ON MINIMALITY AND COMPLETENESS OF SYSTEMS
CONSTRUCTED FROM SOME OF THE EIGEN- AND ASSOCIATED
ELEMENTS OF QUADRATIC OPERATOR PENCILS

A. A. SHKALIKOV

We consider the quadratic operator pencil

\[L(\lambda) = A + \lambda B + \lambda^2 C; \]

here \(A \) and \(C \) are bounded selfadjoint operators acting in a Hilbert space \(\mathcal{H} \), and \(B \) is a bounded dissipative operator acting in \(\mathcal{H} \), i.e., either \(B_f = i(B^* - B) \geq 0 \) or \(B_f \leq 0 \). It is assumed that the spectrum of the pencil \(L(\lambda) \) is discrete. In this case the operator-valued function \(L^{-1}(\lambda) \) is meromorphic, and the principal part of its expansion at a pole \(\lambda = \lambda_k \) has the form

\[\sum_{k=N_1}^{N_2} \sum_{h=0}^{p_k} \frac{(\cdot, z^0_k)y_k^h + (\cdot, z^1_k)y_k^{h-1} + \cdots + (\cdot, z^h_k)y_k^0}{(\lambda - \lambda_k)^{p_k+1-h}}, \]

where

\[y_k^{0}, \ldots, y_k^{p_k}, \quad k = N_1, \ldots, N_2, \]

is some canonical (in the Keldysh sense) system of eigen- and associated elements (EAE’s) of the pencil \(L(\lambda) \) corresponding to the eigenvalue (EV) \(\lambda_k \) (which is counted as many as there are chains of EAE’s corresponding to it), and

\[z_k^{0}, \ldots, z_k^{p_k}, \quad k = N_1, \ldots, N_2, \]

is the conjugate canonical system of EAE’s of the pencil \(L^*(\lambda) \) corresponding to the EV \(\bar{\lambda}_k \).

Denote the spectrum of \(L(\lambda) \) by \(\sigma(L) \). It will be assumed that \(0 \notin \sigma(L) \), i.e., \(A \) is invertible. The case \(0 \in \sigma(L) \) requires additional considerations, and the corresponding changes will be indicated in a remark.

Lemma 1. If \(\lambda_k \in \mathbb{R} \cap \sigma(L) \) and \(\lambda_k \neq 0 \), then the canonical system (3) can be chosen so that

\[y_k^h = \varepsilon_k z_k^h, \quad h = 0, 1, \ldots, [p_k/2], \quad k = N_1, \ldots, N_2, \]

where \([p]\) is the integer part of a number \(p \), and \(\varepsilon_k = \pm 1 \).

Proof. It was proved in [2] that canonical systems satisfying (5) for \(0 \leq h \leq p_k \) can be chosen in the case where \(B = B^* \). But \(y_k^h \in \text{Ker}(B^* - B) \) for \(h \leq [p_k/2] \) by Lemma 4 in [3], i.e., the chains (3) of the pencil \(L(\lambda) \) corresponding to an EV \(\lambda_k \in \mathbb{R} \) coincide for \(h \leq [p_k/2] \) with the corresponding chains of the pencil \(L_R(\lambda) = A + \lambda B_R + \lambda^2 C \), where \(B_R = (B^* + B)/2 \). Lemma 12 follows from this.

Canonical systems corresponding to an EV \(\lambda_k \in \mathbb{R} \) and having the properties indicated in Lemma 1 are said to be normal. It is assumed everywhere below that normal canonical systems correspond to real EV’s.
Denote by Λ the set of pairs (k, h), $0 \leq h \leq p_k$, of numbers used to label the elements y^k_h of all chains (3) of the pencil $L(\lambda)$. The collection of pairs $(k, h) \in \Lambda$ of indices such that $\text{Im } \lambda_k > 0$ (< 0) is denoted by Λ^+ (Λ^-). We also introduce the subsets Λ^+_R, $\Lambda^-_R \subset \Lambda$ of pairs of indices which label the part of the EAE’s corresponding to EV’s $\lambda_k \in \mathbb{R}$. It will be assumed that $(k, h) \in \Lambda^+_R$ (Λ^-_R) if $\text{Im } \lambda_k = 0$ and $0 \leq h \leq \nu^+_k (\nu^-_k)$, where

$$
\nu^+_k (\nu^-_k) = \begin{cases}
 l_k & \text{if } p_k = 2l_k + 1 \text{ or } p_k = 2l_k \text{ and } \lambda_k \varepsilon_k > 0 < (0), \\
 l_k - 1 & \text{if } p_k = 2l_k \text{ and } \lambda_k \varepsilon_k < 0 > (0).
\end{cases}
$$

