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ABSTRACT: Anharmonic vibrational frequencies and intensities (infrared and
Raman) of an isolated free-base porphin molecule are predicted from the quantum
mechanical (QM) geometry, the “semi-diagonal” quartic force field, and dipole
moment and polarizability surfaces. The second-order vibrational perturbation theory
plus the numerical diagonalization of the Hamiltonian matrix containing off-diagonal
Fermi and Darling−Dennison resonance couplings (VPT2+WK) was used. The QM
calculations were carried out with the Becke−Lee−Yang−Parr composite exchange−
correlation functional (B3LYP) and with the 6-31+G(d,p) basis set. The harmonic
force field for the equilibrium configuration was transformed into nonredundant local
symmetry internal coordinates, and normal coordinates were defined. The semi-
diagonal quartic rectilinear normal coordinate potential energy surface (PES), as well
as the cubic surfaces of dipole moment (p) and polarizability (α) components,
needed for the VPT2+WK calculation, were constructed by a five-point finite
differentiation of Hessians (for PES) and of the values and first derivatives of p and α. They were obtained at the point of
equilibrium and for 432 displaced configurations. This theoretical approach provides very good agreement between the predicted
and experimental frequencies and intensities. However, the favorable result can be partly attributed to error cancellation within
the B3LYP/6-31+G(d,p) QM model, as observed in earlier studies. Reassignments of some observed bands are proposed.

1. INTRODUCTION

Porphin is the prototype of porphyrins, an important class of
bioorganic molecules that form framework groups of many
proteins, such as hemoproteins (e.g., hemoglobin), cyto-
chromes, and phtalocyanines.1,2 Porphin’s two protons from
N−H bonds can be substituted by divalent cations of many
metals, magnesium, zinc, iron, cobalt, nickel, copper,
chromium, manganese, silver, palladium, and so forth, to
form a class of biologically active and important derivatives
called metalloporphyrins. Metalloporphyrins with heme groups
are very important for biological processes functioning, in
particular, in photosynthesis, oxygen transport, and oxida-
tion−reduction mechanisms. Insight into the structure and
vibrations of metalloporphyrins requires a thorough study of
the parent molecule. The spectroscopic characterization of this
class of molecules has considerable interest to a large
community of chemists and biochemists.
Both porphin and metalloporphyrins have received much

attention in experimental studies of structure and spectra, as
well as theoretical normal coordinate analyses in the last few
decades.3−31 A high-symmetry point group D2h and plentiful
experimental data on porphin support the study of its
vibrations. Porphin in the solid state and dispersed in a noble
gas matrix was studied by means of infrared (IR) spectra,4−8

resonance Raman (RR) spectra,9−11 nonresonance Raman
spectra,12 and luminescence/phosphorescence spectra.13−15 A
measurement of inelastic neutron scattering (INS) spectra for
porphin permitted observation of many previously unknown

fundamental vibrational bands, including both IR- and Raman-
inactive Au transitions.

16

Early studies of normal coordinates and the force field for
porphin depended on solving the inverse vibrational prob-
lem.17−29 The theoretical electronic quantum mechanical
(QM) studies of porphin received a boost with the introduction
of the density functional theory (DFT). A number of porphin
studies employing the DFT-B3LYP functional has demon-
strated that this level of theory produces a sufficiently accurate
description of the vibrations of porphin following an empirical
adjustment of the harmonic force field.12,16,20,21,23−26

Predicted harmonic frequencies usually do not match the
experimentally observed vibrational band centers for two main
reasons. First, anharmonic shifts can be large, even over 100
cm−1. Second, only a few QM models [such as CCSD(T), for
instance] produce molecular geometries and potential energy
surfaces (PESs) of sufficient quality. These models are
inapplicable to molecules of the size of porphin at a reasonable
cost. The previous studies inevitably used a phenomenological
toolscaling of the harmonic force fieldto achieve an
acceptable agreement between calculated and observed
fundamental frequencies.12,20,21,23−26 The scaled quantum
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mechanical (SQM) force field is a well-established technique,
often associated with Peter Pulay.32,33 The scaling technique is
based on the more-or-less regular character of anharmonic
shifts and QM model deficiencies. Applying sets of scaling
factors obtained for harmonic force fields of smaller molecules
or molecules of similar structure to a new molecule effectively
absorbs regular shifts of frequencies and achieves an acceptable
reproduction of observed data.
The empirical character of the SQM force field technique is

only part of the problem. The other complication is that the
anharmonic character of molecular vibrations leads to
substantial coupling between normal modes, which results in
Fermi resonances (FRs), mode mixing, and intensity
borrowing.34−38 These widely observed effects cannot be
described by a harmonic model; a more sophisticated
anharmonic model must be employed. In some cases,
nonfundamental transitions can have substantial intensities
that cannot be described within a harmonic model.
All previous vibrational analyses of porphin were performed

in the framework of the so-called “double-harmonic approx-
imation”, that is, using quadratic force constants and first
derivatives from the dipole moment and polarizability tensor
components. Using modern capabilities of quantum chemistry
(e.g., DFT), an anharmonic model of molecular vibrations, and
adequate computer resources enables more advanced studies,
based, for example, on the second-order vibrational perturba-
tion theory (VPT2).34−43

It may sound surprising, but the application of the well-
established VPT2 method of computing anharmonic vibrations
to the large porphin molecule does not meet any obstacles that
cannot be overcome by an appropriately chosen computational
technique. First, the force field required for VPT2 can be
reduced to the so-called “semi-diagonal” version, where the
number of different modes participating in quartic force
constants is limited to three. In other words, force constants
of the form ϕrstu are not computed. This approximation
sacrifices the important type of 11−11 Darling−Dennison (D−
D) resonance but preserves the 1−1 type. However, these 11−
11 perturbations do not directly affect fundamentals.
Consequently, only single and double differentiation of analytic
Hessians along each of M = 108 normal modes of porphin is
required. In addition to computing the equilibrium structure,
the minimum task is to evaluate Hessians in only 2 × M
displaced configurations. The calculation of the full quartic
force field would require 2 × M × (M − 1) additional
evaluations of harmonic force constants that would be far from
practical. For the B3LYP/6-31G+(d,p) QM model, which has
demonstrated good results in a number of studies,44,45 the
computational time for obtaining a Hessian for each
configuration is quite reasonable, and such evaluations can be
organized in parallel. Both the potential energy and the
molecular properties surfaces can be efficiently kept in
computer memory in a compact form without repeating
equivalent derivatives.
Second, the calculation of the anharmonic constants (x) as

well as Fermi (W) and D−D (K) resonance coupling constants
can be efficiently accomplished using closed expressions.46−50

