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1. INTRODUCTION

Visualization of inclusions with different physical
parameters in strongly scattering and weakly absorbing
objects (this class of objects includes also biotissues in
the near-IR range, the so-called transparency window)
is an urgent problem of considerable practical impor-
tance. The early diagnosis of many diseases and inju-
ries in medicine requires a detailed information regard-
ing the internal structure of an affected organ. The
necessity to solve this problem resulted in the develop-
ment of different methods for the imaging of internal
structure—tomography. All the tomographic methods
are based on the presence of two substantially different
characteristic spatial scales in the structure of objects
being diagnosed. The problem is then to reconstruct a
smooth spatial variation of certain averaged physical
characteristics of an object (averaged absorption and
scattering coefficients, density, electric conductivity,
etc.) against small-scale (with a characteristic scale on
the order of a cell size and less) changes in some phys-
ical parameters of this object (the density, chemical and
molecular compositions, etc.). These smooth variations
describe the averaged internal structure of an object
being diagnosed. A new direction in the development of
such imaging methods—optical tomography (OT)
[1

 

−

 

3]—has appeared comparatively recently and is

rapidly growing at the moment. The main advantages
of OT distinguishing this approach from other, already
traditional tomographic techniques, such as X-ray
[4, 5], nuclear magnetic resonance [6, 7], ultrasonic [8],
and other methods of tomography, are associated with
the fact that OT is virtually totally noninvasive (harm-
less for a patient), providing, at the same time, a spatial
resolution that is acceptable in the majority of cases,
allowing the costs of necessary equipment to be consid-
erably reduced, and offering many other opportunities.
The distinguishing features and the current state of art
in the development and application of various tomo-
graphic techniques are summarized in Table 1. A qual-
itative comparison of these methods in terms of several
practically important parameters is provided in Table 2.

In OT, an object being studied (diagnosed) is multi-
ply transilluminated (along different directions) by
optical radiation with known characteristics (the power
of cw radiation or the energy of an input light pulse,
pulse duration, the moment of time when a light pulse
enters an object being diagnosed, etc.). Parameters of
radiation transmitted through an object (the power of
cw output radiation or the energy of an output light
pulse, the waveform of the output pulse and its delay
time with respect to the input pulse, etc.) are simulta-
neously measured. All these measurements are per-
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) have demonstrated that the dis-
tributions of the probability that detected photons pass through such objects (projections) can be described in
terms of the coefficient of relative trajectory lengthening, whose value is independent of the arrangement of a
light source and a detector. This experimental finding, confirmed by Monte Carlo numerical simulations, allows
a simple scaling of projections in the case when the distance between the light source and the detector changes,
thus providing an opportunity to implement fast real-time approximate statistical nonlinear algorithms for the
solution of inverse and direct problems of optical tomography. Experimental testing of the prototype and the
developed algorithms has shown that, for a model object with a diameter of 140 mm within the studied range
of optical parameters, the coefficient of relative trajectory lengthening ranges from 1.2 to 1.9, and the recon-
struction of an image of a strongly absorbing inclusion with a diameter of 1–2 mm requires no more than
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formed either sequentially (by sequentially changing
the arrangement of a radiation source and a photodetec-
tor, i.e., scanning) or in parallel (with the use of multi-
channel photodetectors and/or radiation sources). The
above-described procedure yields a two-dimensional
(2D) or four-dimensional (4D) matrix of output data,
which describes the spatial distributions of intensity
and/or other characteristics of output radiation for dif-
ferent arrangements of a radiation source and a photo-
detector in a discrete way in one or two independent
coordinates (on the surface of an object). The total
number of elements in such a matrix, 

 

N

 

2

 

 or 

 

N

 

4

 

, is deter-
mined by the number 

 

N

 

 of different arrangements of the
light source and the photodetector. Then, one should
use the matrix of output data to reconstruct the internal
structure of an object, i.e., to solve the so-called inverse
problem. At this stage, the mean absorption and scatter-
ing coefficients and the scattering phase function play

the role of physical parameters whose spatial distribu-
tions have to be reconstructed.

