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Assembly of the necessary biochemical machinery for biomineralisation long-predated the appearance and
rapid diversification of metazoan skeletons in the late Ediacaran to Middle Cambrian (~550–520 million
years ago (Ma)), and the independent acquisition of skeletons of differing mineralogies suggests a trigger
that conferred selective advantage to possession of a skeleton even though this involved physiological cost.
The cost–benefit ratio of biomineralisation has changed over geological time, varying not onlywith the availabil-
ity of precursor ions in seawater, but also with evolutionary innovations, as the energy required to produce a
skeleton will change as a function of community ecology, particularly with increases in predation pressure.
Here, we demonstrate that during the Cambrian Radiation the choice of biomineral was controlled by an inter-
action between changing seawater chemistry and evolving ecology. The record also reveals the successive
skeletonisation of groups with increasing levels of activity from the Ediacaran to Middle Cambrian. The oldest
(~550–540 Ma) biomineralised organisms were sessile, and preferentially formed low-cost, simple, skeletons
of either high-Mg calcite coincident with high mMg:Ca and/or low pCO2 (aragonite seas), or phosphate during
with a well-documented phosphogenic event. More elaborate, but tough and protective, aragonitic skeletons
appeared from ~540 Ma, dominantly in motile benthos (mostly stem- and crown-group Lophotrochozoa). The
first low-Mg calcite skeletons of novel organic-rich composite materials (e.g. trilobites) did not appear until
the late early Cambrian (~526 Ma), coincident with the first onset of low mMg:Ca and/or high pCO2 (calcite
seas). Active, bentho-pelagic predatory groups (vertebrates, chaetognaths, some arthropods) appearing mainly
in the late early Cambrian preferentially possessed phosphatic skeletons, which were more stable at the low
pH ranges of extracellular fluids associated with intense activity and high-energy ecologies.
These trends suggest that the increasing physiological cost of biomineralisation in successively more de-
manding metabolisms was offset by the increased chance of survival conferred by a protective skeleton, so
indicating a driver of escalating community ecology, in particular an increase in predation pressure.

Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved.
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1. Introduction

Biomineralised hard parts appeared in protists at ~750–812 Ma,
metazoans at ~550 Ma, and macroalgae by ~515 Ma, but the major
radiation of skeletons is restricted to the earliest Cambrian (~540–
520 Ma) (Bengtson, 1994; Knoll, 2003; Cohen et al., 2011). Of the
more than 64 different mineral phases known to form biominerals,
by far the most common are those formed of calcium carbonate: in-
deed, more than 300 crystal forms are identified in calcite and these
combine to produce a thousand variations (Lowenstam and Weiner,
1989).

The acquisition of calcareous and phosphatic skeletons reflects
multiple, independent co-optations of molecular and physiological
processes that are widely shared among eukaryotic organisms
(Westbroek and Marin, 1998). Indeed the biochemical supply of
ions and the assembly of the necessary genetic and biochemical ma-
chinery for biomineralisation may be an ancient feature of eukaryotes
(Aizawa and Miyachi, 1986; MacLennan et al., 1997). These include
genes such as α-carbonic anhydrases, the ability to form transient
amorphous mineral phases in both carbonate and phosphate,
anticalcification inhibitors, and gene duplication, domain shuffling,
and other genomic re-modelling (Aizenberg et al., 2003; Boßelmann
et al., 2007; Jackson et al., 2007; 2011). All biominerals are found in
intimate association with proteins, polysaccharides, and other macro-
molecules, which allows for an extraordinary diversity of biomineral
form and function. Macromolecules also modify the morphology
and growth kinetics of calcite (Gayathri et al., 2007), so offering a
highly flexible mechanism whereby minor changes in the interacting,
primary structure of proteins can control calcite crystal shape to pro-
duce a diverse range of complex, high-fidelity, skeletal architectures
over evolutionarily rapid timescales.

Eukaryotic lineages probably differentiated long before the acqui-
sition of skeletons within them (Bengtson, 1994; Knoll, 2003). As
a result, some have proposed that abiotic factors acted as either
thresholds or triggers for this sudden biomineralisation phenomenon,
such as the availability of oxygen, phosphate- and carbonate ions
in sea water (e.g. Daly, 1907; Towe, 1970; Riding, 1982; Cook and
Shergold, 1984). In particular, motile physiologies demand oxygen,
and so it has been presumed that a rise in oxygen, perhaps incremen-
tally, during the Ediacaran facilitated the evolution of metazoan com-
plexity (Canfield et al., 2007). The necessary molecules for skeletal
formation, as well as muscle system activity, may also have been
inhibited by lack of oxygen (Runnegar, 1982). Much uncertainty per-
sists, however, as to the global nature of these changes in redox, the
magnitude of atmospheric oxygenation, and the relationship of atmo-
spheric oxygen to that of oceanic ventilation (Butterfield, 2009).

Biological activity often leads to complex feedbacks and emergent
properties within an ecosystem that modifies both the physical and
chemical environment, as well as the availability of nutrients and en-
ergy (ecosystem engineering). For example, sponges when abundant
remove considerable dissolved carbon and bacteria from seawater
and transfer this to sediment, so altering the geochemistry of both
settings (Sperling et al., 2011). Likewise, vertical burrowing enhances
oxygenation of sediment and microbial primary productivity, so in-
creasing the availability of food for benthic metazoans (Lohrer et al.,
2004). This makes the untangling of cause and effect in the radiation
of metazoans highly problematic.

The rise of predation of metazoans by metazoans (macrophagous
predators), although impossible without sufficient oxygen and other
prerequisite conditions, has also been invoked to explain the explo-
sion of diverse skeletal forms over some 30 Myr from ~550 to
520 Ma (Bengtson, 1994; Knoll, 2003). Of the more than 178 archi-
tectures recognised in skeletonised marine animals, 89 had evolved
by the early Cambrian and 146 (80%) by the middle Cambrian
(Thomas et al., 2000). Clearly most potential ‘skeletal morphospace’
was exploited rapidly once hard parts had appeared. This is not
surprising because skeletons are used for a variety of single or multi-
ple functions including structural support, protection, locomotion,
respiration, attachment, filtration, grinding and cutting, light-
harvesting, gravity-sensing, magnetic guidance, and storage of useful
metabolites.