The final stage of the calculation (designated by adding the
suffix +WK to VPT2) requires evaluation of matrix elements for
the resonance terms of the Hamiltonian, using an appropriate
set of harmonic oscillator basis functions. If the maximum
excitation of these basis functions is restricted to two quanta,
which covers first overtones and binary combination states,

then the size of such a basis set for porphin is on the order of
6000, which is acceptable. The diagonalization of the
Hamiltonian matrix containing resonance couplings produces
a final set of anharmonic frequencies and the matrix of
eigenvectors that are used for mixing intensities calculated for
“pure” fundamentals, overtones, and combinations bands. As a
result, a simulated spectrum with a realistic picture of the
intensity distribution among “bright” and “dark” states can be
obtained.
The density of transitions for molecules of the size of

porphin is quite high, especially in the important region of
C−H stretching vibrations (about 3000 cm−1). Thus, it is very
useful to be able to predict not only the frequencies of
transitions but also their intensities (IR and Raman). The
analytical expressions for anharmonic intensities of both
fundamental (0−1) and two-quanta transitions (0−11, 0−2)
are available in the literature for IR spectra51−60 and Raman
spectra.45,56,60−63

The primary goal of this work is obtaining a nonempirical
theoretical prediction of the anharmonic IR and Raman spectra
of porphin and taking a step forward in developing a
methodology for predicting vibrational spectra of large
biologically important molecules without any involvement of
empirical information drawn from the spectrum of the target or
related molecules. Such a prediction of spectra can be
accomplished in a “black-box virtual spectrometer” style60 to
ensure easy access to computational facilities by biochemists.

2. THEORETICAL BACKGROUND
In this section, we briefly review the main theoretical
considerations needed for understanding the VPT2 method
applied to modeling the anharmonic vibrational spectra of
porphin.

2.1. Hamiltonian and the Second-Order Vibrational
Perturbation Theory (VPT2+WK). The traditional imple-
mentation of the VPT2 employs a Watson Hamiltonian of a
molecule with M degrees of vibrational freedom expanded in
powers of rectilinear dimensionless normal coordinates qr =
Qr[4π

2c2ωr(hc)
−1]1/2, where ωr is a harmonic frequency and Qr

is Wilson’s normal coordinate. The Hamiltonian operator H =
T + V grouped by 0, 1, and 2 orders of perturbation theory is
represented by
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(2.1)

where ϕrst,ϕrstu are force constants, Be
α are equilibrium rotational

constants (both in cm−1 units), and ζrs
α are Coriolis coupling

constants.
After reduction of the Hamiltonian (eq 2.1) to the desired

quasi-diagonal form Ĥ(2) using canonical van Vleck perturba-
tion theory in second order34−38 and integration of Ĥ(2) with
the zero-order harmonic oscillator basis functions E(ν̅) =
hc⟨Φ(ν ̅)|Ĥ(2)|Φ(ν ̅)⟩, one obtains the following analytic
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expression for vibrational terms as a function of harmonic
frequencies and anharmonic constants G0, xrs
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as well as expressions for Fermi (W) and D−D (K) resonance
off-diagonal constants.46−50 In the final variational stage
(denoted by +WK addition to the VPT2 abbreviation), a
suitable set of zero-order harmonic oscillator basis functions is
chosen to account for first- and second-order resonance
couplings. This set is usually much smaller than would have
been used in a full variational treatment of the vibrational
Schrödinger equation. The eigenvalues obtained after numerical
diagonalization are the final anharmonic energy terms, while
the eigenvectors describe mixing of the zero-order states. The
eigenvectors are further used for obtaining the final transition
moments of resonant vibrational levels as linear combinations
of deperturbed (DP) values.
2.2. IR Intensities. Because the density of an anharmonic

vibrational spectrum grows rapidly with the size of the molecule
and an increase of excitation energy, a great help for
interpreting spectra can be gained from an anharmonic
calculation of IR and Raman intensities.45,51−63 Close-lying
anharmonic vibrational states can be strongly coupled due to
resonance interactions, and an accompanying intensity
redistribution can take place, which cannot be described in
the framework of the conventional harmonic model. In
addition, anharmonic terms in the dipole moment and
polarizability tensor components must be accounted for.
As was shown in early fundamental studies of the VPT2

theory,64,65 transition matrix elements for the anharmonic (i.e.,
nonlinear in coordinates qr) operator ρ of a molecular property
(such as Cartesian components of the dipole moment,
polarizability tensor, etc.) can be approximated by matrix
elements of the double contact-transformed operators with
zero-order harmonic wave functions, that is
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where U is the unitary operator representing a double canonical
transformation reducing the Hamiltonian to the quasi-diagonal
form.
For this purpose, for example, the effective dipole moment

operator μα = μα(q), α = x,y,z, must be expanded in powers of
normal coordinates and duly arranged by orders of perturbation
theory
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At the second order, the transformed dipole moment operator
Mα has the following form52
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where μα
(k) is the kth perturbation of the dipole moment

operator and operator Sk is the generator of the kth contact
transformation. Once the explicit expression of Mα is known, it
is easy to evaluate the line strength S(ab) of the dipole a ← b
transition, which is given by
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α
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Analytic expressions for the line strengths of fundamentals,
first overtones, and binary combination transitions have been
derived and are available in the literature.51−60

The integral absorption coefficient of electric dipole moment
α ← b for the Boltzmann distribution of molecules at absolute
temperature T is given by the following formula38
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where NA is the Avogadro number, k is the Boltzmann constant,
ν(ab) is the α ← b transition wavenumber, and Q is the
vibrational partition function.