Under conditions of multiple scattering (when the
mean number of scattering events involving photons
transmitted through an object with characteristic sizes
on the order of 12–15 cm may reach 10

 

3

 

 and more), it
is rather difficult to solve the inverse OT problem with
an adequate accuracy. The problem is that the trajecto-
ries of photons propagating through a biotissue radi-
cally differ from rectilinear trajectories, since these
photons undergo multiple scattering events during the
propagation process. However, the numerical solution
of the so-called direct OT problem (numerical simula-
tion of the results of real experiments, including the cal-
culation of the output data matrix) has shown that,
under conditions of the so-called small-angle scattering
[9–12], some of the detected photons propagate from
the source to a detector along trajectories close to recti-
linear ones. These trajectories look like snakes winding
around smooth curves connecting the light source and
a photodetector. Such photons are usually referred to as
snake photons in the literature [13]. The corresponding
smooth curves form a figure reminiscent of a banana.
Therefore, they are usually called banana-shape trajec-
tories [14]. As it was shown in the late 1980s, the pro-
cedure of solving the inverse OT problem can be
reduced to thoroughly developed algorithms solving
inverse problems in projection X-ray tomography
[15, 16], where, due to the absence of elastic scattering,
the information regarding the internal structure of an
object is extracted from photons propagating along a
straight line. To use this approach in OT, one has to
apply certain criteria to select only a small (informa-
tive) part of the total flux of detected photons that
includes the photons propagating through an object
along trajectories of a definite type (usually trajectories
with a minimum or fixed length). Various OT tech-
niques differ from each other by the methods of such a
selection, which can be implemented in the so-called
time-domain [17–19], coherence [20–23], and fre-
quency-domain [24–27] OT. Note that the utilization of

 

 

 

Table 1.  

 

Specific features and the current state of art in the
development of tomographic methods [45]

Influence Measured
characteristics Application

X-ray Attenuation con-
stant

Diagnostics, X-ray 
therapy

 

γ

 

 radiation Density of special 
markers

Functional diag-
nostics

Positrons Density of special 
markers

Clinical testing

Magnetic field Density of protons, 
relaxation time

Neurosurgery, 
oncology

Ultrasound Acoustic imped-
ance

Functional diag-
nostics

Electric current Electric resistance Clinical testing

IR radiation Optical properties Ophthalmology, 
mammography

 

Table 2.  

 

Comparison of different tomographic methods in terms of practically important parameters [46]: * stands for the
worst parameter, while *** indicates the best parameter

Tomographic technique Spatial
resolution, mm

Time
resolution, s

Ionizing
radiation

Contrast
substances

Soft tissue 
diagnostics Cost

X rays 3 <1 * ** * **

NMR 1–2 0.03 *** ** ** *

One-photon emission 7 600 * *** ** **

Positron emission 4 600 * *** ** **

Ultrasonic 1–2 <0.01 *** * ** ***

Electric impedance 10 0.06 *** *** *** ***

Optical 0.01 <1 *** *** *** ***
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only a small part of the total flux of photons transmitted
through an object being diagnosed inevitably leads to a
drastic lowering of the level of the informative signal
and increases experimental errors. This factor relates
the minimum necessary power of input laser radiation
(the minimum input flux of quanta) to the maximum
possible size of an object being diagnosed, the mini-
mum time of measurements, and the limiting spatial
resolution.

In spite of a tremendous number of publications on
OT [1–3, 23, 28–31], there are still problems to be
solved on the way toward a really efficient OT instru-
ment. The main disadvantages of the existing devices
are associated with comparatively small sizes of
objects being diagnosed (one of the best results was
achieved by Proskurin 

 

et al.

 

 [32], who increased this
size up to 68 mm), a relatively slow speed of standard
algorithms solving direct and inverse problems (on the
order of several hours and more [28]), and many other
difficulties. The purpose of this study was to develop
and experimentally test a prototype of a comparatively
inexpensive device capable of diagnosing strongly scat-
tering objects with large sizes (up to 150 mm and more)
and to implement fast approximate nonlinear algo-
rithms, allowing the internal structure of such objects to
be imaged virtually in real time.