Five principal biominerals were acquired rapidly and exploited
during the terminal Neoproterozoic to early Cambrian: skeletons of
silica, phosphate, aragonite, low-Mg calcite (LMC) and high-Mg
calcite (HMC) all appeared within some 25 Myr (see reviews of
Lowenstam and Weiner, 1989; Bengtson, 1994; Knoll, 2003). This
diversity is not surprising as biominerals have differing mechanical
(e.g. stiffness, strength, toughness) and chemical (such as solubility
and ion kinetics) properties, and so organisms with varying ecologies
will have very different selective requirements. As biomineral pro-
perties are optimised for each function and ecology, so diverse
biominerals will be required to fulfil these variable demands.

It has been suggested that selection of mineralogy at the onset of
skeletal acquisition within a clade is governed by ambient sea water
chemistry depending on either mMg:Ca (Tucker, 1992; Porter,
2007) and/or pCO2 pressure (Sandberg, 1983; Zhuravlev and Wood,
2008), where HMC and aragonite skeletons initiate in >2 mMg:Ca
and/or low pCO2 (aragonite seas) and LMC in b2 mMg:Ca and/or
high pCO2 (calcite seas). These observations do not, however, explain
why during late Ediacaran to early Cambrian aragonite seas, some or-
ganisms deployed HMC, others aragonite, and a third group used
phosphate to build skeletons, shells and teeth. Here, we demonstrate
that skeletal mineralogy was determined not only by changing
physiochemical conditions during the Ediacaran to Cambrian, but
also by ecology. The formation of any biomineral is a balance between
the properties of that mineral and the cost of production, which
varies not only with the availability of ions in seawater but also
with ecological demand.

2. The cost of biomineralisation

Producing skeletal hard-parts requires energy and so imposes a
metabolic cost. But this cost is problematic to measure because it is
represented only as energy spent in respiration which cannot be
clearly separated from other metabolic expenditures. In studies on
molluscs, however, it has been demonstrated that the cost of calcifica-
tion is far less (5%) than that of associated protein production
(Palmer, 1983; 1992). This is not surprising given the high saturation
of CaCO3 in modern tropical surface seawaters, as organisms will tend
to produce hard parts with whatever is abundant in the local environ-
ment, i.e. physiologically cheap (Bengtson, 1994). Mineral solubility is
therefore broadly inversely related to physiological cost: silica is the
least soluble biomineral, calcium carbonate generally abundant, and
calcium hydroxyapatite is energetically costly. LMC is thermodynam-
ically more stable than aragonite, and aragonite is less soluble than
HMC under the same ambient conditions (Mackenzie et al., 1983;
Morse et al., 2006). Secreting aragonite is more costly than calcite:
aragonite has a packing density of 2.95 gcm−3, compared to
2.72 gcm−3 for calcite (Weiner and Addadi, 1997). Indeed, the greater
energetic requirement of aragonite production (Allemand et al., 2011)
might force organisms to precipitate a calcite polymorph if ecological
requirements demand a relatively dense skeleton.

Some groups, such as benthic, sessile members of the Porifera and
Cnidaria, appear to calcify with ease (Wood, 1987) and produce fab-
rics not unlike abiotic precipitates, so suggesting that skeletonization
involves relatively low cost. Poriferan and Cnidarian-grade metazoans
and others (e.g. brachiopods and crinoids) are sometimes known as
‘hypercalcifiers’, inferred to have limited capacity to pump ions across
membranes and so buffer calcifying fluids (Rhodes and Thompson,
1993; Stanley and Hardie, 1998; Knoll et al., 2007). Porifera and
Cnidaria show multiple, independent, acquisition of calcareous skele-
tons, often of differing mineralogy according to the ambient seawater
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mMg:Ca and pCO2 (Cuif and Gautret, 1991; Stanley and Hardie,
1998). Indeed, some corals grown in experimental seawater of elevat-
ed CO2 decalcify yet retain basic life functions, including reproductive
ability: they resume skeletal growth when reintroduced to normal
modern seawater conditions (Fine and Tchernov, 2007). These results
also highlight the arbitrary current distinction between some
scleractinian corals and Corallimorpharia anemones, which are more
closely related to each other than to other clades of scleractinians
(Medina et al., 2006).

The cost of skeletonisation is probably far higher in mobile than
immobile organisms. Skeletal transportation costs as a fraction of
the overall energy budget are not well known, but data for the marine
gastropod Nucella lamellose suggests that the cost of locomotion
roughly triples with a doubling of shell weight (Palmer, 1992), and
in crustaceans, the mineral content in skeletons is highly variable,
being higher in areas requiring robustness such as chelae, or in
animals that hide rather than employ rapid escape behaviours
(Boßelmann et al., 2007).

In modern biotas, calcium phosphate (usually, hydroxyapatite)
biomineralisation is often associated with the intense activity and
high-energy lifestyles of motile predators (Ruben and Bennett,
1987). Calcium hydroxiapatite builds a less soluble skeletal compo-
nent than can be achieved by carbonate, which is particularly impor-
tant in vertebrates (Ruben and Bennett, 1987) and the most reactive
arthropods (Boßelmann et al., 2007) where low pH ranges of extra-
cellular fluids develop due to lactic acid production for ATP genera-
tion. Among vertebrates with osseous skeletons, this acidosis
generates slight skeletal dissolution and consequent vascular hyper-
calcemia (Ruben and Bennett, 1981). Phosphate is also known to be
released into the exoskeleton of fast-moving carnivorous crabs
(Boßelmann et al., 2007) which possess metabolisms resembling
that of vertebrates.

3. Mechanical properties of biominerals

Notwithstanding similar lattice energies, calcite and aragonite
have differing characteristics. Aragonite lacks cleavage planes, but
has the disadvantage of small crystal size and needle-like morpholo-
gy: aragonite also has a strong tendency to form spherulitic clusters of
crystals with high porosity (Weiner and Addadi, 1997). By contrast,
calcite tends to form larger crystals, but these are very brittle as
calcite cleaves easily where a crack can propagate with minimum dis-
persion of energy. As a result even stacked calcite shell microstruc-
tures are less tough than similar aragonite microstructures (Vincent,
2001; Barthelat and Espinosa, 2007). HMC tends to produce loose,
brittle, crystal packages due to limited control over crystal orientation
(Zhang et al., 2011a).