2.3. Raman Intensities. The same theory is applicable to
the tensor components of the polarizability operator αξζ(q),
where ξ,ζ = x,y,z, as long as these components are expanded in
a Taylor series in the same way as eq 2.4.45,56,61−63 In the
Raman scattering vibrational spectra (RS), a differential cross
section of scattering can be used as a quantity characterizing the
intensity of the jth band (in units of 10−48 cm2/sr)
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Here, (∂σj/∂Ω) is the Raman scattering cross section; ν0 is the
frequency of the excitation line; h, c, and k are universal
constants; T is the absolute temperature; and Ω is the solid
angle at which light is recorded. The quantity SRS(νj) = 45α̅j

2 +
7γj

2 is called the coefficient of Raman scattering activity, in
which invariants α̅j

2, γj
2 (mean polarizability and anisotropy)

have the form66
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If the operator αξζ(q) is subjected to a transformation eq 2.5,
one can obtain a transformed operator of the polarizability
component Aξζ, whose matrix elements in the basis of the
harmonic oscillator’s eigenfunctions are equal to the matrix
elements of the initial operator for anharmonic functions

α⟨Φ | |Φ ⟩ = ⟨Φ |Α |Φ ⟩ξζ ξζ
a b a b( ) ( )

0
( )

0
( )

(2.11)

It should be noted that it can be convenient to calculate the
absolute normalized differential cross section of scattering,
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which is defined by moving the factor (ν0 − νj)
4 in eq 2.8 to the

left side and therefore avoiding dependence on the frequency of
the excitation line.
In order to calculate the values for the anharmonic Raman

intensities of overtones and combination transitions, the
analogous formulas as used for IR intensities are applicable
too.45,60,63

3. CALCULATION DETAILS

3.1. Porphin Symmetry, Geometry, and Internal
Coordinates. The free porphin molecule belongs to the
symmetry point group D2h, and its normal modes can be
classified as follows: 19Ag (in-plane, Raman-active), 8Au (out-
of-plane, IR- and Raman-inactive), 18B1g (in-plane, Raman-
active), 10B1u (out-of-plane, IR-active), 9B2g (out-of-plane,
Raman-active), 18B2u (in-plane, IR-active), 8B3g (out-of-plane,
Raman-active), and 18B3u (in-plane, IR-active). Thus, mutual
exclusion applies to IR and Raman activities for this
centrosymmetric molecule.
The porphin molecular properties such as the equilibrium

geometry, harmonic force constants, dipole moment vector
components and their first derivatives, as well as polarizability
tensor components in Cartesian coordinates were computed
with the aid of QM method DFT-B3LYP and the basis set 6-
31G+(d,p). The choice of this QM method and basis set was
motivated by the success of this combination for a number of
large molecules.44,45 All of these QM calculations were done
using the Gaussian’09 (G’09) package.67 The G’09 “VeryTight”
geometry optimization and “UltraFine” DFT numerical
integration settings were applied. D2h symmetry restrictions
were imposed when composing the Z-matrix for G’09 to obtain
the optimized equilibrium molecular geometry. However, the
accounting of symmetry for the geometry optimization with
G’09 and the evaluation of harmonic force constants was turned
off because different symmetries of displaced configurations
lead to poor results for the quartic force constants after the
numerical differentiation.43 Additional molecular properties,
required for the perturbation theory calculations, such as cubic
and quartic force constants and higher derivatives of dipole
moment and polarizability components, were evaluated using
numerical differentiation of basic G’09 molecular properties in
normal coordinates.
The harmonic frequencies, representation of vibrational

modes in internal coordinates, as well as Cartesian coordinate
displacements along normal coordinates were calculated using
the standard Wilson method. All anharmonic vibrational
computations, except the electronic structure ones, were
performed with the aid of our software package ANCO
(acronym for Analysis of Normal Coordinates),43 written in
Fortran and designed for anharmonic vibrational normal
coordinate calculations. The ANCO package is available for
Windows and Linux operating systems.
The molecular model and the numbering of atoms of the

porphin are presented in Figure 1 (reproduced in full size in the
Supporting Information as Figure S1). The molecular geometry
defined in terms of a G’09 Z-matrix and Cartesian coordinates
in the standard orientation of Cartesian axes is presented in
Supporting Information Table S1. Table 1 presents the values
of optimized geometrical parameters (bond lengths and valence
angles) in comparison with literature data. We did not include
the experimental X-ray results for porphin because they show a
lower symmetry of porphin.3

Evaluation of normal modes in the space of internal
vibrational coordinates requires an initial choice of valence
coordinates. In principle, any full and independent set of
valence internal coordinates can be used for a QM force field
originally expressed in Cartesian coordinates. However, some
sets of internal coordinates are preferable as they are closer to
the normal modes. Therefore, the transformation matrix
connecting internal and normal coordinates becomes quasi-
diagonal, which makes it easier to interpret the normal modes
in terms of valence (local symmetry) internal coordinates. This
procedure is usually part of “a vibrational assignment”, which
should not be confused with the assignment of observed bands
to fundamental 0 → 1 transitions. It is important to remember
that the usefulness of the vibrational assignment in the former
sense can be limited in some cases, especially for large
molecules. First, normal modes can be complex linear
combinations without any dominant part of properly chosen
internal coordinates. In this case, available visualization software
for normal vibrations can be utilized to help describe the
vibrational forms in terms of standard terminology (such as
twisting, wagging, scissoring, etc.). Second, fundamental
transitions can be strongly mixed with other states due to
Fermi and some types of D−D resonances. In this situation,
even the assignment of observed bands to certain theoretical
fundamental transitions can have an element of arbitrariness.
For these reasons, we did not attempt to make a new careful
analysis of the assignments of the vibrational mode, and we
refer a reader to existing publications on normal coordinate
analyses for porphin.17−29

However, the molecule of porphin is an interesting example
of a polycyclic molecule, for which it is very difficult to
introduce a full and nonredundant set of local symmetry
coordinates.68 For this reason, we composed such a set of
coordinates using a combined technique. Namely, for the four
pyrrole rings, we used the elegant set of independent local
symmetry coordinates suggested in ref 69. The remaining
redundancies in the 16-membered internal ring of heavy atoms
were eliminated using an automated technique proposed in ref

Figure 1. Free-base porphin molecular model and numbering of
atoms.
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70. This method is based on a reduction of the zero-eigenvalue
subset of the full coordinate system G-matrix eigenvector
matrix C to a special form with a unity-matrix sub-block, the
dimension of which is equal to the number of redundant
coordinates MR (and zero eigenvalues, of course). This
reduction is conducted in j = 1...MR steps and is based on a
choice of the leading element in the (M+j)th column of the C-
matrix, optional permutation of rows, and adding other
columns from the M + 1 to M + MR subset to cancel unwanted
nonzero elements. Once this process is accomplished, the rows
of the unity-matrix sub-block correspond to redundant
coordinates.70 These internal coordinates can be simply
omitted, and the remaining set of coordinates represents a
full nonredundant set of internal (local symmetry) coordinates.
Such a set, along with the Cartesian coordinates for porphin, is
presented in the Supporting Information Tables S2−S4. It
should be noted that the requirement of using an internal
coordinate representation for the harmonic force field is vital in
the case of the SQM technique that needs a correspondence
between scale factors and adjustable blocks of the force
constant matrix. When using the VPT2 approach, the normal

coordinates can be defined directly in Cartesian coordinates.
This obviates the need for a complex procedure of building
nonredundant sets of internal (local symmetry) coordinates.