2. EXPERIMENTAL

To solve the problems mentioned above, we devel-
oped a prototype of an optical tomograph based on a
highly sensitive detection system with time-resolved
photon counting (Fig. 1) [33]. A low-noise Hamamatsu

R636-10 photomultiplier was employed as a photode-
tector. Discrimination thresholds of the photon-count-
ing system were chosen in such a way as to achieve the
maximum signal-to-noise ratio. With optimal discrimi-
nation thresholds, the level of dark photocounts was
15–30 counts/s. Since such a detection system allows
the amplitudes of dc and ac components of the output
signal and the phase shift of the ac component to be
measured, we were able to apply this system to imple-
ment the principles of frequency-domain optical
tomography [27] (with a modulation frequency of
100 MHz). However, we abandoned an idea of using
conventional selection methods in the experiments
described below. The problem is that, when a strongly
scattering object is diagnosed with radiation whose
wavelength falls within the absorption band, the pho-
tons reaching the detector along longer trajectories are
characterized by higher absorption probabilities and
provide a lower contribution to the detected signal.
Such a situation, which can be easily implemented in
practice with an appropriate choice of the wavelength
of probing radiation is completely equivalent to the
application of one of the above-described methods of
shortest trajectory selection. To the best of our knowl-
edge, this simple approach to the selection of shortest
trajectories has not been discussed in the OT literature
so far. Since this method utilizes the entire flux of out-
put radiation, it provides an opportunity not only to
diagnose objects of larger sizes, but also to simplify the
system by removing such elements as modulators,
mode lockers, delay lines, etc., and to reduce require-
ments to the parameters of all the other elements of the
system. Three cw diode lasers with radiation wave-
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Fig. 1.

 

 Diagram of an optical tomograph.
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lengths of 775, 808, and 818 nm and an output power
up to 300 mW can be, in principle, employed to imple-
ment this selection technique in our prototype. How-
ever, since we were able to model any optical character-
istics of an object being diagnosed in our studies of
model objects, all the experiments were carried out at a
probing wavelength of 775 nm and a power of cw input
radiation not exceeding 20 mW. Due to sufficiently
strong spectral dependences of optical properties of
biotissues [29, 31, 34, 35], our prototype allowed all the
advantages of the so-called differential measuring sys-
tems [36] to be exploited in the case when real objects
were diagnosed.

We considered an object being diagnosed as a set of
uniform areas (areas where absorption coefficients 

 

μ

 

a

 

,
scattering coefficients 

 

μ

 

s

 

, and other characteristics are
constant). We assumed that all the physical parameters
change in a jumpwise way only on the interfaces, and
the reflection coefficients of these interfaces are negli-
gibly small. In fact, such an assumption corresponds to
a situation when optical inhomogeneities in an object
are characterized by two substantially different spatial
scales. Small-scale inhomogeneities are responsible for
scattering processes, while the OT technique is applied
to reconstruct much smoother spatial distributions of
these inhomogeneities in sizes, concentrations, etc.
With such an attitude, we modeled objects being diag-
nosed using strongly scattering media consisting of
uniform mixtures of two components. One of these
components (finely dispersed aqueous aliphatic emul-
sion) played the role of a pure scatterer (

 

μ

 

a

 

 

 

≅

 

 0), while
the second component (an aqueous solution of black
ink) served as a pure absorber (

 

μ

 

s

 

 

 

≅

 

 0). Concentration
dependences of optical characteristics of both compo-
nents (

 

μ

 

a

 

 and the transport scattering coefficient )
were determined in an experimental way. Then, mixing
absorbing and scattering components in appropriate
proportions, we engineered a model medium with any
required optical characteristics (

 

μ

 

a

 

 and ) similar to
the characteristics of biotissues. In the experiments
described below, we have  

 

≅

 

 1.4 mm

 

–1

 

 and 

 

μ

 

a

 

 

 

≅

 

0.005–0.015 mm

 

–1

 

, which approximately corresponds
to optical characteristics of gray matter in brain [37].
The model medium was placed inside a black plastic
cylindrical vessel (with a diameter of 90 or 140 mm).
This vessel determined the shape of a model object
being diagnosed. Vessel walls were assumed to be
absolutely absorbing, which corresponded to boundary
conditions employed in numerical simulations. The
perimeter of the model object was divided into equal
angular segments (corresponding to 30

 

°

 

 and ~11

 

°

 

 for
the vessels with diameters of 90 and 140 mm, respec-
tively) with special holes for input and output optical
fibers (12 and 32 single-fiber plastic cables with a fiber
diameter of 600 

 

μ

 

m) located in a plane perpendicular to
the symmetry axis of the vessel. Metal rods (having a
shape of cylinders or parallelepipeds), whose charac-

μs'

μs'

μs'

 

teristic sizes (diameters or the sizes of cross sections)
were varied within the range from 4 to 25 mm served as
strongly absorbing inclusions, imitating, for example,
hematomas. The side surfaces of these rods were black-
ened.

