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Femtosecond-pulse control in nonlinear plasmonic systems
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The collision of the two surface plasmon polariton pulses at the interface between a metal and a dielectric with
cubic nonlinearity is investigated. We reveal the possibility of the reflection of a weak signal surface plasmon
from the strong pump plasmon pulse resulting in the time delay and spectral shift in the signal plasmon pulse.
Using such an interaction, one can control the propagation dynamics of the signal pulse via the modulation of
the intensity of the pump pulse.
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I. INTRODUCTION

A. Pulse collision as a method of light-by-light control

Methods of light-by-light control are of great interest
for various photonics applications [1,2]. Nowadays, a huge
variety of methods of all-optical switching has been proposed
including soliton interaction [3–5], usage of specially designed
photonic crystals [6,7], and cavities [8,9]. Another method
presented in Ref. [10] is based on the phenomenon analogous
to the total internal reflection of light implemented in the time
domain for the bulk optical pulses.

The idea of the method is the following. A high-power
pump pulse induces the change in the refractive index in
the dielectric (which can occur due to the various nonlinear
mechanisms). A weak signal pulse at another frequency
propagating with a different velocity due to the dispersion
reaches the moving-induced inhomogeneity. If the refractive
index variation is enough, the signal pulse can be “reflected”
from the inhomogeneity, that means it can slow down and
can continue traveling behind the pump pulse (or vice versa,
depending on the sign of the group-velocity dispersion).
Therefore, the relative position of the two pulses and the delay
of the signal pulse can be controlled by the pump intensity.

The advantage of such a light-by-light control method is
that it allows manipulating the signal pulse in a rather easy
way. Such switching can be performed both in spatial and in
temporal domains using media with quadratic, cubic, photore-
fractive, or thermal nonlinearity (see Refs. [11–13]). No phase-
matching conditions are required to be satisfied. At the same
time, for the experimental realization of the optical switching,
a very fast nonlinear response together with a rather low thresh-
old value of the pump intensity is needed. However, the nonlin-
ear mechanisms mentioned above are either slow (for example,
thermal or photorefractive nonlinearity) or require rather high
pump intensities (i.e., cubic or quadratic nonlinearities). The
implementation of such a method in plasmonic systems can
maintain the advantages of a low threshold intensity and a high
switching rate, however, it is quite a challenging task.

B. Plasmonic interface as a system for nonlinear interaction

Plasmonic systems are promising for the performance of
light-by-light control at the nanoscale [14–16]. The main

*Corresponding author: ignatyeva@physics.msu.ru

reason for using surface plasmon polariton (SPPs) instead
of the bulk waves is the following. Due to the high energy
concentration in the SPP wave near the metal-dielectric
interface, plasmonic systems can provide more efficient
methods of light control in contrast to ordinary crystals
or optical fibers [17]. The efficiency of the various light-
matter interactions increases, that leads to the amplification
of different linear (e.g., Refs. [18–20]) and nonlinear effects
(e.g., Refs. [21,22]).

Let us discuss the features of a plasmonic interface used for
a nonlinear interaction of optical pulses. The bulk radiation
can be transformed into the surface wave propagating along
the metal-dielectric interface in several ways [23,24]. First of
all, one can use a coupling prism in a scheme of attenuated
total internal reflection with Otto or Kretschmann geometry.
The second way, which is supposed to be more convenient
for SPP pulse management, is to use the coupling diffraction
gratings. The efficiency of the transformation from the bulk to
the surface wave typically has an order of 10%. However, if
only 10% of the energy is transformed into the surface wave,
its intensity is several orders higher than the intensity of the
bulk wave due to the high localization near the interface at a
distance of about 1 μm in the optical frequency range.