3.2. Porphin Quartic Force Field, Dipole Moment, and
Polarizability Component Cubic Surfaces. The interaction
of the employed software package ANCO with the G’09
package is arranged through automated generation, processing,
and reading of input/output files in text format. For example,
ANCO generates an input file for G’09 with Cartesian
coordinates of molecular configurations shifted along normal
coordinates and some keywords requesting computation of the
Cartesian harmonic force constants matrix (Hessian) without
geometry optimization. Afterward, when the electronic problem
is solved, the G’09 output checkpoint files are converted into
text format and processed by ANCO, which extracts the
Hessian and other desired molecular properties.
The semi-diagonal (up to three different modes) quartic

PESs were obtained by the one- and two-dimensional
numerical differentiation of Hessians in normal coordinates,
using the five point equidistant grids and a 0.02 Å × (amu)1/2

step size

ϕ
ϕ δ ϕ δ ϕ δ ϕ δ

δ
=

+ − − − + − −q q q q

q

8( ( ) ( )) ( ( 2 ) ( 2 ))

12ijk
jk i jk i jk i jk i

i (3.1)

Table 1. Theoretical DFT-B3LYP/6-31+G(d,p) Quantum Mechanical Geometrical Parameters (Ångstroms, Degrees) of the
Porphin Molecule in Comparison with Literature Dataa

geometrical parameter simplified designation this work, 6-31+G(d,p) this work,b cc-pVTZ ref 27, 6-31G(d,p) ref 31, 6-31G(d)

N(2)−C(13) N−α 1.3642 1.3582 1.3638 1.364
C(13)−C(15) α−β 1.4609 1.4561 1.4592 1.460
C(13)−C(22) α−m 1.4013 1.3952 1.4004 1.400
C(15)−H(31) β−H 1.0828 1.0784 1.0826 1.083
C(16)−C(15) β−β 1.3590 1.3509 1.3568 1.356
C(22)−H(36) m−H 1.0859 1.0817 1.0857 1.086
N(1)−C(5) N−α′ 1.3732 1.3677 1.3721 1.372
C(5)−C(7) α′−β′ 1.4359 1.4304 1.4353 1.435
C(5)−C(21) α′−m 1.3954 1.3889 1.3932 1.394
C(7)−H(27) β′−H 1.0815 1.0772 1.0813 1.082
C(8)−C(7) β′−β′ 1.3741 1.3670 1.3714 1.372
N(1)−H(25) N−H 1.0148 1.0105 1.0145 1.015
∠C(5)−N(1)−H(25) H−N−α′ 124.57 124.55 124.6
∠C(5)−N(1)−C(6) α′−N−α′ 110.86 110.91 110.9
∠N(1)−C(5)−C(7) N−α′−β′ 106.57 106.51 106.5
∠C(5)−C(7)−H(27) α′−β′−H 124.39 124.37 124.3
∠C(5)−C(7)−C(8) α′−β′−β′ 108.00 108.04 108.0
∠N(1)−C(5)−C(21) N−α′−m 125.60 125.63 125.5
∠C(5)−C(21)−H(35) α′−m−H 115.85 115.92 115.9
∠C(13)−N(2)−C(14) α−N−α 105.62 105.81 105.4
∠N(2)−C(13)−C(15) N−α−β 111.01 110.83 111.1
∠C(17)−C(19)−H(33) α−β−H 125.45 125.43 125.4
∠C(13)−C(15)−C(16) α−β−β 106.18 106.27 106.2
∠N(2)−C(13)−C(22) N−α−m 125.44 125.59 125.5
∠C(13)−C(22)−H(36) α−m−H 116.95 116.94
∠C(5)−C(21)−C(18) α−m−α′ 127.20 127.14 127.1

aThe abbreviation for the basis set 6-31G**, used in ref 27 is an equivalent of 6-31G(d,p), and the abbreviation 6-31G*, used in ref 31 is an
equivalent of 6-31G(d). bThe calculation for the basis set cc-pVTZ was also done in ref 75, but the results were published for bond lengths only.
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Calculation of the cubic surfaces of the dipole moment
components was performed by the single and double
differentiation of the analytic dipole moments, while the
polarizability (α) second derivatives were calculated by double
differentiation of polarizability tensor components. The third
derivatives of α were assumed nil.
3.3. Treatment of Resonances and the Variational

Stage (VPT2+WK). In this work, we have employed the
method of detecting resonances, compatible with the operator
version of CVPT.43,71 In the framework of this approach, any
Hamiltonian term is considered resonant if a numerical
coefficient of a corresponding S operator exceeds a certain
dimensionless cutoff parameter (typically 0.05−0.50) and the
corresponding “resonance denominator” is less than another
threshold value expressed in cm−1 (typically 200−600
cm−1).43,71 It is not difficult to figure out what is the equivalent
criterion for the customary VPT2+WK treatment. Namely, for
FRs of kinds 2ωr ≈ ωs (type I) and ωr + ωs ≈ ωt (type II),
respectively, the following quantities should not exceed the
chosen threshold cutoff parameter Ξ* = 0.08 to be considered
as nonresonant
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At the same time, the maximum allowed values of
denominators in eqs 3.3 and 3.4 for resonant terms should
not exceed the chosen value of 300 cm−1. Our choice of
resonance parameters produced 21 type I and 369 type II FRs.
For the D−D resonances, we imposed the following

restrictions. First, the second-order resonance denominators
should be less than 250 cm−1, and, second, the values of D−D
resonance constants K should be greater than 10 cm−1. Further
discussion about the synchronization of the resonance choices
for VPT2 and CVPT2 methods and physically meaningful
resonance criteria can be found in ref 71.
Finally, it should be noted that during the variational stage of

the VPT2+WK calculation, we employed the harmonic
oscillator basis set restricted to 2 quanta of total vibrational
excitation, a choice that produced 5994 functions of 8
symmetry types. The maximum size of the symmetry block
was 894 functions for the Ag species. Each block of the
Hamiltonian matrix was diagonalized separately. This example
demonstrates the convenience of the VPT2+WK method in
comparison to the full variational method that would require a
bigger basis set than here even for a four-atomic molecule.