Nacre is a polycrystalline aragonite with excellent mechanical
properties despite being a brittle ceramic. Although nacre has a very
low organic content (1%), it is superior to most other shell structures
and composite ceramics in stiffness, strength, and toughness: nacre is
1000 times more resistant to fracture than a single crystal of pure
aragonite and 10 times harder and so is highly suited to form
impact-resistant armour (Vincent, 2001; Barthelat and Espinosa,
2007). Cross lamellar structure is likewise strong with little organic
matrix (Furuhashi et al., 2009). The siliceous spicules of hexactinellid
sponges possess mechanical properties similar to those of nacre:
these consist of layered silica with a very small fraction (b1%) of pro-
teinaceous material and are, similarly, highly resistant to fractures
(Miserez et al., 2008).

Biomineralised crustacean cuticle possesses remarkable mechani-
cal properties as the orientation of chitin and co-alignment of LMC
axes create a hard, stiff shield, while the underlying more elastic
layer can dissipate the acting impact energy: the outermost layer of
crystalline calcite also increases resistance to wear (Al-Sawalmih et
al., 2008). The more costly calcium hydroxyapatite has a greater
chemical stability than calcium carbonate in the acidic conditions
that prevail in most vertebrate systems, particularly after intense ex-
ercise (Ruben and Bennett, 1987).

The mechanical shortcomings of simple aragonite, calcite and
phosphate microstructures are overcome by the organic composites
developed in many metazoans above poriferan and cnidarian grades.
Major structural innovations include the development of (1) hetero-
geneous, multilayered skeletal elements, (2) regular alternations of
organic and inorganic lamellae, and (3) secondary composite struc-
tures at the nanoscale. Such anisotropic structures decrease the
yield stress between layers from the outer surface inwards by up to
a factor of 10, whilst increasing the energy dissipation during preda-
tory penetration up to a factor of 4 (Weiner and Addadi, 1997; Li et
al., 2006; Bruet et al., 2008; Connors et al., 2012).

4. Rise of metazoan predation

Many theories on the major transitions in evolution invoke preda-
tion as a key factor, in particular an increase in individual size, the
shift from sessile to motile ecologies, invasion of the water column,
and the appearance of increasingly complex forms of external skeletal
structures (e.g. Stanley, 1973; Vermeij, 1990; Signor and Vermeij,
1994). Coevolution between predators and their prey has long been
suggested to have led to an intensification of selective pressure and
increased complexity of individual metazoan form, defensive struc-
tures, and ecology, during the Cambrian Radiation.

The metazoan last common ancestor was likely to have been a
microphagous suspension feeder, and as modern Cnidaria use sting-
ing cells to prey on pelagic animals, predation is often argued to
have appeared with this group. However, predation upon other ani-
mals appears to be a derived ecology for all the three major clades
of eumetazoans: indeed, there is no evidence for a carnivorous life-
style before the mid-Ediacaran for any eumetazoan lineage (Erwin
et al., 2011).

Borings or drill-holes in the Ediacaran Cloudina have been attrib-
uted to predators (Bengtson and Yue, 1992). Other predatory borings
(Conway Morris and Bengtson, 1994; Zhang and Pratt, 2008),
whole-organism ingestion based on gut contents and coprolites
(Conway Morris, 1977; Zhu et al., 2004; Ivantsov et al., 2005;
Vannier and Chen, 2005; Han et al., 2007), insertion and extraction
of flesh from smashed shells (Robson and Pratt, 2007), repaired pred-
atory attacks (Babcock, 2003; Zamora et al., 2011; Zhang et al.,
2011b), and sophisticated visual, captive, and masticatory systems
in the largest metazoans (Purnell, 1995; Fortey and Owens, 1999;
Nedin, 1999; Szaniawski, 2002; Chen et al., 2007a; Vannier et al.,
2007; García-Bellido et al., 2009; Paterson et al., 2011), have all
been reported from early–middle Cambrian skeletal fossils. Priapulids
and other cephalorynch worms, xenusians, anomalocaridids, large
trilobites and other arthropods, chaetognaths (protoconodonts), and
conodonts were among durophagous Cambrian predators (Burzin et
al., 2001).

5. Materials and methods

We here consider the relationship between skeletal mineralogy
and ecology, and their quantitative trends, in order to understand
the role of ambient physicochemical conditions and ecology in the
changing cost-benefit ratio of skeletonisation through the Ediacaran
to Cambrian.

Inferred primarymineralogy of major skeletal taxa from the Upper
Ediacaran to Middle Cambrian was assessed, together with first ap-
pearance datum (FAD), and skeletal type: cone or external tube; mas-
sive skeleton; teeth; bivalved shell; single shell; plates/sclerites/
scales/spicules (Table 1). Data are collected from all principal basins
and derived from stratigraphically well-constrained units only.



Table 1
Inferred primary mineralogy of taxa, and inferred ecological guild, as listed on Fig. 1 (Distribution of major skeletal taxa from the upper Ediacaran to middle Cambrian). FAD—first
appearance datum; E—upper Ediacaran; lND—lower Nemakit-Daldynian; uND—upper Nemakit-Daldynian, lT—lower Tommotian; mT—middle Tommotian; uT—upper
Tommotian (Terreneuvian); lA—lower Atdabanian; uA—upper Atdabanian; B—Botoman (Cambrian Series 2); MC—middle Cambrian (Cambrian Series 3); UC—upper Cambrian
(Furongian); LO—Lower Ordovician. Skeleton type and composition: C—cone or external tube;M—massive skeleton; T—teeth; V—bivalved shell; S—single shell; P—plates/sclerites/scales/
spicules; a—aragonite; c—low-Mg calcite; m—high-Mg calcite; p—phosphate; s—silica, including agglutinated forms. See text for primary mineralogy criteria.