In the Hilbert space $\mathcal{H}^2 = \mathcal{H} \oplus \mathcal{H}$ we consider the elements $y^h_k = (y^h_k, \lambda_k y^h_k + y^{h-1}_k)$, the derived chains in the Keldysh sense, constructed from the chains of EAE’s (3) of $L(\lambda)$ (it is assumed that $y^{h-1}_k = 0$ if $h = 0$; the elements of the space \mathcal{H}^2 are denoted by boldface letters in contrast to the elements of \mathcal{H}). We represent the operators A and C in the form $A = A_+ - A_-$ and $C = C_+ - C_-$, where A_+, A_- and C_+, C_- are nonnegative operators such that $A_+ A_- = 0$ and $C_+ C_- = 0$. We consider the operators

$$
\mathcal{T}_\pm \left(\begin{array}{cc} A^{1/2}_\pm & 0 \\
0 & C^{1/2}_\pm \end{array} \right)
$$

acting in \mathcal{H}^2, and we denote by \mathcal{H}^2_\pm the closures of their ranges in \mathcal{H}^2. Obviously, $\mathcal{H}^2_\pm = \text{Im } A^\mp \oplus \text{Im } C^\mp$.

Finally, we define the systems which make up the object of investigation in this note:

$\mathcal{Y}^\pm = \{ \mathcal{T}_\pm y^h_k \}$, where $(k, h) \in \Lambda^+ \cup \Lambda^+_R$;

$\mathcal{L}^\pm = \{ \mathcal{T}_\pm y^h_k \}$, where $(k, h) \in \Lambda^- \cup \Lambda^-_R$.

Theorem 1. Suppose that the pencil $L(\lambda)$ is given by (1) and that $B_J \geq 0$ (≤ 0).

Then the systems \mathcal{Y}^- and \mathcal{Z}^+ (\mathcal{Z}^- and \mathcal{Y}^+) are minimal in the respective spaces \mathcal{H}^2_- and \mathcal{H}^2_+.

The proof can be obtained from a result in [3] which is a generalization of minimality theorems obtained previously in [2], where Theorem 1 was proved for $A > 0$ and $B = B^*$. In turn, [2] was preceded by [4]–[6]. We give another proof of Theorem 1 which is much shorter and, on the other hand, clears up the essence of the matter. For definiteness we consider a system \mathcal{Y}^- and assume that $B_J \geq 0$.

Step 1. Consider the operators

$$
\mathcal{G} = \begin{pmatrix} A & 0 \\
0 & -C \end{pmatrix}, \quad \mathcal{H} = \begin{pmatrix} B & C \\
C & 0 \end{pmatrix}, \quad \mathcal{L} = \begin{pmatrix} A^{-1}B & A^{-1}C \\
-I & 0 \end{pmatrix}
$$

acting in \mathcal{H}^2, where I is the identity operator on \mathcal{H}. Obviously, the derived chains in the Keldysh sense y^h_k, \ldots, y^p_k constructed from the chains (3) are EAE’s of the operator \mathcal{L} corresponding to the EV $\mu_k = -\lambda^{-1}_k$ (these chains are also EAE’s of the linear pencil $\mathcal{G} + \lambda \mathcal{H}$ corresponding to the EV λ_k). It is also obvious that the operator \mathcal{L} is \mathcal{G}-dissipative, i.e., $\text{Im } (\mathcal{G} \mathcal{L} y, y) \geq 0$ for all $y \in \mathcal{H}^2$. But then (see Proposition 10° in [7]) we have that

$$
(\mathcal{G} y, y) \geq 0 \quad \text{if } y = \sum \epsilon^h_k y^h_k, \quad (k, h) \in \Lambda^+;
$$

here the sum is finite and the summation is over the indices $(k, h) \in \Lambda^+$.