Plasmonic systems are characterized by the high frequency
dispersion. For a smooth metal-dielectric interface, the SPP
propagation constant β is as follows:

β(ω) = ω

c

√
εm(ω)εd

εm(ω) + εd

, (1)

where ω denotes the frequency, c is the light speed in
vacuum, and εd,m is the dielectric permittivity of the metal or
dielectric (index m or d, correspondingly). The experimental
data on frequency dispersion of metal permittivity [25] can be
approximated with a Drude-Lorentz model,

εm = ε∞ − ω2
pl

ω2 − iγ ω
, (2)

where ε∞ is the asymptotic permittivity, ωpl is the plasma
frequency, and γ is the frequency of electron collisions. The
dispersion of the dielectric is usually much smaller than the
dispersion of the metal and can be neglected. For example,
for silica glass, which is a material with cubic nonlinearity,
one can use the Sellmeier equation to describe its permittivity
from 0,21 to 6,7 μm with rather good accuracy [26]. In
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the region from 0,5 to 2 μm, its permittivity changes very
slightly in comparison with metallic dispersion. The difference
between the group velocities of the SPP waves at 1 and 1.2 μm
wavelengths is 3% for smooth silica glass—gold interface,
14% for the 20-nm gold film surrounded by silica glass
layers, and only 0.09% for the bulk wave in silica glass. This
example illustrates that plasmonic systems have much stronger
dispersion than the bulk crystals.

Very strong dissipation should be referred to the negative
but intrinsic features of a plasmonic system. Nowadays, several
plasmonic systems with gain have been proposed [27–29] to
overcome the limits arising due to the strong SPP attenuation.
In the absence of the external gain, the imaginary part of the
propagation constant obtained from Eq. (1) can be used to
estimate the propagation length of the SPP [30],

lprop = 1

2|Im β| . (3)

Equation (3) shows that the propagation length grows with
the increase in the wavelength, therefore, using infrared SPPs
instead of the ones of the visible spectrum is reasonable.
Typical values of the propagation lengths are assumed to be
about 100 μm for a wavelength of 1 μm. Therefore, input and
output gratings should be placed at this distance in order to
allow the detection of the signal after the interaction.

II. THEORETICAL APPROACH TO SPP
PULSE INTERACTION

Description of the SPP pulse propagation with a slowly
varying amplitude

For a correct description of two SPP pulse collisions,
we need to perform an accurate analysis of SPP pulse
propagation along the interface between a metal (e.g., gold)
and a dielectric with cubic nonlinearity taking into account
dispersion, nonlinearity, and energy dissipation. For a weak
signal SPP pulse, the nonlinearity can be neglected, whereas,
the impact of the pump SPP on the dielectric permittivity
should be taken into account (and vice versa for the pump
SPP). The approach used for the description of the propagation
and nonlinear interaction of the two plasmonic modes of the
metal-dielectric structure is similar to the method presented
for the waveguide modes of the optical fibers [31].

We start from the wave equation for the electric field �E
derived directly from Maxwell equations,

� �E − 1

c2

∂2 �E
∂t2

= 4π

c2

∂2 �P
∂t2

, (4)

where �P = �PL + �PN is the polarization, �PL is its linear
part, whereas, �PN = �Pnl + �Pext corresponds to the component
arising due to the nonlinearity and external impact of the pump
SPP. The dispersion of the metal (located at z < 0) is treated
in a usual way (see Ref. [31]), whereas, the dispersion of the
dielectric is neglected for simplicity.

For the simplification of the solution of Eq. (4) for the
two media matched by the boundary conditions, several
assumptions are made.

First of all, we consider the addition to the linear polariza-
tion term �PN to be small in comparison with the linear one

�Pext, �Pnl � �PL. Second, we consider the nonlinear response
of the Kerr dielectric to be nearly instantaneous and the
permittivity change caused by the external impact of the pump
SPP to be slow on the scale of one period. Next, we focus
our attention on femtosecond pulses of about 30-fs duration so
that their spectra with the central frequency ω0 have the width
�ω/ω0 ∼ 0.1 � 1. Finally, we neglect changes in the SPP
transversal structure and its polarization due to the nonlinear
impact during the propagation.