4. RESULTS AND DISCUSSION
In this section, we summarize the most interesting features of
the interpretation of the spectrum, ordered by symmetry
blocks. Because we need to establish a correspondence between
observed band centers and anharmonic states, omitting the
transitions with nil values of allowed intensities greatly reduces
the number of states of interest. The analysis of assignments of

observed fundamental bands and interesting features are
presented below in detail. Porphin spectra were studied
experimentally by many methods; IR spectra were reported
in the solid state and in matrix-isolated form in refs 4−8; RR
spectra in refs 9−11; nonresonance Raman spectra in ref 12;
luminescence and fluorescence spectra in refs 13−15; and
finally INS spectra in ref 16. A summary of observed spectra is
presented in Tables 4 and S1 of ref 16.

4.1. Symmetry Block Ag (19 In-Plane Species ν1−ν19,
Raman-Active), Table 2. An excellent literature discussion of

the observations and assignments of these symmetry species
can be found in ref 12. Essential experimental data of observed
spectra can also be found in ref 14. The highest ν1 frequency,
the N−H vibration, has low intensity and was not observed. In
the C−H frequency region, only ν2 has been observed
experimentally in the INS spectrum.16 The predicted
fundamental ν3 lies close and may overlap. Both fundamentals
are strongly affected by FRs. The ν3 mode resonates with
2 × ν6, 2 × ν69, and, to a smaller extent, ν6 + ν7 [DP values of
3119.9, 3120.8, 3093.4, and 3064.9 cm−1, accordingly], and as a
result, ν3 is shifted up to the new value of 3134.6 cm−1 by 14.7
cm−1. The ν4 mode (DP value of 3058.4 cm−1) resonates with
four overtones [FR(rr,s) type I] and seven binary combination
bands [FR(rs,t) type II]; the final ν4 frequency after
diagonalization is 3070.9 cm−1, shifted by 12.5 cm−1.

Table 2. Calculated and Observed Fundamental Frequencies
(in cm−1) of Porphin of Ag Symmetry (In-Plane; Raman-
Active)a

mode harmonic
anharm.,
deperturb.

anharm.,
perturbed intensityb observed error

ν1 3599.6 3392.9 3392.9 0.44
ν2 3264.4 3137.5 3137.3 112.52 3146c −8.5
ν3 3249.7 3119.9 3134.6 120.47
ν4 3195.4 3058.4 3071.0 59.69
ν5 1648.0 1611.8 1614.5 75.29 1614 0.5
ν6 1593.9 1561.6 1563.2 147.29 1575 −11.8
ν7 1540.0 1507.5 1506.1 134.78 1502 4.1
ν8 1466.8 1437.9 1437.0 53.33 1424 13.0
ν9 1434.4 1401.8 1403.9 105.29 1400 3.9
ν10 1385.4 1356.8 1358.0 19.28 1360 −2.0
ν11 1205.9 1182.5 1182.1 18.00 1182,

1177
0.1

ν12 1089.7 1074.0 1074.4 7.49 1064 10.4
ν13 1082.7 1066.0 1065.6 4.19 1061 5.0
ν14 1009.8 993.7 994.0 32.96 988 5.7
ν15 972.5 958.4 958.4 60.97 952 6.4
ν16 736.9 727.3 727.4 14.83 736d −8.6
ν17 731.1 722.1 722.1 17.05 722, 723 0.1
ν18 309.0 304.8 304.9 224.29 305 −0.1
ν19 155.0 149.0 149.1 228.81 155 −5.9

aThe observed values are taken from refs 12 and 15, with exceptions
(see additional footnotes). bIntensities are calculated as absolute
normalized differential cross sections, 10−48 cm6/sr. cReference 16.
dReference 9.
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Our calculation answers the essential question posed by
Kozlowski et al. in ref 12 concerning the assignment of
observed bands at 1400 and 1384 cm−1. The predicted values ν9
= 1403.9 cm−1 and ν33(B1g) = 1385.7 cm−1 suggest a reversal of
the former assignment, as was anticipated but not confirmed in
ref 12.
The fundamentals ν5, ν6, ν7, ν9, and ν10 of Ag symmetry are

weakly (<3 cm−1) shifted due to FRs even after strong mixing
with other states. Fundamentals ν1−ν2 and ν11−ν19 are free of
strong FRs and produce nearly pure anharmonic states. The
overall agreement between predicted and observed bands in
this symmetry block is very good; the maximum discrepancy
does not exceed 12 cm−1 and in four cases is less than 1 cm−1.
4.2. Symmetry Block Au (Eight Out-of-Plane Species

ν20−ν27, IR- and Raman-Inactive), Table 3. Fundamental

transitions of this symmetry type were observed only in the INS
spectra.16 All fundamentals are practically free of FRs. The data
on the symmetry of observed bands in ref 16 are a little
contradictory; the Au bands at 895 and 691 cm−1 in Table 4 in
ref 16 are indicated in the paper’s Supporting Information
Table S116 as belonging to different symmetry species (B3g and
B1u, accordingly). The calculated values of ν20 and ν21 are close
to each other, 896.2 and 897.1 cm−1; they can be attributed to
the observed bands at 908 and 895 cm−1. Another pair of
predicted close-lying fundamentals, ν23 (684.4 cm−1) and ν24
(669.7 cm−1), seems to correspond to the observed band at 684
cm−1 rather than that at 691 cm−1, as indicated in Table 4 of ref
16. The predicted fundamental ν25 (472.9 cm−1) is in good
agreement with an observed band at 480 cm−1. Two predicted
low frequencies, ν26 (283.3 cm−1) and ν27 (35.9 cm−1), are not
a good match with observed values (see Table 3). This
discrepancy can be expected from a well-known deficiency of
VPT2; it cannot provide a good modeling of low frequencies
due to the specific form of the potential well. In such cases, a
harmonic frequency can be a good estimation of the expected
value.
4.3. Symmetry Block B1g (18 In-Plane Species ν28−ν45,

