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1. INTRODUCTION

Various electromagnetic processes in the vacuum are described by Maxwell’s electrodynamics, which
is a linear theory. However, experiments conducted on the Stanford linear accelerator [1] has shown that,
even in the vacuum, electrodynamics is nonlinear. Therefore, development of various nonlinear mathe�
matical models of electrodynamics in the vacuum is an urgent problem [2–7].

In theoretical and mathematical physics, two models of nonlinear electrodynamics are being actively
discussed. The equations of the electromagnetic field in these models coincide with the equations of Max�
well’s macroscopic theory in matter:

(1)

differing from the latter in the meaning of the vectors D and H.

In particular, in the Born–Infeld nonlinear electrodynamics [2], these vectors satisfy the following
constitutive relations:

(2)

where a is a constant such that 1/a ~ 1016 G.

In the limit of a  0, the Born–Infeld nonlinear electrodynamics passes to Maxwell’s linear electro�
dynamics in the vacuum.
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For the fields attainable in laboratories on the Earth, the dimensionless ratios a2E2 and a2B2 are signif�
icantly smaller than unity. In this case, constitutive relations (2) can be expanded [8] in the small param�
eters a2E2 � 1 and a2B2 � 1:

(3)

In the Heisenberg–Euler electrodynamics, nonlinearity is an implication of the polarization of the
electron–positron vacuum by electromagnetic fields.

This theory employs a characteristic quantity Bq, expressed in terms of the electron mass m, electron
charge e, and Planck constant �: Bq = m2c3/(e�) = 4.41 × 1013 G. If the magnitude of the electromagnetic
fields B and E is smaller than Bq, then the fields are considered weak and the first two terms in the expan�

sion of the constitutive relations in the vacuum in the small parameters (B2 – E2)/  and (BE)/  have
the form [9]

(4)

where α = e2/�c ≈ 1/137 is the fine structure constant and ξ = 1/ .

For calculation of various effects of the nonlinear vacuum electrodynamics in the approximation of a
weak electromagnetic field (B < Bq, E < Bq), which is applicable for all models, post�Maxellian formalism
was suggested and developed [10–13]. In this formalism, the constitutive relations of any nonlinear vac�
uum electrodynamics in the case of weak fields are written in the parametric form:

(5)

which includes two dimensionless post�Maxwellian parameters η1 and η2 with the values depending on
the model of the vacuum nonlinear electrodynamics.

Comparing expressions (3)–(5), it is easy to find that, in the Heisenberg–Euler nonlinear electrody�
namics, the parameters η1 and η2 have different values: η1 = α/(45π) = 5.1 × 10–5 and η2 = 7α/(180π) =

9.0 × 10–5, whereas, in the Born–Infeld theory, they are equal: η1 = η2 = a2 /4.

The model of nonlinear vacuum electrodynamics employing Eqs. (1) and (5) is termed in the literature
the parametric post�Maxwellian electrodynamics, by analogy with the parametric post�Newtonian for�
malism [14] of the gravitation theory.

In [15–17], it was shown that system of equations (1) and (5) has the equation of characteristics

(6)

where the tensors  and  in the post�Maxwellian approximation are expressed via the metric tensor

gim of the four�dimensional Riemannian space and the electromagnetic field tensor Fip:

(7)

Equation (6) implies that, for η1 ≠ η2, any electromagnetic wave in an external electromagnetic field
splits into two normal waves, which have mutually orthogonal polarizations and propagate along the rays
at different velocities. Expressions (7) do not mean that the Einstein principle of equivalence in electro�
dynamics [18] is violated: the presence of the second terms in them means that the propagation of the
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electromagnetic wave is influenced not only by the gravitational field, described by the metric tensor gnk,
but by the external electromagnetic field as well. By analogy, it is established that the charged particle
motion in the gravitational and electromagnetic fields is different from the motion only in the gravitational
field.

Equation (6) can be transformed by the Lagrange–Charpit method [17] to equations of isotropic geo�
desic lines:

(8)

where σ a parameter and kn = dxn/dσ is a four�dimensional vector [19].
System of equations (8) has the first integral

(9)

The primary problem in the development of a parametric model of post�Maxwellian electrodynamics
is the experimental determination of the values of the post�Maxwellian parameters η1 and η2. To this end,
using the system of equations (1) and (5)–(9), it is necessary to calculate a variety of electrodynamic pro�
cesses in order to find nonlinear effects in the vacuum that could be available for measurements. However,
the fields attainable in conditions of the Earth are so small as compared to the field Bq that measuring the
nonlinear effects considered in [20–23] is beyond the capabilities of modern technology.