Taxon FAD Ecology Skeletal type and
composition

Comments and references

Cloudina-group E Benthic, sessile, ?attached C
m

Grant (1990), Wood (2011), Zhuravlev et al. (2012)

Namapoikia E Benthic, sessile, attached M
a

Wood et al. (2002)

Namacalathus-group E Benthic, sessile, attached S?
m

Grotzinger et al. (2000), Wood (2011), Zhuravlev et al. (2012)

Sinotubilites E Benthic, sessile, unattached C
a

Chen et al. (2007b)

Chaetognatha
including Protoconodonta

lND Nektic, motile, fast T
p

Bengtson (1983), Szaniawski (2002); Vannier et al. (2007);
FAD—Khomentovsky and Karlova (2005)

Anabaritida lND Benthic, sessile, unattached C
a

Kouchinsky & Bengtson (2002); Burzin et al. (2001);
FAD—Khomentovsky and Karlova (2005)

Orthothecimorpha uND Benthic, sessile
unattached/motile slow

C
a

Kouchinsky (2000b), Feng et al. (2001); Burzin et al. (2001);
FAD—Khomentovsky and Karlova (2005)

Helcionelliformes uND Benthic, motile, slow S
a

Runnegar (1985, 1989), Bengtson et al. (1990), Kouchinsky (2000a),
Feng and Sun (2003); Kouchinsky (2001); FAD—Khomentovsky and
Karlova (2005)

Paragastropoda uND Benthic, motile, slow S
a

Runnegar (1985, 1989), Bengtson et al. (1990), Kouchinsky (2000a);
Kouchinsky (2001); FAD—Khomentovsky and Karlova (2005)

Coelosclerotophora
including
Chancelloriida

uND Benthic, sessile,
attached/motile, slow

P
a

Bengtson et al. (1990), Mehl (1996), Kouchinsky (2000a), Porter (2004);
Conway Morris and Peel (1995), Vinther (2009);
FAD—Khomentovsky and Karlova (2005)

Renalcida lND Benthic, sessile, attached M
m

James and Klappa (1983), Zhuravlev and Wood (2008); Riding (2001).

Cambroclavida lT Benthic, motile, slow? P
a

Bengtson et al. (1990); Conway Morris et al. (1997);
FAD—Steiner et al. (2007)

Tommotiida
including Tannuolinidae

lT Benthic, sessile, attached P
p

Holmer et al. (2002); Skovsted et al. (2011);
FAD—Khomentovsky and Karlova (2005)

Linguliformea lT Benthic, sessile, attached/
unattached

V
p

Ushatinskaya (1995), Skovsted and Holmer (2003); Dornbos et al. (2005),
Ivantsov et al. (2005); FAD—Khomentovsky and Karlova (2005)

Hyolithelmintida lT Benthic, sessile, unattached C
p

Grigorieva (1980), Vinn (2006); Skovsted and Peel (2011);
FAD—Khomentovsky and Karlova (2005)

Paracarinachitidae lT Benthic, motile, slow P
a

Conway Morris and Chen (1991)

Conulariida including
Hexangulaconulariida

lT Benthic, sessile, attached M
p

Conway Morris and Chen (1992), Hughes et al. (2000)

Rostroconchia lT Benthic, motile, slow S
a

Pojeta and Runnegar (1976),
Kouchinsky (2000a); FAD—Khomentovsky and Karlova (2005)

Bivalvia lT Benthic, sessile, unattached V
a

Runnegar and Bentley (1983), Runnegar (1985), Berg-Madsen (1987),
Kouchinsky (1999)

Archaeocyatha lT Benthic, sessile, attached M
m
(rare—a)

James and Klappa (1983), Brasier et al. (1994), Kruse et al. (1995),
Zhuravlev and Wood (2008); FAD—Rozanov and Zhuravlev (1992)

Cribricyatha mT Benthic, sessile, attached M
m

Zhuravlev and Wood (2008); Wood et al. (1993);
FAD—Rozanov and Zhuravlev (1992)

Hyolithomorpha lT Benthic, motile, slow V
?m

Marti Mus and Bergstrom (2007); Burzin et al. (2001);
FAD—Rozanov and Zhuravlev (1992)

Coleoloida lT Benthic, sessile, unattached C
a

Landing et al. (2002); FAD—Rozanov and Zhuravlev (1992)

Obolellata mT Benthic, sessile, attached V
m

Ushatinskaya and Zhuravlev (1994); Ushatinskaya (2001); Williams et al.
(2000)

Calcarea mT Benthic, sessile, attached M+P
m

Jones (1979), James and Klappa (1983); FAD—Kruse et al. (1995)

Khasaktiidae mT Benthic, sessile, attached M
m

Zhuravlev et al. (1993), Brasier et al. (1994), Zhuravlev and Wood (2008)

Radiocyatha mT Benthic, sessile, attached M
a

Wood et al. (1993); FAD—Rozanov and Zhuravlev (1992)

Tabulaconida B Benthic, sessile, attached M
a, m

modular species only Zhuravlev et al. (1993), Fuller and Jenkins (2007)

Mobergellidae uT Benthic, motile? P
p

Skovsted (2003); FAD—Rozanov and Zhuravlev (1992)

Hydroconozoa uT Benthic, sessile, attached M
c

Zhuravlev et al. (1993), Brasier et al. (1994), Wood et al. (1993)

Stenothecoida lA Benthic, sessile, unattached V
c

Ushatinskaya and Zhuravlev (1994); FAD—Rozanov and Zhuravlev (1992)

Trilobita lA Benthic, motile, fast, and nektic P
c
(rare—p)

Dalingwater (1973), James and Klappa (1983), Wilmot and Fallick (1989),
Dalingwater et al. (1991), Lee et al. (2007); Hughes (2001);
FAD - Rozanov and Zhuravlev (1992)
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Table 1 (continued)

Taxon FAD Ecology Skeletal type and
composition

Comments and references

Other biomineralised arthropods
(Bradoriida, Phosphatocopida,
Aglaspidida, Phytophilaspis)

uA Nektic, fast? P
p

Briggs and Fortey (1982), Siveter and Williams (1997), Skovsted and Peel
(2001), Zhang (2007), Lin et al. (2011); Vannier and Chen (2000), Ivantsov
et al. (2005)

Agmata B Benthic, sessile, unattached C
s

James and Klappa (1983); Fritz and Yochelson (1987).