Step 2. For EAE’s of the linear pencil $I + \lambda \mathcal{L}$ (or for EAE’s of the pencil $\mathcal{G} + \lambda \mathcal{H}$ in the space $\mathcal{H} \oplus \text{Im } C$) the biorthogonality relations (1) take the form

$$
y^{h}_k, \lambda^{*} z^{s}_{m} = \delta_{k,m} \delta_{h,p_m-s},
$$

from which, using the equalities $(\mathcal{G} + \lambda_m \mathcal{H}^*) z^s_m + \lambda^{*} z^{s-1}_m = 0$, we get

$$
(\mathcal{G} y^h_k, z^s_m - \lambda^{-1}_m z^{s-1}_m + \ldots + (-1)^s \lambda^{-s}_m z^0_m) = -\lambda^{-1}_m \delta_{k,m} \delta_{h,p_m-s}.
$$
Here $z_k^0, \ldots, z_k^{p_k}$ are the chains of EAE’s of the pencil $I + \lambda L^*$ that are conjugate to the chains $y_k^0, \ldots, y_k^{p_k}$. Here it turns out that the chains of elements $\lambda_k^2 z_k^0, \ldots, \lambda_k^2 z_k^{p_k}$ are the derived chains in the Keldysh sense constructed from the chains (4). This can be obtained along the same lines as in [8] and [10]. Suppose that $(m, s) \in \Lambda^*_R$, and let $(k, h) \in \Lambda^+ \cup \Lambda^*_R$. By Lemma 1 and (9),

$$
(G y_k^h, y_m^s) = \begin{cases}
0 & \text{if } k \neq 0 \text{ or } k = m, \text{ but } h + s < p_k, \\
-\varepsilon_k \lambda_k & \text{if } k = m \text{ and } h = s = [p_k/2].
\end{cases}
$$

It follows from (7), (10), and the definition of the set Λ^*_R of index pairs that

$$
(G y, y) \geq 0 \quad \text{if } y = \sum c_k^h y_k^h, \quad (k, h) \in \Lambda^+ \cup \Lambda^*_R.
$$

Step 3. Since $(G y, y) = ||\mathcal{F}_- y||^2 - ||\mathcal{F}_+ y||^2$, (11) implies the estimate $||\mathcal{F}_- y||^2 \geq ||\mathcal{F}_+ y||^2$. Let $\mathcal{F} = \mathcal{F}_+ - \mathcal{F}_-$; then

$$
\sqrt{2} ||\mathcal{F}_- y|| \geq ||\mathcal{F} y|| \geq ||\mathcal{F}||^{-1} ||\mathcal{F}^2 y|| = ||\mathcal{F}|| y.
$$

If $\{e_k\}$ is a minimal system in the Hilbert space \mathcal{L}, and the system $\{f_k\} \in \mathcal{L}$ is such that for any finite sequence $\{c_k\}$ of numbers we have the estimate $||\sum c_k f_k||_\mathcal{L} \geq \delta ||\sum c_k e_k||_\mathcal{L}$, $\delta > 0$, then the system $\{f_k\}$ is obviously also minimal in \mathcal{L}. By (9), the system $\{G y_k^h\}$ is minimal in \mathcal{F}^2; therefore, (12) implies that the system $\mathcal{Y}^- = \{\mathcal{F}_- y_k^h\}$ is minimal in the space $\mathcal{F}^2 \subset \mathcal{F}^2$. Theorem 1 is proved.

We now give two theorems on completeness of the systems \mathcal{Y}^\pm and \mathcal{Z}^\pm. The theorems differ both in the methods of proof and in the conditions on the resolvent. The ideas for proving them represent a development of ideas in [2] and [8].