Figure 2 illustrates the result of a typical experiment
on imaging an absolutely absorbing inclusion (a black
metal cylinder with a radius of 7.5 mm) placed inside
an object being diagnosed. The lower curve in Fig. 2
corresponds to the case when an inclusion was placed
inside an object along with absorbing and scattering
components. The upper curve was obtained with no
inclusion inside the object. The experimental results
clearly reveal the shadow area, where the number of
photons detected in the absence of an inclusion is much
larger than the number of photons detected in the pres-
ence of an inclusion (for certain positions of the detec-
tor).

3. SCALING OF THE DISTRIBUTIONS

The results of our experiments (see Fig. 2) allow us
to make a very important conclusion, which determines
the possibility of implementing fast algorithms for the
solution of both direct and inverse OT problems. All the
experimental dependences obtained by probing large-
size strongly scattering objects without inclusions can
be satisfactorily approximated with the following func-
tion:

(1)

Here, 

 

P

 

 is the power of input radiation, 

 

Z

 

(

 

L

 

k

 

) is the
dependence of the number of photocounts on the dis-
tance 

 

L

 

k

 

 = 2

 

r

 

sin(

 

α

 

i

 

, 

 

k

 

/2) between the light source and
the photodetector along a straight line, 

 

r

 

 is the radius of

Z Lk( ) P/Lk
2 μaξLk–( ),exp∝

where ξ ξ μa μs',( ).=

 

9
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Fig. 2.

 

 Dependence of the number of photocounts 

 

Z

 

 on the
position of the photodetector (the angle 

 

α

 

) for an object with

 

μ

 

a

 

 = 0.01 mm

 

–1

 

,  = 1.4 mm

 

–1

 

, and 2

 

R

 

 = 90 mm in the

case of a strongly absorbing inclusion with 

 

r

 

 = 7.5 mm.
Input radiation is coupled in through a fiber in position 0

 

°

 

.

μs'
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the vessel, 

 

α

 

i

 

, 

 

k

 

 is the central angle between the posi-
tions of the light source 

 

i

 

 and the photodetector 

 

k

 

, and

 

ξ

 

 is the parameter determining the mean relative
lengthening of the trajectories of detected photons rel-
ative to 

 

L

 

k

 

. Although Eq. (1) looks very simple, it is not

trivial at all. The first factor (1/ ) on the right-hand
side of Eq. (1) describes the lowering in the intensity of
output radiation due to the angular divergence of this

Lk
2

 

radiation related to scattering. The second factor explic-
itly depends on 

 

μ

 

a

 

 and involves  and 

 

μ

 

a

 

 through 

 

ξ

 

.
Our experiments have demonstrated that Eq. (1) per-
fectly (within the limits of experimental errors equal to
0.5–1.0%) describes the results of all the experiments
performed in the absence of inclusions. The value of 

 

ξ

 

is also fixed for any specific experiment (the values of
 and 

 

μ

 

a

 

 are fixed). One of the examples of such an
approximation is shown by the solid line in Fig. 2.
Numerical simulations (performed with the use of the
Monte Carlo method) have confirmed this fact with a
much higher accuracy (better than 0.1%).

In principle, as it was recognized earlier, both the
distribution of trajectories of detected photons in
lengths in strongly scattering media and the most prob-
able length of these trajectories change in response to
variations in optical characteristics of the scattering
medium. Figure 3 presents, for example, the results of
[31] for the variation in the temporal profile of the out-
put light pulse in time-domain OT. As can be seen from
Fig. 3a, the maximum of the time-of-flight distribution
is shifted to the left (which corresponds to a decrease in
the most probable trajectory length) with the decrease
in . At the same time, as 

 

μ

 

a

 

 increases (Fig. 3b), the
distribution function becomes sharper (the scatter of
trajectories in lengths decreases). Therefore, it is not
surprising that, when 

 

μ

 

a

 

 was varied within the range of
0.005–0.015 mm–1 in our experiments, the quantity also
changed, running from 1.2 up to 1.9 (Fig. 4). The main
conclusion that follows from the fact that ξ is constant
is that, in the absence of inclusions, the distribution
functions of the flux of detected photons in an object
being diagnosed are always geometrically similar to
each other, and they can be easily recalculated (scaled)
through each other when the distance between the light
source and the detector is changed. The latter circum-
stance allows the algorithm for the solution of the
inverse problem described below to be implemented in
real time.