Raman-Active), Table 4. This symmetry block shows
generally good agreement (see Table 4) between the predicted
fundamentals and observed values, obtained in RR9−11 and
fluorescence spectra (MLS).14,15 Although mixing of the zero-
order states is big for some fundamentals (ν30−ν34, ν37),
resonance shifts do not exceed 5 cm−1. Fundamentals from this
block only participate in FRs of the type (rs,t) and not (rr,s)
due to the symmetry restriction. The fundamental ν33
participates in a complex polyad with double combination

states and is delocalized between about seven anharmonic
states. As stated above (section 4.1), we reassigned the
observed band at 1384 cm−1 to ν33, and not 1400 cm−1 as
suggested in ref 12. Finally, the observed band at 3109 cm−1

should be attributed to both to ν28 and ν29 on the grounds of
calculated values.

4.4. Symmetry Block B1u (10 Out-of-Plane Species
ν46−ν55, IR-Active), Table 5. The most reliable experimental
data on transitions of B1u, B2u, and B3u symmetry types

Table 3. Calculated and Observed Fundamental Frequencies
(in cm−1) of Porphin of Au Symmetry (Out-of-Plane; IR- and
Raman-Inactive)a

mode harmonic
anharm.,
deperturb.

anharm.,
perturbed intensity observed error

ν20 921.5 895.9 896.2 0.0 895, 908 11.8
ν21 912.8 896.9 897.1 0.0 882 −15.1
ν22 858.7 837.7 837.4 0.0 831 −6.4
ν23 703.0 684.6 684.4 0.0 684 −0.4
ν24 687.0 669.9 669.7 0.0
ν25 485.9 472.9 472.9 0.0 480 7.1
ν26 300.0 283.3 283.3 0.0 303 19.7
ν27 69.2 35.9 35.9 0.0 70, 72 34.1

aThe observed values are taken from ref 16.

Table 4. Calculated and Observed Fundamental Frequencies
(in cm−1) of Porphin of B1g Symmetry (In-plane; Raman-
Active)

mode harmonic
anharm.,
deperturb.

anharm.,
perturbed intensitya observed error

ν28 3247.3 3121.0 3120.6 43.88 3109b −11.6
ν29 3228.9 3103.1 3103.0 48.72
ν30 3195.3 3058.4 3054.6 42.48
ν31 1632.2 1594.9 1600.1 0.01 1599,c

1600d
−0.1

ν32 1532.4 1496.8 1495.1 10.68 1497b −1.9
ν33 1414.3 1380.3 1385.7 18.89 1388,b

1384e
1.7

ν34 1389.1 1361.6 1362.9 11.32 1352,b

1350e
10.9

ν35 1351.4 1321.3 1323.4 38.03 1316,b

1314c
7.4

ν36 1261.4 1232.4 1230.8 2.52 1221,b

1224c
9.8

ν37 1217.6 1195.6 1194.0 0.48 1192,d

1177b
2.0

ν38 1166.2 1145.5 1144.8 0.00 1138,d

1134b
10.8

ν39 1026.9 1009.6 1010.7 4.49 1004,d

1001b
6.7

ν40 997.3 980.1 980.6 1.97 988,d

972b
−7.4

ν41 817.4 807.8 808.4 1.46 805d 3.4
ν42 796.4 788.3 788.3 0.00 786b,d 2.3
ν43 419.2 411.4 411.8 0.53 418d −6.2
ν44 395.7 389.7 389.7 0.08 389d 0.7
ν45 101.4 86.4 86.4 325.03 109d −22.6

aIntensities are calculated as absolute normalized differential cross
sections, 10−48 cm6/sr. bObserved values taken from ref 15. cObserved
values taken from ref 9. dObserved values taken from ref 11.
eObserved values taken from ref 12.

Table 5. Calculated and Observed Fundamental Frequencies
(in cm−1) of Porphin of B1u Symmetry (Out-of-Plane; IR-
Active)a

mode harmonic
anharm.,
deperturb.

anharm.,
perturbed

intensity,
km/mol observed error

ν46 876.2 852.0 852.5 163.49 852 0.5
ν47 800.1 780.2 780.1 54.41 785 −4.9
ν48 792.0 764.6 768.5 99.70 773 −4.5
ν49 745.7 712.1 710.3 2.59 731 −20.7
ν50 708.5 693.5 691.2 47.51 691 0.2
ν51 653.6 636.4 636.0 0.12 639 −3.0
ν52 335.3 322.1 322.1 5.72 335 −12.9
ν53 212.2 194.4 194.7 1.75 219 −24.3
ν54 95.8 66.1 66.1 7.29 94b −27.9
ν55 54.9 33.3 33.0 0.00

aThe observed values are taken from ref 8, with one exception (see
footnote b). bReference 16.
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observed in the IR are available in refs 7 and 8. A detailed
discussion and comparison with calculated (SQM) vibrations of
porphin can be found in ref 21. In this symmetry block, the
highest calculated frequency of ν46 is 852.5 cm−1 because all
vibrations are out-of-plane. The calculation shows that among
B1u fundamentals, there is only one strong FR coupling
between ν48 and combination state ν62 + ν107 that produces a
doublet of 768.5 and 769.9 cm−1. Indeed, there are two
observed closely lying bands, 773 and 774 cm−1.7,8 Our
calculation supports the conclusion drawn in ref 21. about the
assignment of the band at 335 cm−1 to ν48 and not to the B2u
transition as was originally interpreted in the experimental
studies.7,8

The overall agreement between calculated and observed
frequencies for ν46, ν47, ν48, ν50, and ν51 is very good (error < 5
cm−1). The only exceptions are ν49 and frequencies below 400
cm−1, the anharmonic character of which is modeled with less
accuracy by VPT2. Comparison of our calculated and observed8

intensities shows reasonable semiquantitative agreement.
4.5. Symmetry Block B2g (Nine Out-of-Plane Species