Theorem 2. Suppose that the pencil $L(\lambda)$ is given by (1), $B_J \geq 0 \leq 0$, and the following conditions hold (v_0, v_1, w_0, w_1 and w_1 are arbitrary fixed elements of \mathcal{F}):

a) If the function $L^{-1}(\lambda)[A^{1/2}_- v_0 + \lambda C^{1/2}_+ v_1], w_0 + \lambda w_1$ is holomorphic outside some disk, then the principal part of its Laurent expansion at ∞ is a polynomial of order at most N (N is arbitrary, but is independent of v_0 and v_1).

b) There exists a sequence of points $\lambda_n \to \infty$ such that

$$
(L^{-1}(\lambda)[A_- w_0 + \lambda C^{1/2}_+ v_1], A_+ v_0 + \lambda C^{1/2}_- v_1) \to 0 \quad \text{as } \lambda = \lambda_n \to \infty.
$$

Then the system $\mathcal{Y}^- (\mathcal{Z}^-)$ is complete in \mathcal{F}^2. If conditions a) and b) are satisfied when the signs “$+$” and “$-$” are interchanged, then the system $\mathcal{Y}^+ (\mathcal{Z}^+)$ is complete in \mathcal{F}^2.

Proof. Assume that $B_J \geq 0$, and consider the system \mathcal{Y}^-. By Theorem 1, there is a system $w^s_m = (w^s_{0,m}, w^s_{1,m})$ such that

$$
(A^{1/2}_- z_k^h, w^s_{0,m}) + (C^{1/2}_+ [\lambda_k z_k^h + z_k^{h-1}], w^s_{1,m}) = (\mathcal{F}_+ z_k^h, w^s_m) = \delta_{k,m} \delta_{s,h}, \quad (k, h) \in \Lambda^- \cup \Lambda^*_R
$$

(here we use the fact that the system $\{\mathcal{F}_+ z_k^h\}, (k, h) \in \Lambda^- \cup \Lambda^*_R$, coincides with the system \mathcal{Y}^+ for the pencil $L^*(\lambda)$).

Assume that the element $v = (v_0, v_1) \in \mathcal{F}^2$ is orthogonal to the system \mathcal{Y}^-, i.e., for all $(k, h) \in \Lambda^+ \cup \Lambda^*_R$ we have

$$
(v_0, A^{1/2}_- y_k^h + (v_1, C^{1/2}_- [\lambda_k y_k^h] + y_k^{h-1}) = (v, \mathcal{F}_- y_k^h) = 0.
$$

We consider the functions

$$
\Phi^s_m(\lambda) = \lambda^{-1}(L^{-1}(\lambda))^{*}[A^{1/2}_+ v_0 + \lambda C^{1/2}_- v_1], A^{1/2}_- w^s_{0,m} + C^{1/2}_+ w^s_{1,m}).
$$

904
Then $\lambda = 0$ is regular for this function, because $A^{1/2}AA^{1/2} = 0$. It follows from (2) that the principal part of the expansion of $\Phi_m^s(\lambda)$ in a neighborhood of the pole $\lambda = \bar{\lambda}_k$ has the form

$$
\lambda_k^{-1} \sum_{k=N_1}^{N_2} \sum_{h=0}^{p_k} \frac{(v, \mathcal{F}_+ y^k_h)(\mathcal{F}_+ z^k_h, w^s_m) + \cdots + (v, \mathcal{F}_- y^h_k)(\mathcal{F}_- z^h_k, w^s_m)}{(\lambda - \bar{\lambda}_k)^{p_k+1-h}}.
$$

The equalities (14) and (15), the form of the principal part (16) of $\Phi_m^s(\lambda)$ at the poles, and the definition of the sets Λ^\pm_R and Λ^\pm (it is also taken into account that the canonical systems (3) corresponding to the EV $\lambda_k \in R$ are chosen to be normal) give us that $\Phi_m^s(\lambda)$ has a unique pole $\lambda = \bar{\lambda}_m$. Im $\lambda_m \geq 0$. Suppose that Im $\lambda_m > 0$. Letting $s = p_m$ and using (14), we find that $\Phi_m^p(\lambda)$ has a simple pole at the point $\lambda = \bar{\lambda}_m$, and the residue at this pole is $a_m = \bar{\lambda}_m^{-1}(v, \mathcal{F}_- y^0_m)$. We then have that $\Phi_m^p(\lambda) = P_N(\lambda) + o(\lambda - \bar{\lambda}_m)^{-1}$ from condition a) of the theorem, where $P_N(\lambda)$ is a polynomial, and we get that $\Phi_m^p(\lambda) \equiv 0$ from the condition b). Consequently, $(v, \mathcal{F}_- y^0_m) = 0$. If we now set $s = p_m - 1$, then the last equality gives us that $(v, \mathcal{F}_- y^1_m) = 0$. Repeating the same procedure step by step, we get that