In this connection, it is more promising to consider electrodynamic processes near pulsars [24], i.e.,
rotating neutron stars with a dipole magnetic field B ~ 1013 G on the surface, and near magnetars [25], i.e.,
rotating neutron stars with B ~ 1016 G. The computations performed in [26–29] for the cases when rays of
electromagnetic waves lie in the plane of the magnetic meridian or in the plane of the magnetic equator of
the dipole magnetic field of a neutron star have shown that, in certain conditions, the nonlinear effect in
the dependence of the propagation velocity of a wave on its polarization can be detected experimentally.
Therefore, this effect should be studied in the most general case—not only in the magnetic meridian and
magnetic equator planes.

The aim of the present work is the mathematical modeling of the nonlinear electrodynamics effect of
signal delay in the magnetic field of pulsars in the most general case, when the vector of the magnetic
moment of a neutron star is arbitrarily orientated with respect to the ray of an electromagnetic wave, and
estimation on this basis the nonlinear effects arising in this case.

2. PROBLEM STATEMENT

Let us consider a neutron star with a magnetic dipole moment m, mass M, and radius Rs.
In the magnetosphere of many pulsars and magnetars, bursts of X� and gamma radiation occur. Prop�

agating in space, this radiation reaches the vicinity of the Earth and is detected by equipment installed on
astrophysical satellites. When X� and gamma radiation passes through the magnetosphere, it is subjected
to the action of strong magnetic and gravitational fields of the neutron star, which leads to birefringence
and bending of rays. As in [30, 31], we will neglect the action of plasma found in the magnetosphere on
the propagation of X� and gamma radiation, because, in this range of frequencies ω, the refractive index
n = 1 – N/ω2 unessentially differs from unity.

Suppose that, at a point r = R0 of pulsar’s magnetosphere at a time τ = τ0, a burst of X� and gamma
radiation has occurred. This point will be the initial point for a bundle of rays along which electromagnetic
pulses will propagate in all directions and some of them will reach a detector installed on a satellite located
at a distance Rd ~ 1018 km from the center of the pulsar. In the magnetic field of the pulsar, due to the non�
linear electrodynamics birefringence, each pulse is carried by two normal ways having different velocities
and mutually orthogonal polarizations. These waves, which travel to the satellite along different rays, pass
their way for different times.

Let us calculate the delay of one normal wave relative to the other normal way as they travel from the
common source to the satellite. As in [31], we will use the spherical coordinates with the axes oriented so
as to simplify the further calculations. Place the origin at the center of the pulsar. Take one ray from the
bundle of rays of the first normal wave, connecting the point r = R0 and the satellite. Draw the tangent line
to this ray at the point r = R0. Turn the coordinate axes so as this tangent line lie in the plane θ = π/2 and
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the coordinate ϕ of vector R0 equal π. Therefore, the plane θ = π/2 will touch the plane for the first ray at
the point r = R0.

Since the rays of the first and second normal waves that connect the X� and gamma radiation source
and the satellite are different, the initial conditions for them are imposed in different ways. For the chosen
orientation of the axes, the ray of the first normal wave originates at the point r = R0, θ = π/2, ϕ = π,
touches (dθ/dϕ = 0) at this point the plane θ = π/2, and has the impact parameter b > Rs.

The ray of the second normal wave also originates at the point r = R0, θ = π/2, ϕ = π and terminates at
the point r = Rd at which the ray of the first normal wave hits the detector. In addition, all waves are radi�
ated from the point τ = τ0 at the same time r = R0.

3. ESSENTIAL EQUATIONS AND RELATIONSHIPS OF THE MATHEMATICAL MODEL

In the model under consideration, an appropriate choice for the metric tensor gik is the Schwarzschield
metric tensor [19] in the post�Newtonian approximation [14]. Denoting the gravitational radius of the star
by rg = 2GM/c2, we have

(10)

In the spherical coordinates, the nonzero components of the tensor Fik describing the magnetic dipole
field of the neutron star has the form

(11)

To simplify further calculations, we introduce auxiliary angles α and β by the relationships
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Using expressions (10)–(12), we find the components of the tensor :
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In Eqs. (8) and the first integral (9), we pass from the differentiation with respect to the parameter σ to
the differentiation with respect to the angle ϕ, using the relationship d/dσ = k3d/dϕ. As a result, we obtain
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For n = 3, Eq. (14) turns into the identity 0 = 0.