Rhynchonellata lA Benthic, sessile, attached V
c

Ushatinskaya and Zhuravlev (1994); Ushatinskaya and Malakhovskaya
(2006)

Kutorginata uT Benthic, sessile, attached V
c

Not shown on Fig. 1, Ushatinskaya and Malakhovskaya (2006)

Echinodermata uA Benthic, sessile, attached/
unattached/motile, slow

P
m

James and Klappa (1983), Dickson (2004); Guensburg and Sprinkle (2001),
Zamora and Smith (2008); FAD—Rozanov and Zhuravlev (1992)

Palaeoscolecida and other skeletal
vermiform Ecdysozoa

uA Benthic, motile,
slow/fast

P
p

Müller and Miller (1976), Wrona (1982); FAD—Rozanov and Zhuravlev
(1992)

Byroniida uA Benthic, sessile C
p

Bischoff (1989); FAD—Bengtson et al. (1990)

Tardypolipoda or
Xenusia

uA Benthic, motile, slow P
p

Bengtson et al. (1986); Gámez Vintaned et al. (2011);
FAD—Rozanov and Zhuravlev (1992)

Conodonta MC Nektic, fast T
p

Bengtson (1983); Purnell, 1995)

Polyplacophora UC Benthic, motile, slow P
m?

Haas (1972), Carter and Hall (1990); FAD—Stinchcomb and Darrough
(1995)

Cephalopoda UC Nectic?, slow? S
m?

Crick (1981), Chen and Teichert (1983); FAD—Landing and Kröger (2009)

Bryozoa UC Benthic, sessile, attached M
c?

Taylor and Weedon (2000), Smith et al. (2006); FAD—Landing et al. (2010)

Hexactinellida lND Benthic, sessile, attached P
s

Rigby (1986), Dornbos et al. (2005), Ivantsov et al. (2005).

Demospongia uA Benthic, sessile, attached/
unattached

P
s

Rigby (1986), Dornbos et al. (2005), Ivantsov et al. (2005);
FAD—Bengtson et al. (1990)

Foraminifera lND Benthic, sessile, unattached C
s

Felitsyn (1992); McIlroy et al. (2001); FAD—Kontorovich et al. (2008)

Radiolaria MC Nectic?, passive S
s

Alez (2011)
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Skeletal organisms with carbonate skeletons are now preserved as
either LMC or dolomite, replacing primary LMC, HMC or aragonite.
Skeletal calcium hydroxyapatite is now usually preserved as either
dahllite, francolite, or monazite. Primary skeletal composition cannot
always be inferred through reference to Recent descendants or rela-
tives (Wood, 1991), and in vitro experiments show that some skeletal
biota are able to change their skeletal mineralogy depending on
changing sea water chemistry (e.g. Ries, 2010, 2011).

The following criteria are used to infer the primary mineralogy of
skeletal taxa, based on James and Klappa (1983), Sandberg (1983),
and Zhuravlev and Wood, (2008) (Table 1):

(1) Detection of original element concentrations either fromfluid in-
clusions in precipitates or from skeletal material (Mg—for HMC;
Sr—for aragonite).

(2) Preservation of specific skeletal fabrics either in calcite or in
phosphateminerals and silica replicas (e.g. foliated and prismatic
microstructure—LMC; microgranular microstructure—HMC; na-
creous and lamello-fibrillar microstructures—aragonite).

(3) Relative quality of preservation of different precipitates within
the same sample: fabric preserved—LMC; fabric preserved and
spar-filled moulds with microdolomite—HMC; coarse spar
mosaic-filled moulds, generally irregularly cross-cutting original
structure—aragonite.

(4) Epitaxial synsedimentary marine cements developing in optical
continuity with skeletal elements: bladed equant calcite—LMC;
fibrous calcite—HMC; botryoids of acicular crystals—aragonite.

(5) Phylogenetic application of skeletal mineralogies in extant groups
to their probable fossil relatives.

(6) Relative stable isotope composition (δ13C, δ18O) of different pre-
cipitates in the same sample with less altered signatures charac-
terizing LMC fabrics.

Primary calcium hydroxyapatite is inferred by comparison with Re-
cent lingulate brachiopods (Ushatinskaya, 1995; Streng and Holmer,
2005) and chordates (Donoghue and Sansom, 2002), or by unusual mi-
crostructureswhich do notmatch any knownprimary carbonate fabrics
(Müller and Miller, 1976; Bengtson, 1983, 1994; Holmer et al., 2002;
Porter, 2004). Only phosphatic botryoids are considered to be second-
ary fabrics which may or may not reflect primary skeletal composition
(Bengtson et al., 1990). Some trace elements, such as Neodymium
and other Rare Earth Elements can be used for recognition of primary
phosphatic composition if the skeleton is replaced with clay minerals
(Wrona, 1982; Sturesson et al., 2005).

Silica is inferred for specific spicule types indicative of hexactinellids
and demosponges (Ivantsov et al., 2005), radiolarian tests (Maletz,
2011), and for some Ediacaran-early Cambrian agglutinating foraminif-
era, including tubicolous Platysolenites (McIlroy et al., 2001).

Quantitative data on the stratigraphic distribution of ~3500 gen-
era through the late Ediacaran–early Tremadocian is gathered from
Zhuravlev (2001). The bulk distribution of biogenic phosphate, LMC,
HMC, and aragonite is calibrated to the number of genera per zone
per mineralogy.

Skeletal taxa were also assigned to one or more of seven ecological
guilds: sessile, unattached; sessile, attached; benthic, motile slow;
benthic, motile fast; nektic, passive; nektic, motile slow, and nektic,
motile fast, based on field observations and wide literature analysis
(Table 1), and likewise calibrated to the number of genera per zone
per guild. As the majority of these genera are monotypic, this analysis
provides a reasonable quantification of biomineralisation trends
through the late Ediacaran to early Tremadocian.

6. Trends in mineralogy and ecology

Seawater chemistry varied through the Ediacaran to Cambrian
(Fig. 1A): high mMg:Ca and/or low pCO2 favoured aragonite and
HMC precipitation from the Ediacaran until the early Atdabanian,
but low mMg:Ca and/or high pCO2 and the onset of greenhouse con-
ditions favoured LMC formation thereafter (Zhuravlev and Wood,
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2008). A well-documented phosphogenic event occurred during the
early Cambrian (Cook and Shergold, 1984), and although silica is
the least soluble biomineral it was available in large qualities in
Neoproterozoic seas but declined thereafter (Maliva et al., 1990).

Quantitative analysis of genera reveals a notable shift from exclu-
sively aragonite or HMC in the Ediacaran to Terreneuvian, to dominant-
ly LMC mineralogies from the mid-Cambrian to Ordovician (Zhuravlev
and Wood, 2008) (Fig. 1B). These trends coincide with a significant in-
crease of both benthic,motile and nektic,motile biota over sessile forms
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idly thereafter; attached forms reach 50% of the total skeletal biota by
the late Tommotian to Atdabanian, but decrease to some 20% from the
end of the Early Cambrian.