4. NUMERICAL SIMULATION

The implementation of our algorithm for the
approximate solution of the inverse OT problem
requires certain reference data (see the discussion
below), which can be obtained only by solving the rel-
evant direct problem. In the regime of multiple scatter-
ing, the direct problem can be described in terms of the
diffusion equation [38, 39], transfer matrices [40, 41],
or the Monte Carlo method [14, 42]. We chose the
Monte Carlo method, since this approach is more uni-
versal and can be also employed for spatial scales com-
parable with the mean free path length. In addition,
since the required reference data are of statistical char-
acter, the use of the Monte Carlo method seems to be
natural and reasonable. A few disadvantages of this
technique are associated with the fact that this method

μs'

μs'

μs'
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Fig. 3. Dependences of time-of-flight distributions on
(a) the scattering coefficient  and (b) the absorption coef-
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Fig. 4. The coefficient ξ of trajectory lengthening as a func-
tion of the absorption coefficient μa .
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requires much computer time, which is inevitable even
at the current stage of computer development.

In our simulations, we assumed that all the optical
characteristics of the medium change in a jumpwise
way on interfaces between different areas of an object
being diagnosed. This assumption corresponds to a
model where characteristic sizes of the regions of vari-
ation in any physical parameter considerably exceed
the size of a spatially resolved pixel [30, 31]. We
assumed that the reflection coefficient for all the inter-
faces is negligibly small. The probabilistic model of the

interaction of a photon with an element of a medium
was introduced in a standard way [38]. The probability
distribution of the mean free path lengths λ of a photon
in a medium was described by the function

(2)

The scattering phase function ρ(W , W') (with W and
W' being the unit vectors along the wave vectors of the
photon before and after scattering) was described by

ρ λ( ) μt
1– μtλ–( ), where μtexp μs' μa.+= =
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Fig. 5. Cutting of photons from distributions: (a) the spatial
distribution and (b) its central cross section. The object has
the following parameters: μa = 0.02 mm–1,  = 1 mm–1,

g = 0.95, and 2R = 10 mm. Parameters of the inclusion are
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tons pass through (a) different points of an object and (b) its
central cross section. The object has the following parame-
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10 mm. The solid line shows a Gaussian approximation of
the distribution cross section.
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the Henyey–Greenstein phase function [38, 43], which
depends only on the scattering angle Θ =  · W'),

(3)

(4)

Here, g is the mean cosine of the scattering angle.
Within the optical range, the above-introduced param-
eters have the following characteristic values for the
majority of biotissues: the transfer scattering coeffi-
cient is  = 1–10 mm–1, the absorption coefficient is
μa = 0.005–0.05 mm–1, the anisotropy parameter is g =
0.8–0.95, and the mean free path length is λ =
0.1−1 mm [34, 35, 37].

In our numerical simulations, we calculated theoret-
ical dependences of the distributions of photocount
numbers for different positions of the photodetector
(see Fig. 2). These dependences have confirmed that
Eq. (1) provides a high accuracy in the approximation
of the real experimental data. We have also determined
the spatial distributions of the probability distribution
for the propagation of detected photons through differ-
ent points of a strongly scattering object both with
(Fig. 5) and without (Fig. 6) strongly absorbing inclu-
sions inside the scattering object. These simulations
have demonstrated that, in the regime of multiple
small-angle scattering, the cross-sectional views of
probability distributions in the latter case can be
approximated with Gaussian functions (Fig. 6b), which
is apparently a consequence of the central limit theo-
rem.