ν56−ν64, Raman-Active), Table 6. The out-of-plane B2g and

B3g species derive their Raman intensity entirely from vibronic
coupling, and such transitions must carry little intensity.12 The
calculation confirms this conclusion; only low-frequencies ν63
(B2g) and ν89 (B3g) have appreciable predicted intensity. The
main source of experimental data is the INS spectra obtained in
ref 16.
Two B2g fundamentals, ν59 and ν60, manifest an interesting

and rare effect, 1−1 D−D resonance. The coupling matrix
element between zero-order states is −17.9 cm−1, which
increases the difference between these two closely lying (6.7
cm−1) DP levels to 37.7 cm−1. The final values after
diagonalization are 682.5 and 644.8 cm−1, which reasonably
agree with the observed pair of 691 and 628 cm−1. It is most
likely that the band at 628 cm−1 also belongs to ν61. This
fundamental is in heavy FR with combination states ν52 + ν108
and ν26 + ν81, producing a triplet of 629.8, 631.5, and 635.1
cm−1. The remaining B2g fundamentals are free from FRs.
4.6. Symmetry Block B2u (18 In-Plane Species ν65−ν82,

IR-active), Table 7. Reliable experimental data on transitions
of this symmetry type in the IR can be found refs 7 and 8, and a
detailed discussion and comparison with calculated (SQM)
vibrations of porphin is presented in ref 21. Of all fundamentals
of B2u symmetry, 10 states are heavily involved in resonance

couplings. However, a significant resonance shift (12.7 cm−1) is
observed only for the pair of ν65 and the combination state ν6 +
ν69. The corresponding cubic force constant ϕ6,65,69 = 45.9 cm−1

and the “resonance denominator” (ω65 − ω6 − ω69)
−1 is equal

to 73.4 cm−1, which corresponds to a rather strong value of the
resonance index ΩFR = 0.22.43,72 After the diagonalization of
the effective Hamiltonian, the DP values of ν65 and ν6 + ν69
(3119.7 and 3105.2 cm−1) are moved apart to the final values of
3132.4 and 3097.2 cm−1, and the originally very weak band ν6 +
ν69 gains about a quarter of the intensity of ν65. There are two
observed bands of nearly equal intensity in this region, 3124
and 3112 cm−1.8 The literature assignment of the latter is ν66,
but its calculated intensity is an order of magnitude smaller
than that for ν65. The same result about the intensity ratio for
ν65 and ν66 was obtained in ref 21. Therefore, we believe that a
weak band ν66 can either be hiding under a stronger resonance
B2u band at 3112 cm−1 for ν6 + ν69 or correspond to a B3u band
at 3118 cm−1. Indeed, the calculation of B3u species predicts
only three strong bands (3056.5, 3103.7, and 3140.0 cm−1) in
this region, while here there are four observed bands (3042,
3088, 3118, and 3128 cm−1), all assigned to B3u.

8

The correspondence between calculated and observed values
for the majority of fundamentals of B2u symmetry type is very
good; the errors typically do not exceed 10 cm−1; see Table 7.
There is another remarkable observation. As we said above,
although 10 fundamentals participate heavily in FRs, for 9 of
them, the calculated resonance shift is smaller than 4 cm−1.
This is an interesting theoretical phenomenon; for a big
molecule with large density of states, like in porphin, the
resonance shifts are typically small. It can be explained by the
multitude of closely lying dark states, each of which is weakly
interacting with the main bright state and in aggregate-limiting
perturbation frequency shifts.

4.7. Symmetry Block B3g (Eight Out-of-Plane Species
ν83−ν90, Raman-Active), Table 8. This symmetry block, like

Table 6. Calculated and Observed Fundamental Frequencies
(in cm−1) of Porphin of B2g Symmetry (Out-of-Plane;
Raman-Active)a

mode harmonic
anharm.,
deperturb.

anharm.,
perturbed intensityb observed error

ν56 916.7 900.2 900.4 1.36 882 18.4
ν57 868.0 842.0 844.3 1.94 843 1.3
ν58 789.3 773.1 772.3 0.10 771 1.3
ν59 708.0 661.3 682.6 0.06 691 −8.4
ν60 694.0 668.0 644.8 0.40 628 16.8
ν61 653.0 631.7 631.5 1.04 628 3.5
ν62 430.9 419.5 419.6 0.17 415, 426 4.6
ν63 189.5 171.2 171.2 14.71 166, 200 5.2
ν64 132.0 112.4 112.4 3.29

aThe observed values are taken from ref 16. bIntensities are calculated
as absolute normalized differential cross sections, 10−48 cm6/sr.

Table 7. Calculated and Observed Fundamental Frequencies
(in cm−1) of Porphin of B2u Symmetry (Out-of-Plane; IR-
Active)a

mode harmonic
anharm.,
deperturb.

anharm.,
perturbed

intensity,
km/mol observed error

ν65 3249.6 3119.7 3132.4 31.03 3124 8.4
ν66 3247.3 3121.3 3119.8 1.43 3118,

3112
ν67 3195.2 3058.1 3062.3 8.39 3045 17.3
ν68 1636.4 1601.0 1599.7 21.10 1609 −0.3
ν69 1582.3 1547.9 1547.9 37.13 1540 7.9
ν70 1529.2 1496.3 1492.6 4.41 1490 2.6
ν71 1443.3 1410.4 1409.7 13.92 1406 3.7
ν72 1386.6 1355.5 1357.6 2.86 1357 0.6
ν73 1279.2 1253.2 1252.4 0.03 1255 −2.6
ν74 1263.6 1235.5 1232.6 56.57 1228 4.6
ν75 1184.1 1161.8 1162.6 0.01 1156 6.6
ν76 1079.9 1063.4 1063.4 44.44 1054 9.4
ν77 1008.4 991.5 992.5 8.16 986 6.5
ν78 969.7 956.4 956.4 85.91 951 5.4
ν79 790.9 783.5 783.7 0.18
ν80 756.5 747.3 744.1 29.65 745 −0.9
ν81 357.4 351.3 351.4 11.19 353b −1.6
ν82 291.5 285.4 285.4 0.18 282,

284c

aThe observed values are taken from ref 8, with two exceptions (see
the additional footnotes). bReference 6. cReference 16.
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B2g, carries only eight low-frequency fundamentals with very
low Raman intensity, so that INS spectra16 are the only source
of experimental information.
The fundamental state ν66 is involved in FR with

combination states ν45 + ν59 and ν45 + ν60, but resulting
energy levels are separated by only 1.4 cm−1. The remaining
fundamentals are free from FRs. The agreement between
observed and calculated frequencies of fundamentals is very
good (error < 4 cm−1) from 450 cm−1 and higher. For very low
frequencies (observed value of ν66 = 145 cm−1), the error
reaches 33 cm−1. This deficiency of VPT2 does not spoil the
whole picture because low frequencies are difficult to measure
and their studies are often done separately.
4.8. Symmetry Block B3u (18 In-Plane Species ν91−ν108,