Carbonate biominerals show a correspondence between inferred
sea water chemistry and the first adopted mineralogy in skeletal clades
originating in the Ediacaran tomiddle Cambrian (Fig. 2A) (Porter, 2007;
Low-Mg calcite

High-Mg calcite

Aragonite

Phosphate

Silica

C
ri

b
ri

cy
at

h
a

H
yo

lit
h

o
m

o
rp

h
a

C
o

le
o

lo
id

a
O

b
o

le
lla

ta
C

al
ca

re
a

K
h

as
ak

ti
id

ae
R

ad
io

cy
at

h
a

T
ab

u
la

co
n

id
a

M
o

b
er

g
el

lid
ae

H
yd

ro
co

n
o

zo
a

S
te

n
o

th
ec

o
id

a
T

ri
lo

b
it

a
O

th
er

 A
rt

h
ro

p
o

d
a

A
g

m
at

a
O

st
ra

co
d

a
R

h
yn

ch
o

n
el

la
ta

K
u

rt
o

g
in

at
a

D
em

o
sp

o
n

g
ia

e
E

ch
in

o
d

er
m

at
a

P
al

ae
o

sc
o

le
ci

d
a

T
an

n
u

o
lin

id
ae

B
yr

o
n

iid
a

T
ar

d
yp

o
ly

p
o

d
a

C
o

n
o

d
o

n
ta

Sessile, unattached

Sessile, attached

Benthic, motile

Nektic, motile

C
ri

b
ri

cy
at

h
a

H
yo

lit
h

o
m

o
rp

h
a

C
o

le
o

lo
id

a
O

b
o

le
lla

ta
C

al
ca

re
a

K
h

as
ak

ti
id

ae
R

ad
io

cy
at

h
a

T
ab

u
la

co
n

id
a

M
o

b
er

g
el

lid
ae

H
yd

ro
co

n
o

zo
a

S
te

n
o

th
ec

o
id

a
T

ri
lo

b
it

a
O

th
er

 A
rt

h
ro

p
o

d
a

A
g

m
at

a
O

st
ra

co
d

a
R

h
yn

ch
o

n
el

la
ta

K
u

rt
o

g
in

at
a

D
em

o
sp

o
n

g
ia

e
E

ch
in

o
d

er
m

at
a

P
al

ae
o

sc
o

le
ci

d
a

T
an

n
u

o
lin

id
ae

B
yr

o
n

iid
a

T
ar

d
yp

o
ly

p
o

d
a

C
o

n
o

d
o

n
ta

, B) ecological guild of major skeletal taxa from the upper Ediacaran to Middle Ordovician
sition of skeletons in all clades is not implied.



256 R. Wood, A.Y. Zhuravlev / Earth-Science Reviews 115 (2012) 249–261
Zhuravlev andWood, 2008). Biominerals also, however, broadly follow
the dynamics of ecology (Fig. 2B), where sessile, attached clades are
often siliceous, phosphatic or HMC, sessile, unattached clades are either
aragonitic or LMC,motile clades are often aragonitic, phosphatic or LMC,
and nektic clades are often LMC or phosphatic. These relationships are
expressed in the coupled decline of taxa with both HMC skeletons and
those belonging to the sessile, attached guild, together with an increase
of taxa with phosphatic hard parts and the rise of the motile and nektic
guilds (Fig. 1B and C).

Ediacaran skeletal taxa were all sessile with both calcareous
and siliceous skeletons. Cambrian sessile, attached forms pos-
sessed mainly heavily-calcified massive HMC skeletons (renalcids,
archaeocyaths, cribricyaths, tabulaconids) or LMC shells (kutorginate
and rhynchonellate brachiopods). A large variety of primary phos-
phatic tubes and cones probably representing cnidarian-grade
organisms (hexaconulariids, paiutiids) and stem- and crown-
group lophotrochozoans (hyolithelminths, tommotiids, mober-
gellans, lingulates) appeared during the early Cambrian phosphogenic
event. Free-swimming nekton or bentho-pelagic swimmers (chaeto-
gnaths and conodonts) bore phosphatic teeth, while bivalved and
some other arthropods possessed either phosphate (bradoriids,
phosphatocopids, aglaspidids) or LMC (agnostids) cuticles. Sessile, un-
attached groups preferred protective aragonitic skeletons (anabaritids,
coleolids, hyoliths), and motile benthos comprised dominantly either
aragonite (molluscs, halkieriids, cambroclaves) or LMC carapaces (trilo-
bites) depending on seawater chemistry state.

The first motile skeletal and non-skeletal eumetazoans appeared
at the base of the Cambrian, together with new sessile benthic calcar-
eous skeletal metazoans. Motile skeletal benthos bore exoskeletons of
either valved shells or a scleritome (molluscs and halkieriids) as well
as mineralised teeth (protoconodonts), together with new sessile
calcareous skeletal metazoans. Many of the motile forms represent
a diverse fauna thought to be dominantly of lophotrochozoan
affinity, including halkieriids with protective, composite exoskeletons
(scleritomes) (Conway Morris and Peel, 1995; Porter, 2008; Vinther,
2009). Further new benthic skeletal metazoans appeared in the late
Terreneuvian (~535 to ~526 Ma), as well as diverse spiculate and
hypercalcified sponges (Debrenne and Reitner, 2001).
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Later in the early Cambrian, numerous multi-element, broadly
metameric exoskeletons originated, reflecting the abundance of arthro-
pod or arthropod-like taxa (biomineralised ecdysozoans) as well as
new brachiopod and other lophotrochozoan groups (Ushatinskaya
and Zhuravlev, 1994; Hollingsworth, 2011). Trilobites appear at the
base of the Atdabanian (~526 Ma) coincident with the appearance of
calcite seas (Zhuravlev andWood, 2008). Skeletal deuterostomes (echi-
noderms) did not evolve until the late Atdabanian (~515 Ma) (Rozanov
and Zhuravlev, 1992; Zamora et al., 2009), as did sclerites of vermiform
ecdysozoans (Gámez Vintaned et al., 2011). The end of the middle
Cambrian saw the first appearance of skeletal vertebrates in the
form of conodonts (Bengtson, 1983), which were probably nektic
active predators belonging to stem-group vertebrates (Purnell, 1995;
Donoghue et al., 2006).

