyration radius of similar
(A or B) blocks decreases until χN ≈ 20, when the blocks are
most compact. Qualitatively similar behavior was reported in
Ref. 54, where m-diblocks were studied by MC simulations.
Inset in Fig. 12 demonstrates that at χN ≈ 20 the structure
factor for r-diblocks already possesses a pronounced maxi-
mum. As can be seen in Figure 11, the dependence D/N1/2

on (χN) is most steep near the ODT at (χN)cr ≈ 26.4, which
is qualitatively consistent with the theoretical predictions of
Ref. 76. At χN ≈ 50 D/N1/2 begins to scale as (χN)ν , ν

= 0.185 ± 0.020, and this dependence holds at least up to χN

FIG. 11. Scaled domain spacing D for the symmetric (top) m- and r-diblocks
and (bottom) r-multiblocks vs χN. SST prediction for m-diblocks is shown
with the red dashed line.

= 100, being in good agreement with experiment,77 theory,50

and MC modeling78 for the strong segregation regime. How-
ever, diblock copolymers with longer chains must be tested to
verify these conclusions.

The domain spacing in polydisperse r-diblocks ap-
pears to be considerably larger even in the disordered state,

FIG. 12. Dependence of the mean chain gyration radius squared Rg
2 on χN

for the symmetric m-diblocks. Typical static structure factor at χN = 20 is
plotted in the inset.
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presumably reflecting the segregation of the longest, most
incompatible A and B blocks. With increasing χN, shorter
blocks join the segregation process and the spacing decreases
though it remains notably higher than in the corresponding
m-diblocks, in agreement with the well established fact45 that
polydispersity in block copolymers increases the lamellar pe-
riod. Surprisingly, we found that in the wide interval between
(χN)cr ≈ 27.6 < χN < 100 the ratio D/N1/2 does not depend
on χN, which means that growing incompatibility of A and
B units causes redistributions in the lamellas of polydisperse
diblocks that completely relax chain stretching. Within that
interval, the domain spacing ratio for r- and m-diblocks de-
creases with χN, which is consistent with SCFT calculations
for high polydispersities.49

The domain spacing in r-multiblocks is a highly fluctuat-
ing quantity, which is almost independent on χNc. However,
blocks in symmetric fully random copolymers are extremely
short, which explains a very restricted potential of lamellas to
change their thickness.

V. CONCLUSIONS AND OUTLOOK

In this paper, we presented the state-of-the-art phase di-
agrams for three binary block copolymer melts, which were
obtained using the DPD simulation technique on a modern
computational cluster. As a coarse-grained molecular dynam-
ics method, DPD naturally avoids difficulties of theoretical
approaches (such as accounting for fluctuations and finite
chain lengths) and Monte Carlo simulations (lattice ef-
fects and hard interaction potentials), though obtaining well-
defined complex microstructures, such as the gyroid, still re-
mains a weak point of the DPD technique.

The diagram for monodisperse diblocks reproduces all
main domains of the SCFT diagram, which is the product of a
number of theoretical studies, and demonstrates clear advan-
tage over the MC diagram. It is shown that the mean square
pressure fluctuation exhibits a spike in all order-disorder tran-
sition points, i.e., that the transition is of the first order, in con-
trast to ODTs in the other copolymers considered in this study
and all order-order transitions, which are of higher order. The
diagram for polydisperse diblocks contains new information,
since only weak-segregation theory calculations62–64 and no
experimental data, up to our knowledge, were previously re-
ported for the model, in which both blocks are character-
ized by the Flory distribution in length. Oppositely to the
theoretical predictions, we find that polydispersity does not
have much influence on the ODT curve. However, some of
the phase domains are considerably shifted in comparison to
the monodisperse case, for instance, the L and C domains are
shrunk, the PL domain is enlarged, the pure 3d-bicontinuous
phase (most probably, the gyroid) disappears, and the WM
phase enters the diagram. A pronounced effect of polydisper-
sity on the domain spacing in the L phase is found, which
goes beyond casual lamella thickening. Contrary to the well
known SST behavior for monodisperse diblocks, D/N1/2 ∼
(χN)1/6, which is successfully reproduced in our calculations,
the scaled domain spacing for polydisperse diblocks, D/N1/2,
is nearly independent of χN from the transition point and up
to χN ≈ 100. As a result, the lamella thickness ratio for poly-

disperse and monodisperse diblocks decreases with χN in the
mentioned wide interval. The diagram for completely random
multiblocks contains only disordered and lamellar phases due
to the extremely small length of the constituting blocks and
even the L phase is formed only in the case of very high in-
compatibility of A and B units. It should be noted that exper-
imental or obtained by computer simulations phase diagrams
for such copolymers are absent in the literature.

Concerning possible future applications of DPD to study-
ing the phase behavior of block copolymers we would like
to mention, first of all, Markovian (random correlated) multi-
block copolymers, a model that was deeply studied in theory
since the seminal paper by Milner, Fredrickson, and Leibler79

and recently attracted the attention of experimentalists80–82

due to the progress in the controlled synthesis of multiblock
polyolefins.83 Comprehensive simulation techniques84 reveal
only short-range order in the disordered phase (microemul-
sion), which, however, possesses interesting mechanical char-
acteristics, and it would be interesting to search for long-range
ordered structures with the help of DPD.

Secondly, exploring with DPD can be practically use-
ful for specifying conditions for experimental studies on the
block copolymers of complex architecture. At the moment,
the phase behavior of such systems can be investigated in the
framework of SCFT44 and DPD can appear a useful alterna-
tive or supplementary tool.

Being an intrinsically dynamic method, DPD allows one
to study the evolution of block copolymer systems in the
course of ODT and OOT phase transitions. Along this line, it
would be interesting to compare the DPD predictions not only
with the experimental data, as it was done in Ref. 39 but also
with the results of numerical analysis by other particle- and
field-based theoretical approaches. Such comparative study
of DPD and Brownian dynamics, on the one side, and DPD
and the dynamic version of SCFT,85, 86 on the other side, was
initiated in the pioneering DPD studies25, 26 and it definitely
worth continuing it at the modern level of computing facili-
ties. However, we are unaware of phase diagrams for copoly-
mer systems constructed using dynamical SCFT.

Finally, a lot of open problems are waiting for researchers
who are interested in the role of polydispersity in block
copolymer systems.45 In this work, we studied only one sys-
tem with the exponential distribution of both blocks, while
synthetic methods are able to produce a diversity of molecular
mass distributions so that the corresponding copolymers can
be ordered in a completely different way than their monodis-
perse analogues.
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