$$
(v, \mathcal{F}_- y^h_m) = 0, \quad h = 0, 1, \ldots, p_m.
$$

If Im $\lambda_m = 0$, then, by (15), (17) is valid for $h \leq \nu_m$. Considering the functions $\Phi_m^s(\lambda)$ successively for $s = \nu_m^+, \nu_m^+ - 1, \ldots, 0$, just as before, we get (17) for $h = \nu_m^- + 1, \ldots, p_m$. But then the vector-valued function

$$
\Phi(\lambda) = [L^{-1}(\bar{\lambda})]^*(A^{1/2}_+ \nu_0 + \lambda C^{1/2}_+ v_1)
$$

is entire, and it follows from a) that $\Phi(\lambda)$ is a polynomial. Applying the operator $L^*(\lambda)$ to $\Phi(\lambda)$ and comparing both sides of the equality, we get that $v_0 = v_1 = 0$. This proves Theorem 2.

Theorem 3. Suppose that the pencil $L(\lambda)$ is given by (1), $B_J \geq 0$ (≤ 0), and there exists a $q > 0$ such that the following conditions hold $(v = (v_0, v_1) \in \mathfrak{F}^2)$.

c) For any $\varepsilon > 0$ there is a sequence of semicircles $C_n = \{\lambda: |\lambda| = r_n, \text{Im} \lambda \geq 0 \leq 0\}$, $r_n \to \infty$, on which the function

$$
\Psi(\lambda) = [(L^{-1}(\lambda))^*[A^{1/2}_- v_0 + \lambda C^{1/2}_- v_1], A^{1/2}_- v_0 + \lambda C^{1/2}_+ v_1]
$$

admits the estimate $|\Psi(\lambda)| \leq M(\varepsilon) \exp \varepsilon|\lambda|^q$.

d) If the function $\Psi(\lambda)$ is holomorphic in the upper (lower) half-plane, then $\Psi(\lambda) - ||v_1||^2 \to 0$ as $\lambda \to \infty$, $\lambda \in \Omega_q (\Omega_q)$, where $\Omega_q = \{\lambda: \pi/2q' \leq \arg \lambda \leq \pi(1 - 1/2q')\}$, $q' = \max(1, q)$. Moreover, if $q \geq 1$, then there is a number $p > q$ such that $|\Psi(\lambda)| \leq M(\varepsilon) \exp \varepsilon|\lambda|^q$ for $\lambda \in \Omega_p$ and for any $\varepsilon > 0$.

Then the system $\mathcal{Y}^-(Z^-)$ is complete in the space \mathfrak{F}^2_Ω. The theorem remains true if the signs "-" and "+" are interchanged.

Proof. Suppose that $B_J \geq 0$ and the element $v = (v_0, v_1) \in \mathfrak{F}^2_\Omega$ is orthogonal to the system \mathcal{Y}^-. Then the function $\chi(\lambda) = \lambda^{-1}(\Psi(\lambda) - ||v_1||^2)$ is holomorphic in the upper half-plane, and can have only simple poles with residues $a_k \leq 0$ at the points $\lambda_k \in R$; furthermore, the residue at zero is $a_0 = -(||A^{1/2}_- v_0||^2 + ||v_1||^2) < 0$ (this follows from Lemma 1 and arguments in [2]). Since $\Psi(\lambda) = (L(\lambda)g(\lambda), g(\lambda))$, where $g(\lambda) = L^{-1}(\lambda)[A^{1/2}_- v_0 + \lambda C^{1/2}_+ v_1]$, it follows that

$$
\text{Im} \chi(\lambda) \geq 0 \quad \text{for} \quad \lambda \in R, \quad \lambda \neq \lambda_k.
$$

For $t > 0$ we consider the function

$$
u_{in}(t) = \int_{t_k} e^{-\lambda t_k} \chi(\lambda) d\lambda + \int_{t_k} e^{-(\lambda) t_k} \chi(\lambda) d\lambda,
$$