Equations (14) with the initial conditions give the unique solution of the above�formulated problem.

4. INTEGRATION OF THE RAY EQUATIONS

Substitute expression (13) into Eqs. (14). Since, the problem under consideration has two small
parameters: rg/r and m2ξη1, 2/r6, the solution to Eqs. (14) will be sought by the method of successive
approximations.

In the initial approximation, dθ/dϕ = 0 for all points of the chosen ray and system of equations (14)
takes the form

Integrating these equations and taking into account the initial conditions, we obtain in this approximation

where χ is an auxiliary angle relating b and R0 by the formula sinχ = b/R0.

The solution to system of equations (14) in the next approximation is conveniently sought in the form
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Write Eqs. (14) with allowance for expression (15) in the linear approximation with respect to the small
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The solutions of these equations have the form
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The functions describing the nonlinear electrodynamics interaction satisfy the equations

Solving these equations, we obtain

(17)

where C6, C7, C8, C9, and C10 are integration constants.

The initial conditions for the first normal wave have the form r = R0, θ = π/2, τ = τ0, and dθ/dϕ = 0 at
ϕ = π and, r = b at ϕ = χ + π/2. Hence, at ϕ = π, we must satisfy the conditions F1(π) = F2(π) = F3(π) =
F4(π) = F5(π) = F6(π) = 0, dF5(ϕ)/dϕ|ϕ = π = dF6(ϕ)/dϕ|ϕ = π = 0 and, at ϕ = χ + π/2, the conditions
F3(χ + π/2) = F4(χ + π/2) = 0.
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(18)

Now let us find the coordinates Rd, θd, ϕd of the point at which the satellite with the detector is located
for the chosen orientation of the coordinate axes.

The radial coordinate of the satellite has not changed on the rotation of the spherical coordinates and
equals r = Rd. Let us determine the angular coordinates ϕd and θd of the satellite for the chosen orientation
of the spherical coordinates. Taking into account that, due to the nonlinear electrodynamics and gravita�
tional action, rays are bended, we can write the coordinate ϕd in the form

(19)

where δϕd � 1. Then, from the equation r1(ϕd) = Rd, we have
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Substituting expressions (19) and (20) into the last expression in (15), we find the angular coordinate θd of
the satellite for the chosen orientation of the spherical coordinates:
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The functions F1(ϕ), F2(ϕ), F3(ϕ), F4(ϕ), F5(ϕ), and F6(ϕ), entering into these relationships are deter�
mined by expressions (16) and (17), but only some of the integration constants are different, due to dif�
ferent initial conditions.

The ray of the second normal wave at ϕ = π and τ = τ0 originates at the same point r = R0, θ = π/2, as
the ray of the first wave. Therefore, the integration constants C1, C2, C4, C6, C7, and C9 are the same as those
for the ray of the first normal wave (18). In order to determine the remaining integration constants, we take
into account that, from the bundle of rays of the second normal wave, we choose the one hitting the detec�
tor, which has the coordinates ϕ = ϕd = χ + δϕd, r = Rd, θ = θd.

Substituting ϕ = ϕd = χ + δϕd into the equation r2(ϕd) = Rd and solving it, we obtain the integration
constants C3 and C8 for the second normal wave. Then we substitute relationship (19) into the equation
θ2(ϕd) = θd. Hence we find the integration constants C5 and C10. Thus, we have all necessary for the analysis
of the basic effects of nonlinear vacuum electrodynamics observed on the propagation of electromagnetic
waves in the magnetic field of pulsars.

5. ANALYSIS OF RESULTS

From the analysis of (20) and (21) it follows that rays of normal waves are bent in the magnetic and
gravitational fields of a pulsar; the gravitational field bends only rays in the tangent plane, and the mag�
netic field, in other planes. Since the ray bending effect has been thoroughly studied in earlier published
works [13, 28, 31], we will not consider this effect here; moreover, due to the large distance (Rd � Rs)
between pulsars and the Earth, this bending is impossible to measure.