(Warccos

ρ Θ( ) f Θcos( )/ f ,=

f x( ) 1 g
2

–

1 g
2

2gx–+( )
3/2

---------------------------------------.=

μs'

5. A FAST ALGORITHM FOR AN APPROXIMATE 
SOLUTION OF THE INVERSE PROBLEM

Conventional algorithms for an approximate solu-
tion of the inverse problem require the use of certain
procedures in OT for the selection of a small part of the
flux of detected photons. This requirement, in its turn,
inevitably limits the maximum size of objects that can
be diagnosed. Abandoning such a selection has brought
us to the development of a new algorithm for an
approximate solution of the inverse OT problem. This
algorithm is described below in this section. The devel-
oped algorithm is statistical in its nature, and the infor-

Original
image of
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absorbing
phantom

After reconstruction by:

a single projection 2 projections

5 projections 144 projections

Fig. 7. The spatial distribution Δx ~ Δx0/  depends on the
projection width Δx0 and the number of projections N
employed for visualization. For Δx0 ≈ R/2 = 35 mm, we have
Δx ≈ 3 mm with N = 144. The situation is improved with N =
1024, when Δx ≈ 1.2 mm.
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Fig. 8. Spatial distributions of the probability that photons
pass through an object: (a) a light source and a detector are
located on the opposite sides of the object (α = 0°) and
(b) transformation of the distribution for α = 90°.
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mation concerning the internal structure of an object
being diagnosed obtained through the use of this algo-
rithm has a probabilistic character.

One of the most widespread algorithms for the solu-
tion of the inverse problem is the so-called projection
algorithm [15, 16]. This algorithm has been efficiently
used in X-ray tomography for a long time. One of the
specific features of OT is that a flux of photons in this
case propagates through a strongly scattering medium
along complicated trajectories, which differ from
straight lines. Due to the scattering, some part of this
photon flux may pass through practically any point
inside an object being diagnosed. Therefore, for any
fixed position of a light source, this flux can be
described with a three-dimensional (3D) function gov-
erning the probability distribution of photon propaga-
tion through different points inside an object. If we are
now interested only in those photons that reach a detec-
tor, then we have to introduce 3D distributions for the
conditional probability of the propagation of detected
photons through different points inside the object cor-
responding to certain positions of the detector. These
distributions of the conditional probability have finite
widths (which may be quite large if no procedure for
additional selection is applied) and can be calculated
either analytically or by means of computer simula-
tions. Our algorithm employs two matrices of input
data. One of these matrices is quite real and corre-
sponds to the case of an object with an inclusion. The
second data matrix could be obtained in the absence of
inclusions in the object (the reference matrix). When
solving the inverse problem, we assume that, for any
fixed position of the light source and the detector, the
total probability to detect an inclusion inside an object
is determined by the difference of the relevant elements
of these two matrices. The distributions of the probabil-
ities to detect an inclusion at different points of an
object are set equal to initial distributions of the condi-
tional probability (in the absence of inclusions) for the
relevant fixed positions of the light source and the
detector normalized to the corresponding total proba-
bility. Since all the distributions of the conditional
probability obtained in this way (different pairs of
matrix elements) are, in fact, different independent
realizations of the same real situation, the distribution
of the total probability to detect an inclusion at different
points of an object can be described as a product of all
the normalized distributions of the conditional proba-
bility. For an object with a complicated internal struc-
ture, this total probability distribution plays the role of
a reconstructed image of the internal structure of the
object.

Despite a comparatively large width of each of the
3D conditional probability distribution functions
(which is on the order of half the distance between the
light source and the detector if no selection procedure
is applied), the resulting spatial resolution (the width of
the total probability distribution) provided by this algo-
rithm is quite good. The trick is that, by multiplying N2

(or N4, see the discussion above) functions with nearly
(because of the boundary conditions) Gaussian (in
accordance with the central limit theorem) cross-sec-
tional views (see Section 4), we reduce the resulting
uncertainty in the spatial positions of inclusions by a
factor of N (or N2). This circumstance is sketched in
Fig. 7.