905
where l_n^+ and l_n^- are parts of the contour (see Figure 1) consisting of segments of the positive and negative rays and segments of circles of small radii δ_m about the points λ_m. Let the functions $u_{C_n}(t)$ be defined just as in (19), but let l_n^+ and l_n^- be replaced by segments of the semicircles C_n^+ and C_n^-. Similarly, define functions $u_{\omega_n}(t)$ and $u_\delta(t)$ by replacing l_n^+ and l_n^- in (19) by segments of the rays ω_q^+ and ω_q^- directed along the sides of the angle Ω_q and, respectively, by segments of arcs of the semicircle $\gamma_{\delta_0} = \{ \lambda : |\lambda| = \delta_0, \text{Im} \lambda \geq 0 \}$. For an appropriate choice of the direction of integration we have

$$ u_{l_n}(t) + u_{C_n}(t) + u_{\omega_n}(t) + u_\delta(t) = 0. \quad (20) $$

Using arguments in Lemma 1.3 of [2], we get that $u_{\omega_n}(t) + u_\delta(t) = -i\pi a_0 + o(1)$ as $t \to +0$ and $\delta_0 \to 0$ independently of n.\(^{(1)}\) It follows from condition d) that $\chi(\lambda) \exp -\lambda^2 t \to 0$ as $\lambda \to \infty$ on the rays ω_q^+ and ω_q^-. We then conclude from the Phragmèn-Lindelöf principle (see [9], Chapter I) that $\chi(\lambda) \exp -\lambda^2 t \to 0$ uniformly in the sector bounded by these rays. The Jordan lemma and condition c) give us that $u_{C_n}(t) \to 0$ as $n \to \infty$. Finally, letting δ_m go to 0 and considering the imaginary part of (20), we get from (18) that $a_0 + \sum a_m + \rho_n = o(1)$ ($\rho_n \leq 0$), which implies that $a_0 = 0$, i.e., $v_0 = v_1 = 0$. Theorem 3 is proved.

Remark 1. If $0 \in \sigma(L)$, i.e., Ker $A \neq 0$, then all three theorems remain true, but the definitions of the sets Λ_R^+ and Λ_R^- must be changed by analogy with [3]. Namely, the index pairs (k, h) such that $\lambda_k = 0$ go into $\Lambda_R^+ \setminus (\Lambda_R^-)$ if $0 \leq h \leq \kappa_k^+$ (κ_k^-), where

$$ \kappa_k^+ (\kappa_k^-) = \begin{cases} l_k & \text{if } p_k = 2l_k \text{ or } p_k = 2l_k - 1 \text{ and } \varepsilon_k > 0 \, (0) , \\ l_k - 1 & \text{if } p_k = 2l_k - 1 \text{ and } \varepsilon_k < 0 \, (0) . \end{cases} $$

The selection of index pairs (k, h) such that $\lambda_k \neq 0$ remains as before. The changes in the proofs of the completeness theorems are very obvious. To prove Theorem 1 it is necessary to observe two facts in addition: 1) for $\lambda_m = 0$ the relations (8) take the form $(G y_k^h, z_{m+1}^{s+1}) = -\delta_{k,m} \delta_{h,p_m-s}$, and 2) the inequalities (7) remain in force. Indeed, if \mathcal{P} is the orthogonal projection of \mathcal{H}_2 onto the linear span of the elements $\{ y_k^h \}$, $(k, h) \in \Lambda^+$, then the domains of the operators $G \mathcal{P}$ and $\mathcal{H} \mathcal{P}$ coincide. Therefore, the operator $(G \mathcal{P})^{-1} \mathcal{H} \mathcal{P}$, which is $\mathcal{P} G \mathcal{P}$-dissipative, is defined in \mathcal{H}_2, and (7) follows from Proposition 10\(^2\) in [7].

The author thanks Professor A. G. Kostyuchenko for a discussion of this work.

Moscow State University

Received 26/FEB/85

BIBLIOGRAPHY

\(^{(1)}\) Under our weaker assumptions this estimate must be carried out more subtly than in [2].

Translated by H. H. MCFADEN