Fig. 3 quantifies the distribution of ecological guilds within each
major biomineral through the Ediacaran to early Tremadocian. HMC
skeletons are only represented by sessile biota, dominated by at-
tached forms, but restricted mainly to the early Cambrian (Fig. 3A).
Phosphatic hard parts are known successively in early sessile, at-
tached biota, then in benthic, motile forms, and finally in nektic, mo-
tile clades which become important from the late early Cambrian
onwards (Fig. 3B). Aragonite hard-parts are dominated by either
sessile-unattached groups, but these decline through the Cambrian,
or by motile benthos, which increase in number (Fig. 3C). LMC skele-
tons are represented by sessile, unattached benthos and nekton, but
dominantly by motile benthos from the mid-early Cambrian onwards
(Fig. 3D).
7. Discussion

There are uncertainties and lack of consensus concerning some as-
signments of ecological guild and original mineralogy, but these are
minor and the trends described here are robust. Although new taxa
continue to be described from Ediacaran to Cambrian strata, this in-
terval is extensively studied and comparatively well-known and
taphonomic effects are unlikely to be greater than for any other inter-
val in the Phanerozoic.
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During aragonite-facilitating seas, Ediacaran and Cambrian organ-
isms belonging to the sessile, attached guild used mostly HMC, those
of the sessile, unattached guild utilised aragonite, and the nektic, motile
guild was represented by animals with phosphatic skeletons. With out-
set of calcite seas, the sessile biota possessed mainly LMC hard parts
(Figs. 1 and 3). A minority of Ediacaran–Cambrian benthic groups
bore a skeleton of either amorphous silica spicules (hexatinellids and
demosponges) or agglutinating silica tubes (foraminiferans).

The only exception to these trends are the diverse benthic, unat-
tached biota of possible cnidarians and stem- and crown-group
lophotrochozoans which appeared with phosphatic external skeletons
during the earliest Cambrian phosphogenic event indicative of elevated
marine phosphate levels (Cook and Shergold, 1984). Such skeletons are
assumed to be defensive, confirmed by the preservation of abundant
boreholes in tubes and sclerites (Conway Morris and Bengtson, 1994;
Zhang and Pratt, 2008). By contrast, the diversification of conodonts,
protoconodonts, and arthropods possessing phosphatised skeletal
elements only appeared after the decline of marine phosphate levels
(Fig. 3B).

In modern biotas, calcium hydroxyapatite is associated with intense
activity and high-energy lifestyles (Ruben and Bennett, 1987) and in
the Cambrian, this mineral is also preferentially found in protoconodonts
and arthropods where the teeth are biomineralised and clearly have
an active predatory function (Fig. 3B). The early evolution of skeletal
vertebrates coincides with the biomineralisation of feeding elements
in actively swimming predators (conodonts) andmicrophagous suspen-
sion feeders (heterostracans), which represent basal stem-gnathostome
groups whose life strategies were plesiomorphic to herbivory, while
macrophagous predation was plesiomorphic to suspension feeding
(Purnell, 1995, 2001). Conodont teeth were covered with enamel-type
hypermineralised crown tissue crystallites which were arranged per-
pendicular to the functional surface enabling greater resistantance to
wear (Donoghue, 2001). Additionally, the earliest Cambrian supposed
chordates possess mineralised branchial denticles (Shu et al., 1999),
with an inferred relationship to the intense activity andhigh-energy life-
styles of this group.

In planktic chaetognaths, thought to be the most primitive within
this enigmatic phylum, the mitochondria-rich contractile locomotor
muscles that sustain muscular activity during swimming require a
high extracellular Ca2+ supply (Casanova and Duvert, 2002). This phys-
iological requirement implies hypercalcemia and skeletal dissolution
similar to that found in those in vertebrates, and may explain the phos-
phatic composition of the grasping elements (protoconodonts) in
the first evolved chaetognaths that occupied a nektic predator niche
(Vannier et al., 2007).

Arthropods comprise a significant part of Cambrian diversity and
those whichwere swimmingmicro- andmacrophagous predators pos-
sessed phosphatised cuticles (Williams et al., 2007; Lin et al., 2011).
Even if these Cambrian arthropods did not possess phosphatised
exoskeletons, their cuticles were probably impregnated with ACP as
co-occurring ‘soft-bodied’ arthropods lack phosphatic preservation.

Variations in the mineral properties of LMC, HMC and aragonite are
expressed by their selective use in organisms employing different eco-
logical strategies. The bulk of Cambrian sessile, attached organisms
belonged to algal-like forms and low-grade metazoans (renalcids,
archaeocyaths, cribricyaths, coralomorphs). These groups produced
massive, but simple, skeletons where the low cost of HMC was prefer-
entially utilised (Fig. 3A) as the physical properties of this mineral—
loose, brittle, crystal packages—did not present a disadvantage as
these organisms also often strengthened skeletons by abundant sec-
ondary deposits. Morphological and palaeoecological characteristics of
the earliest skeletal metazoans are all consistent with more efficient
feeding and competitive substrate strategies, as well as anti-predation
traits. In addition to a sessile habit, often involving attachment to a
reef substrate, these include: the occupation of progressively younger
skeletal parts (Cloudina, Sinotubulites, archaeocyaths) providing
increased feeding efficiency; thick organic walls (Sinotubulites) and
apertural-defences (Cloudina, archaeocyaths) which offered protection
from predation; and aggregating behaviour and possession of a stalk
or holdfast (Namacalathus, archaeocyaths, cribricyaths, coralomorphs),
and the ability to encrust, a modular habit, and large size (Namapoikia,
archaeocyaths), providing competitive superiority on hard substrates
as well as reducing susceptibility to predation (Wood, 2011).

A further type of HMC skeleton is observed in Cambrian sessile at-
tached calcarean sponges and unattached echinoderms whose mod-
ern descendants form skeletons of highly sophisticated composite
monocrystals (Aizenberg et al., 2003; Killian et al., 2009), primarily
for biomechanical strength.