R

0

–R 0 R
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–R 0 R
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Fig. 9. Spatial distributions of the probability that photons
pass through an object with an inclusion for different geom-
etries of the arrangement of the light source and the detector
(a, b). The object has the following parameters: μa =

0.02 mm–1,  = 1 mm–1, and g = 0.95. Parameters of the

inclusion are μa = 2 mm–1,  = 1.4 mm–1, and g = 0.95.
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The implementation of the statistical algorithm
described above requires an a priori information
regarding the elements of the reference matrix and the
initial 3D distributions of conditional probability (in
the absence of inclusions) for different positions of the
light source and the detector. To obtain such a data, we
could, in principle, use the results of Monte Carlo sim-
ulation of the direct problem (see Section 4). However,

it is well known that the solution of such problems for
3D objects with linear sizes on the order of 300 and
more scattering lengths is rather labor consuming. Spe-
cifically, simulation of a situation when the central
detector registers 104 photons with an object diameter
of 150 mm requires about 700–900 hours of computa-
tions. Therefore, calculating the 3D distributions of
conditional probability required for the approximate
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solution of the inverse problem, we employed only one
such simulated (template) 3D distribution, which corre-
sponded to a situation when the light source and the
detector were placed on the opposite sides of an object
being diagnosed. All the other distributions were calcu-
lated with the use of simple geometric transformations
(scaling, see Section 3). We should also note that the
scaling of conditional probability distributions inevita-
bly gives rise to simulation errors, related to the devia-
tions of the distributions thus calculated from the real
distributions, which become distorted around the
boundaries of an object [44]. This situation is illus-
trated by Fig. 8, which presents two distributions of this
type simulated with the use of the Monte Carlo method.
Distortions arising under these conditions are, in fact,
reminiscent of geometric aberrations, which are well
known in optics. Several well-developed algorithms
can be employed to compensate for these aberrations.

The algorithm described above was implemented as a
dedicated software, which allowed the computation
time required to reconstruct an image of an inclusion
from a 642 matrix with a PII-350 personal computer to
be reduced to less than 5 min.

6. A FAST ALGORITHM FOR THE SOLUTION
OF THE DIRECT PROBLEM

The possibility to scale conditional probability dis-
tributions allows a fast nonlinear algorithm for the
approximate solution of the direct OT problem (calcu-
lation of the output data matrix by the method of cut-
ting) to be developed for the case when a strongly
absorbing inclusion is located inside a strongly scatter-
ing object. The same procedure of scaling conditional
probability distributions in the absence of inclusions
and some additional concepts can be employed for this
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purpose. The total probability that the detected photon
passes through any cross section of the conditional
probability distribution remains the same in the
absence of inclusions for any fixed arrangement of the
light source and the detector. When a strongly absorb-
ing inclusion (with an absorption probability close to 1)
arises inside an object being diagnosed, some part of
the photons that could reach the detector pass through
the absorbing inclusion, get absorbed, and never get
detected. Therefore, a relatively small fraction of
absorbed photons can be determined by simply cutting
some part of the corresponding cross section of the con-
ditional probability distribution (see Figs. 5b and 9).
Specifically, for cylindrical inclusions, which were
employed in our experiments, the width of the area of
cutting was equal to the diameter of the cylinder.

The time required to solve the direct problem with
the use of the algorithm described above with the only
known distribution of the conditional probability that
detected photons pass through an object being diag-
nosed in the absence of inclusions was equal to several
minutes with allowance for the possibility to scale the
known probability distribution (see the discussion
above). The maximum deviation of the results obtained
by this method from the real experimental data did not
exceed 30–50%, which can be easily understood if we
take into consideration possible reflection of light from
the vessel walls and inclusions.

7. RECONSTRUCTION OF INCLUSION
IMAGES

The input data for the developed software were
obtained either in real experiments or by using the
above-described algorithm for the simulation of the
direct problem. In order to reduce the time of measure-
ments, we studied the case of an axially symmetric
arrangement of the inclusion in all the real experiments.
Absorbing rods with diameters of 23, 15, or 10 mm
were placed at the center of an object being diagnosed
in these experiments, and only the position of the light
source was changed during scanning. An N2 overall
matrix, which is necessary for the projection recon-
struction algorithm, was obtained by translating the
experimental data in the angle. To avoid systematic
errors, which inevitably arise due to the translation of
random errors, we preliminarily smoothed experimen-
tal dependences out before using them as the initial data
for the reconstruction procedure. Figure 10 presents an
image of an inclusion with a diameter of 15 mm recon-
structed from the experimental data. The initial data for
the reconstruction of images of inclusions shifted with
respect to the center of an object and small-size inclu-
sions were modeled with the use of the cutting method
(Fig. 11). Figure 12 illustrates a reconstructed image of
a strongly absorbing inclusion with a diameter of
5 mm. Figure 13 presents magnified reconstructed
images of strongly absorbing inclusions with annular
and square cross sections and a cylindrical strongly
scattering inclusion. A characteristic halo is observed
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around the reconstructed image of the inclusion in the
latter case. The appearance of this halo is due to the
redistribution of the flux of detected photons because of
scattering.