IR-Active), Table 9. Among the fundamentals of B3u
symmetry, 13 states (ν91−93, ν97, ν99−103, ν105−108) are weakly
coupled by resonances. Except for the N−H frequency ν91, the
deviations between calculated and observed bands do not
exceed 17 cm−1. At the same time, the deviations are typically
positive, showing a systematic QM deficiency. For example, for

three C−H vibrations, the errors are in the range of 12.0−15.7
cm−1.
In our opinion, the literature assignment of ν100 to the

observed8 band at 1177 cm−1 with a relative intensity of 7.6
10−48 cm6/sr is incorrect as the calculated value is 1213.5 cm−1

with low intensity. The band at 1177 cm−1 is probably not a
fundamental, but the prediction cannot securely describe its
assignment.
The fundamental ν95 is highly delocalized in a polyad of

about eight states in the calculated range of 1513.5−1537.6
cm−1. The observed band of 1522 cm−1 agrees well with the
calculation. In this symmetry block, we again see the same
picture of multiple resonances and small aggregate shifts (<5.0
cm−1) of fundamental levels. It looks like there is a general
regularity that with the increase of the size of the molecule, the
increasing density of levels limits the effect of resonance shifts.
For example, in formaldehyde with six modes, two of them (ν1,
ν5) have resonance shifts on the order of 30 cm−1. In porphin
with 108 modes, only 5 fundamentals (ν3, ν4, ν59, ν60, ν65) have
resonance shifts of more than 10 cm−1, typically <15 cm−1.

5. CONCLUSIONS

The primary goal of this work is a demonstration of the power
of recent advances in the theory of anharmonic vibrations of
large molecules. This power is three-fold, (1) a maximum
automation of the calculations, (2) no dependence on empirical
information and adjustments, and (3) extensive calculated
results, sufficient for a confident analysis of experimental
spectra.
For the first time, in this work, we have calculated fully ab

initio anharmonic vibrational frequencies and intensities of a
biologically important 38-atom porphin molecule. Although our
approach is based on a relatively inexpensive QM model, the
hybrid DFT functional B3LYP, and a medium-size basis set
6-31G+(d,p), the resulting values of fundamental frequencies
are very close to the experimental counterparts, thereby
obviating the need for empirical adjustments of the force
field. The pleasing success of this modest QM model supports
an earlier recognition of the cancellation of errors.73,74

We have shown that even for a large polycyclic molecule, it is
possible to find a set of local symmetry coordinates using a
semiautomated procedure that removes final redundancies after
the introduction of local symmetry coordinates for standard
fragments of smaller size.
The VPT2 method does not require the construction of

independent sets of internal coordinates. Indeed, it is sufficient
to define normal modes in Cartesian coordinates, as can be
done entirely by starting from the QM Hessian expressed in
Cartesian space. In addition, the VPT2 method does not
require the manual choice of scale factors. It may seem
surprising that a nonempirical anharmonic VPT2 calculation of
fundamentals (and other transitions too) requires less manual
work than SQM-based harmonic calculations.
We have observed an interesting theoretical phenomenon;

for a large molecule with a high density of states, such as
porphin, significant (>20 cm−1) resonance shifts are less
common than those in molecules of smaller size. This outcome
is a consequence of multiple interactions with a high density of
dark states. In addition, in many cases, fundamental states are
heavily mixed with nearby states, causing broadening of
observed bands.

Table 8. Calculated and Observed Fundamental Frequencies
(in cm−1) of Porphin of B3g Symmetry (Out-of-Plane;
Raman-Active)a

mode harmonic
anharm.,
deperturb.

anharm.,
perturbed intensityb observed error

ν83 919.4 896.3 896.3 0.76 895 1.3
ν84 866.0 843.8 844.3 2.03 843 1.3
ν85 786.7 769.8 769.0 0.01 771 −2.0
ν86 711.1 694.4 694.9 1.07 691 3.9
ν87 675.6 646.7 646.3 0.89 647 −0.7
ν88 445.0 426.5 426.7 0.13 426, 436 0.7
ν89 208.8 188.3 188.2 14.18 200, 204 −11.8
ν90 133.5 112.4 112.4 0.50 145 −32.6

aThe observed values are taken from ref 16. bIntensities are calculated
as absolute normalized differential cross sections, 10−48 cm6/sr.

Table 9. Calculated and Observed Fundamental Frequencies
(in cm−1) of Porphin of B3u Symmetry (In-Plane; IR-
Active)a

mode harmonic
anharm.,
deperturb.

anharm.,
perturbed

intensity,
km/mol observed error

ν91 3556.8 3355.8 3355.8 70.87 3324 31.8
ν92 3264.3 3136.4 3140.0 9.31 3128 12.0
ν93 3229.0 3101.9 3103.7 5.86 3088 15.7
ν94 3195.3 3058.1 3056.5 10.33 3042 14.5
ν95 1562.0 1529.9 1531.4 11.38 1522 9.4
ν96 1549.1 1510.8 1506.4 0.04 1507 −0.6
ν97 1440.9 1410.4 1410.3 10.32 1412 −1.7
ν98 1436.2 1405.0 1400.5 23.61 1396 4.5
ν99 1316.8 1291.6 1290.4 1.81 1287 3.4
ν100 1232.3 1213.3 1213.5 0.72
ν101 1170.2 1148.6 1147.1 24.65 1134 13.1
ν102 1075.4 1059.8 1059.7 48.29 1043 −16.7
ν103 1021.6 1004.8 1005.2 0.02 994 11.2
ν104 991.5 976.6 975.6 50.15 971 4.6
ν105 795.1 787.4 788.5 1.75 780 8.5
ν106 738.4 730.7 730.4 30.46 723 7.4
ν107 357.0 350.1 350.1 8.76 357 −6.9
ν108 316.1 308.5 308.5 2.37 310 −1.5

aThe observed values are taken from ref 8.
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Success in predicting anharmonic spectra (IR and Raman)
paves the way to subsequent studies of biomolecules by
VPT2+WK.
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