Therefore, we will study the effect of delay: the presence of a nonzero difference Δτ = [τ2(ϕ) –
τ1(ϕ)]  between the time τ2 required for a pulse carried by the second normal wave to pass the wave

from the origin to the satellite and the time τ2 required to pass the same way for the pulse carried by the
first normal wave.

Using relationships (15), (16)–(18), and (22), we obtain the following expression for the delay Δτ:

(23)

where

(24)

Each pulsar rotates with some frequency Ω1 about the axis passing through its center of mass, which
does not coincide with the vector of dipole moment m; in addition, the rotation axis performs regular pre�
cession with the frequency Ω2 > Ω1. However, for the majority of typical neutron stars possessing a strong
magnetic field, the periods of these rotations T1 = 2π/Ω1 and T2 = 2π/Ω2 prove to be significantly greater
than the time of propagation of an electric pulse in the region of a strong magnetic field, T ≈ 2Rs/c. There�
fore, when solving our problem of the nonlinear electrodynamics and gravitational effects of the fields of
a neutron star on the propagation of electromagnetic pulses, we might consider the angles α and β inde�
pendent of the time and, only in the final result (23), take into account that they are slowly varying func�
tions of time. This means that there are pulsars in which, due to the rotation, the angles α and β can vary
in the ranges 0 ≤ α ≤ π, 0 ≤ β < 2π. The angle χ is determined by the position of the X� and gamma radiation
source with respect to the point of the ray of the first normal wave nearest to the center of the pulsar.

Simple analysis of expression (24) shows that, as χ  0, the source is found at the spatial infinity; in
this case, the pulsar is situated between the radiation source and the satellite. This case is possible if the X�
and gamma radiation source is the magnetosphere of another neutron star or even a Seyfert galaxy.

At χ = π/2, the radiation source is situated at the point of a ray nearest to the center of the pulsar. If χ >
π/2 but χ < π, the X� and gamma radiation source and the satellite are found on the same side of the pulsar.
Since, in this case, the electromagnetic pulse travels in the periphery of the magnetic field of a pulsar with�
out hitting the region of stronger magnetic field, it is obvious that the effect of delay for χ > π/2 will be
strongly suppressed.

ϕ ϕd=

Δτ
m2ξ η2 η1–( )

cb5
��������������������������f α β χ, ,( ),=

f α β χ, ,( ) 1
512
������� 2 6χ 2β–( )sin 9 6χ 2β+( )sin 40 4χ 2β–( )sin– 56sin 4χ 2β+( )–+[{=

– 155 2χ 2β–( )sin 158 2χ 2β+( )sin 8 6χ( )sin 56 4χ( )sin– 304 2β( )sin– 232 2χ( )sin+ + +

– 312 π χ–( ) 2χ 2β–( )cos 288 π χ–( ) ] α2
sin 32 8 2χ( )sin 4χ( )sin– 12 π χ–( )+[ ] }.+ +
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Let us analyze the behavior of the function f(α, β, χ) in the admissible range of the angles α, β, and χ.
Expression (24) implies that the f(α, β, χ) attains the maximum at α = π/2. The numerical analysis has
shown that (see the figure) that, at α = π/2, the maximum value of the function f(α, β, χ) is attained if χ = 0
and β = π/2 or β = 3π/2. If α = π/2, β = π/2, but χ = π/2, the function f(α, β, χ) is smaller by a half.

The condition of applicability of the parametric post�Maxwellian approximation used in the calcula�
tion of the delay is the smallness of the parameter ξB2(r) at all point of the rays. Then, since r ≤ b, this con�
dition is satisfied if ξB2(b) ~ 0.1. Then, assuming that some of the pulsars can provide the conditions α =
π/2, β = π/2, and b = 10Rs and taking into account that, for typical pulsars, Rs = 10 km, we obtain the
estimate Δτ ~ 10–9 s.

Thus, the delay Δτ of the pulse carried by the second normal wave relative to the pulse carried by the
first normal wave from their common point of origin to the satellite, in the most favorable case, can attain
10–9 s. Such time intervals can be detected by modern electronic devices. Therefore, the inclusion of this
experiment into programs of future satellite mission will make possible an independent check of whether
the vacuum electrodynamics is a nonlinear theory or is fundamentally linear.
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