Our modeling has confirmed that the considered
method does not impose any fundamental limitations
on the spatial resolution. The less are the sizes of the
inclusion to be reconstructed, the larger is the number
of projections required for the solution of the inverse
problem (the higher is the dimensionality of the input
data matrix) and more time is required for the proce-
dure of measurements (photon counting) at a single
point (fixed positions of a light source and a detector)
ensuring a reliable detection (above the noise level) of
the inclusion shadow.

8. CONCLUSION

We have shown that abandoning conventional meth-
ods of selecting a certain part of the entire flux of
detected photons in OT not only permits the size of an
object being diagnosed to be considerably increased
(up to 150 mm and more), but also allows the design of
the OT system to be considerably simplified and the
costs of such a system to be substantially reduced.
Moreover, in view of the capabilities of the above-
described approximate algorithm for the solution of the
inverse problem, an acceptable spatial resolution can be
achieved in this case (at least, for a certain class of
tomographic problems).

The results of our preliminary experiments demon-
strate that the minimum time of measurement (with a
signal-to-noise ratio of S/N ≈ 1) for the visualization of

(a) (b)

(c)

Fig. 13. Magnified reconstructed image of an inclusion in an object with a diameter of 140 mm with (a) a strongly absorbing cylinder
with a diameter of 2 mm, (b) a similar parallelepiped with the size of the cross section equal to 4 mm, and (c) a strongly scattering
cylinder with a diameter of 2 mm. A characteristic halo is observed around the reconstructed image in the latter case.
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a shadow of a strongly absorbing inclusion with a
diameter of 5 mm located at the center of a strongly
scattering (with the scattering coefficient μs = 1.4 mm–1)
and weakly absorbing (with the absorption coefficient
μa = 0.005 mm–1) object being diagnosed with a size of
140 mm is about 0.5 s in the case when the power of
input radiation is 20 mW and a light source and a detec-
tor are located on the opposite sides of an object (the
geometry that corresponds to a minimum output sig-
nal). Consequently, the total time required to measure
all the elements of the 64 × 64 output data matrix never
exceeds 30 min. The use of a multichannel photodetec-
tor (with 64 channels) would reduce the total time of
measurements down to 0.5–1.0 min. In view of the
capabilities of the above-described algorithm for the
approximate solution of the inverse problem, it is
exactly this time that is required for a tomographic
reconstruction of the internal structure of an object
being diagnosed.

At first glance, the necessity to use reference data,
i.e., an a priori information on the detected photon
fluxes in the absence of inclusions to be visualized for
all possible positions of a light source and a detector, is
a factor that limits the use of the algorithm described
above. However, in certain situations (e.g., in a defec-
toscopy of standard articles), such data can be obtained
both experimentally (through measurements performed
on a template object in the absence of inclusions) and
theoretically (by numerical simulation of the direct
problem). In more complicated problems encountered,
for example, in medical diagnostics, even not quite pre-
cise, statistically averaged reference data related to a
certain typical object without specific features (inclu-
sions) can be also employed. In particular, a reference
matrix for the head of an “average” human can be used
for a tomography of the head of some specific patient.
The reconstructed image of the internal structure of an
object obtained with the use of the above-described
algorithm will have two characteristic spatial scales in
this case. Smooth large-scale variations will be deter-
mined by deviations of certain parameters (e.g., the
shape) of the head of a specific human from the head of
an average human. Small-scale variations will be
related to the presence of well-localized absorbing cen-
ters, e.g., hematomas. Due to the existence of two dif-
ferent spatial scales in the reconstructed image, not
quite precise description of the reference data should
not influence substantially the correctness of the solu-
tion of the inverse OT problem with the use of the
above-described method.
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