The electric field of the SPP, therefore, can be found in the
following form:

�E(�r,t) = 1
2 [ �F (z)A(x,t) exp(iβ0x − iω0t) + c.c.], (5)

where �F (z) describes the polarization and structure of the SPP
at the central frequency ω0, A(x,t) is the slowly varying func-
tion of x, and β0 is the propagation constant at ω0 frequency
corresponding to the linear case. The profile and polarization
of the SPP for the smooth metal-dielectric interface without
any perturbation or nonlinearity is well known

�F (z) = F0 exp(−γj |z|){1,0,i sgn(z)β0/γj }. (6)

Using the perturbation theory, we obtain the following change
in the propagation constant in the first order (β = β0 + �β):

�β = k2
0

2β0

∫ +∞
0 �εd (z)|F (z)|2dz∫ +∞

−∞ |F (z)|2dz
. (7)

Slight changes in the SPP profiles �F caused by the induced
inhomogeneity and small radiation losses are neglected in our
consideration for simplicity.

Making the expansion of the propagation constant,

β = β0 + u−1
0 (ω − ω0) + D(ω − ω0)2 + �β, (8)

we derive the equations describing SPP dynamics where u0 =
( ∂β

∂ω
|ω0 )−1 is the group velocity and D = 1

2
∂2β

∂ω2 |ω0 is the group-
velocity dispersion coefficient.

The equation for the slow amplitude of the pump SPP pulse
in the time domain Ap has the form

∂Ap

∂x
+ iDp

∂2Ap

∂τ 2
− i �βpAp + 
pAp = 0, (9)

where time coordinate τ = t − x/up is associated with the
group velocity of the pump pulse up, the propagation con-
stant change �βp is calculated using Eq. (7) with �ε(z) =
χ (3)| �Fp(z)Ap|2, and 
p is the imaginary part of the propagation
constant.

For the amplitude of the signal SPP pulse of a different
frequency, we get

∂As

∂x
+ ν

∂As

∂τ
+ iDs

∂2A

∂τ 2
− i �βsAs + 
sAs = 0, (10)

where ν = 1/up − 1/us is the group-velocity mismatch be-
tween the two pulses and �βs is calculated according to Eq. (7)
with �ε(z) = χ (3)| �Fp(z)Ap|2.

Further estimations, performed for the gold plasmonic
system, reveal that the typical values of the nonlinear length
associated with the self-action of the SPP lnl = �β−1 as
well as the dispersion length ldisp = 0.25T 2

p,s/Dj associated
with the pulse broadening processes exceed the propagation
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length of SPP at least twice for both the signal and the
pump SPP pulses. Therefore, for the pump SPP pulse, the
phenomenon of self-action due to the cubic nonlinearity and
dispersion spreading can be neglected. Thus, we can consider
the inhomogeneity induced by the pump SPP pulse to have a
constant profile. Losses that are present due to the metallic
absorption cause the intensity decay of about 40% in the
middle of the interface between gratings.

Another simplification that can be performed is neglecting
the dispersion of the coefficient D so that Ds is considered
to be equal to Dp, and, moreover, any frequency changes in
the signal SPP occurring due to the nonlinear interaction are
not supposed to change its value. The direct calculation of
the propagation constant compared with the value obtained
with Eq. (8) with constant D shows less than 0.1% difference
in these two values for 1-1.2-μm wavelengths as far as
the propagation constant itself experiences about a 25%
variation. This allows us to describe group-velocity dispersion
analytically: u(ω)−1 = u−1

p + 2D(ω − ωp).

III. INTERACTION OF THE SIGNAL SPP PULSE
WITH THE INDUCED INHOMOGENEITY

A. Reflection of the signal SPP pulse

In order to investigate the propagation dynamics of the
signal SPP pulse in the presence of the inhomogeneity induced
by the pump SPP pulse, we apply the eikonal method and
trajectory approach to the description of the propagation of
the signal SPP center [10]. We consider both signal and pump
pulses to have Gaussian profiles. The equation for the SPP
center trajectory is the following:

∂τs

∂x
= ±

√
ν2 − 4D �βs(τs). (11)

As shown below, the most dramatic influence of the pump
SPP-induced inhomogeneity is associated with D �β > 0.
The dispersion of the SPP waves is determined mainly by
the metallic permittivity so that the sign of the D coefficient
is always positive for the smooth metal-dielectric interface.
So, if the cubic dielectric possesses the focusing nonlinearity
(χ (3) > 0), the trajectory of the signal SPP pulse can expe-
rience the reflection from the inhomogeneity if the absolute
value of the propagation constant variation is above the
threshold,

�βt (Ip) = ν2

4D
. (12)

Actually, such a simple geometro-optical theory predicts
that there are three regimes of the propagation of the signal
SPP (see Fig. 1). The corresponding dynamics of the pump
and the signal SPPs is illustrated in Fig. 2 for the different
inhomogeneity values.