Cambrian sessile, unattached and motile animals appear to have
been unable to sustain the cost of thick skeletal secretion. According-
ly, gaining nacre might have provided the best mechanical protection,
and nacre and crossed-lamellar structures were exploited by a high
variety of Cambrian molluscs which represent the second most di-
verse benthic motile group after arthropods (Runnegar, 1985;
Bengtson et al., 1990; Kouchinsky, 1999, 2000a,b; Feng and Sun,
2003; Fig. 3C herein). Less sophisticated aragonitic structures are ob-
served in anabaritids, hyoliths, obolellats, and other Cambrian sessile
unattached and slow motile animals which could also satisfy the re-
quirements of building both relatively resistant and energetically effi-
cient skeletons.

LMC structures, although of inferior mechanical properties, appear
to become advantageous over HMC and aragonite in the middle
Cambrian (Zhuravlev and Wood, 2008) (Figs. 1A, B and, 3D). Trilobites
appear about ~526 Ma coincident with the onset of calcite seas
(Zhuravlev andWood, 2008), and the rapid exploitation of such skeletal
types may have been facilitated by the parallel evolution of complex,
organic-rich mineral composites: the simplest strategy for increasing
body size when protected by an exoskeleton (Thomas et al., 2000). It
is interesting to speculate that the innovation of the remarkable com-
pound eyes of trilobites, in large part a result of the optical properties
of calcite (Clarkson, 1997), may not have been possible until this time.

An orientation of c-axes perpendicular to the outer functional surface
similar to biomineralised crustacean cuticle is common in trilobites
(Dalingwater, 1973;Wilmot and Fallick, 1989) as well as the kutorginate
and rhynchonellate brachiopods (Ushatinskaya and Malakhovskaya,
2006) also inhabiting calcite seas. Prismatic and foliated LMC structures
in molluscs, although of reduced mechanical strength (Hou et al., 2004;
Furuhashi et al., 2009) might have played a significant role as isolating
outer shell veneers in later calcitic seas. Such structures appeared in
some middle Cambrian molluscs (Runnegar, 1985). This trend of in-
creased LMC hard-parts was paralleled by multiple appearances of het-
erogeneous, organic-rich, multi-layered skeletal structures among new
groups of arthropods, molluscs, brachiopods, bryozoans, and vertebrates.
These imparted much greater resistance against dynamic penetrating
loads that could result from predatory attacks.

In summary,while selection ofmineralogy at the onset of skeletal ac-
quisition within a clade appears to have been governed by ambient sea
water chemistry (Porter, 2007; Zhuravlev andWood, 2008),mineralogy
was also selected according to ecology. Here we see a close interaction
between environmental change and ecological opportunity. Sessile,
benthic stem-group poriferans or cnidarians appear in the Ediacaran
with often massive skeletons of aragonite or HMC mineralogies; new
aragonitic sessile clades and additional motile benthos of stem-group
Eumetazoa appear in the Terreneuvian with often composite or articu-
lated, skeletons. The first LMC skeletons of novel organic-rich composite
materials did not appear until the late early Cambrian, coincident with
calcite seas. Phosphatic possible cnidarians and stem- and crown-
group lophotrochozoans appeared during the earliest Cambrian
coincident with elevated marine phosphate levels, but calcium hy-
droxyapatite is also preferentially found in protoconodonts, conodonts,
and arthropods appearingmainly in the late early Cambrian, inferred to
have intense activity and high-energy lifestyles.
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Skeletons were also acquired in groups with successively higher
energetic demands and motility during the Ediacaran to middle
Cambrian: sessile, unattached; sessile, attached; benthic, motile;
and nektic, motile. This suggests an attendant increase in the physio-
logical cost of skeletonisation. We can infer that the cost-benefit ratio
of biomineralisation escalated during this interval, such that the in-
creasing cost of producing a protective skeleton, in part with increas-
ingly costly minerals, was offset by the increased chance of survival.

8. Conclusions

Themineralogy of clades from the Ediacaran to Lower Ordovician as
well as quantitative analysis of trends reveals a close interaction be-
tween changing sea water chemistry, ecological opportunity, and esca-
lating response. There is notable shift from exclusively aragonite or
HMC in the Ediacaran to Terreneuvian, to dominantly LMCmineralogies
from the mid-Cambrian to Ordovician (Fig. 1B). This trend coincides
with the successive evolutionary importance of skeletal biota with in-
creasingly energetic lifestyles, from sessile unattached in the late
Ediacaran- Terreneuvian, sessile attached from the Terreneuvian -
Botomian, benthic motile from the Terreneuvian, and nektic from the
late Early Cambrian onwards (Fig. 1C).

Ecology is reflected in the choice of biomineral. Sessile, benthic
stem-group poriferans or cnidarians appear in the Ediacaran with
often massive skeletons of aragonite or HMC mineralogies coincident
with high mMg:Ca and/or low pCO2 (aragonite) seas; new aragonitic
sessile clades and additional motile benthos of stem-group Eumetazoa
appear in the Terreneuvianwith often composite or articulated, protec-
tive skeletons. The first LMC skeletons of novel organic-rich composite
materials did not appear until the late early Cambrian, coincident with
the onset ofmMg:Ca and/or high pCO2 (calcite) seas. Phosphatic possi-
ble cnidarians and stem- and crown-group lophotrochozoans appeared
during the earliest Cambrian coincident with elevated marine phos-
phate levels. Active, bentho-pelagic predatory groups (vertebrates,
chaetognaths, some arthropods) appearing mainly in the late early
Cambrian preferentially possessed phosphatic skeletons and teeth,
which were more stable at the low pH ranges of extracellular fluids as-
sociated with intense activity and high-energy ecologies.

Although greater size (and so competitive superiority and reproduc-
tive enhancement), increased elevation above the sea floor, and biome-
chanical strength are conferred by a skeleton as noted in the early to
middle Cambrian sessile skeletal biota, it is difficult to offer a convincing
alternative explanation for the rise of scleritome skeletons (including
chancelloriids), mollusc and brachiopod shells, and biomineralised ar-
thropod cutitcle, other than protection from predation.

The preference for phosphatic teeth in actively swimming preda-
tors, and for stiff and tough aragonitic shells in slow benthos despite
the high energetic cost of these materials, is suggestive of an evolu-
tionary response of prey to an escalation in predation pressure. The
Ediacaran–middle Cambrian interval shows the successive evolution
of skeletal biota with increasingly energetic lifestyles, suggesting
that the increasing physiological cost of skeletonisation in more de-
manding metabolisms was offset by the increased chance of survival
conferred by a protective skeleton: an arms race had surely begun.
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