Figure 2(a) depicts the propagation of the pump SPP in a
spatiotemporal domain. One can see that the duration of the
pump pulse remains almost constant during the propagation
since the distance is much smaller than the characteristic
values of its dispersion length associated with the visible
pulse broadening. The black dashed lines depict the temporal
boundaries of the pump SPP. The position of the time
coordinate τ = 0 is selected to coincide with the center of

the pump SPP. At the same time, it is obvious that the
pump SPP experiences the significant attenuation. Due to
the pump SPP damping, the threshold intensity is higher
than predicted by Eq. (12). If the interaction of the pump
and the signal SPPs occurs at the distance of x = 0.5ldamp,
then the threshold value can approximately be calculated as
�βt (Ip) ≈ exp(0.5)ν2/4D.

If the intensity of the pump SPP is below the threshold
value (12), the induced inhomogeneity is very weak and
practically does not influence the signal SPP dynamics.
Figure 2(b) illustrates the propagation of the signal SPP in
the presence of a very weak inhomogeneity induced by the
pump SPP. Due to the dispersion of the plasmonic structure, the
signal SPP of the shorter wavelength that initially was launched
before the pump (with the center located at τ = −30 fs)
propagates slower so that, finally, it comes after the pump
(case 1 in Fig. 1).

If the intensity of the pump SPP is equal to the threshold
value (as the propagation distance is limited, the discussed
dynamics can be observed for a range of inhomogeneity
magnitudes that are close to the threshold value), the signal
SPP is attracted to the pump center [see Fig. 2(c) and case 2 in
Fig. 1]. The inhomogeneity acts like a trap for the signal SPP
pulse and accelerates it so that the resulting delay between
these two pulses is nearly zero. In Fig. 2(c), it is shown that,
at the threshold pump intensity, practically the whole outcome
signal pulse is localized inside the temporal domain of the
pump pulse.

In the case of pump intensity higher than the threshold
value, the signal SPP is reflected from the inhomogeneity (case
3 in Fig. 1). The reflection actually means that the signal
SPP pulse continues propagation in the initial direction, but
it changes its group velocity so that the sign of the group-
velocity mismatch also changes. Note that the value and the
sign of the group-velocity mismatch determine the tilt angle of
the SPP trajectory on the (τ,z) plane. Therefore, the induced
inhomogeneity causes the acceleration of the slower SPP of
the initially shorter wavelength and the spectral redshift of its
central frequency too so that it keeps propagating before the
pump. In the case of such a reflection, the center of the signal
SPP remains in the region of τ < 0 [see Fig. 2(d)], and the
order of the outcome pulses is unchanged in contrast to the
low-pump case 1.

A femtosecond laser pulse can be treated as a sum of the
monochromatic waves, the dynamics of which is determined
by Eq. (11). Therefore, the reflection coefficient (the amount
of energy that is carried by the reflected components) can be

FIG. 1. (Color online) The schematic of the SPP pulse collision.
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FIG. 2. Dynamics of (a) the pump and (b)–(d) the signal SPP
pulses. (b) corresponds to the case of �βs < �βt , (c) corresponds to
the case of �βs = �βt , and (d) corresponds to the case of �βs > �βt .
The black dashed lines depict the temporal boundaries of the pump
SPP.

calculated for the Gaussian pulses in the form

R = 1

2
+ 1

2


[
Ts

2
√

2D
(
√

�βmax −
√

�βt )

]
, (13)

where Ts is the duration of the signal SPP and �βmax is the
maximal value of the propagation constant change. Figure 3
illustrates the dependence of the reflection coefficient on the
value of the induced inhomogeneity. If the intensity of the
pump corresponds to near-threshold values, around half of
its spectral components should be transmitted, whereas, the
other part should be reflected (analogous to the beam splitting
in the case of spatial total internal reflection, see Ref. [21]).
Meanwhile, in Fig. 2, the splitting of these components it not
seen because the propagation distance is limited to a rather
short value. The relative amount of the signal SPP energy that
comes out together with the pump is shown in Fig. 3.

The interaction between the two pulses can change not only
their order (see Fig. 2, in the absence of the inhomogeneity,

FIG. 3. The dependence of the signal SPP reflection coefficient
on the value of the induced inhomogeneity: results of the numerical
simulations (circles), analytical calculations in the absence (black
dashed line) and in the presence (black solid line) of the attenuation.
The gray line indicates the amount of energy inside the pump pulse.

the signal SPP pulse that initially propagated before the pump
finally got behind, whereas, the presence of the pump-induced
inhomogeneity accelerated it), but also their relative delay.

B. Frequency shift of the signal SPP

The reflection of the signal SPP from the pump-induced
inhomogeneity leads to the group-velocity change that occurs
due to the frequency shift of the signal SPP. This shift is
analogous to the Doppler shift in the theory of relativity that
is experienced by the light reflected from a moving mirror. In
our case, the role of such a mirror is played by the induced
inhomogeneity moving with the pump group velocity. Using
Eq. (11) and dispersion model (8), we can obtain the following
equation for the shift of the signal SPP central frequency
acquired during the propagation:

�ωs(τs) = (ωp − ωs)

(
1 ∓

√
1 + �β(τs)

�βt

)
. (14)

Notice that, in dispersion model (8), ωp − ωs = ν/D.
Therefore, the resulting spectral shift depends on the initial
frequency difference between the signal and the pump SPP
and on the value of the inhomogeneity induced by the pump.
The maximal shift is obtained in the case when the interaction
between pulses is completed after passing the propagation
distance and they move separately. In this case, the signal SPP
frequency experiences a shift of 2(ωp − ωs), so the difference
between the signal and the pump SPP frequencies changes its
sign but keeps its value.

IV. EXPERIMENTAL ESTIMATIONS FOR SPP
INTERACTION IN CUBIC MEDIA

For making some experimental estimations, we need to take
practical limitations for the plasmonic systems into account.
First of all, the interaction should occur at the scale of the
damping length, which is about 100 μm for infrared surface
plasmons. It requires a pulse duration of about 30 fs and a
minimal group-velocity mismatch value of ν ∼ 0.6 fs/μm.
On the other hand, the maximal value of the inhomogeneity
induced by the pump SPP in the dielectric, typically, is about
�n ∼ 5 × 10−3.

The dispersion of surface plasmon polariton determines
the threshold value of �βt . The dispersion of the smooth
dielectric—gold interface is not high enough to be used for
such an interaction as far as D = 0.3 fs2/μm requires the
threshold value of �βt/β ∼ 3%. However, if we choose
the structured plasmonic system that can be a gold film
sandwiched between two dielectrics or perforated plasmonic
crystal, the dispersion coefficient is higher. For example, the
gold layer of 20 nm, sandwiched between two dielectric layers,
has the dispersion coefficient D = 2 fs/μm2 so �βt/β ∼
0.4%. In this system, the central wavelength of the signal
SPP pulse should be shifted from the pump at a distance of
about 0.1 μm to achieve the group-velocity mismatch value of
ν ∼ 0.6 fs/μm.
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V. CONCLUSION

We analyzed the collision of two SPP femtosecond pulses
propagating along the nonlinear plasmonic interface. Using
both spectral and trajectory approaches, we revealed the
conditions under which the weak signal SPP pulse is reflected
from the moving inhomogeneity of the permittivity induced in
the dielectric with cubic nonlinearity by the pump SPP pulse.
We show that the reflection results in the change in the delay
between the two pulses and the spectral shift acquired by the
signal SPP pulse. Our estimations shows that such effects are
possible in structured plasmonic systems, such as sandwich
structures and plasmonic crystals. Therefore, ultrafast all-

optical control of pulse dynamics can be performed in the
nonlinear plasmonic systems at extremely small scales.
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