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Chapter 1

Interest

1.1 The effective rate of interest

The notion of interest arises in the following simple situation (see figure 1.1).

Figure 1.1:
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Assume that at time t0 a person, organization (the lender) gives some amount
of money P (we will refer to this as a principal) to other person, organization
(the borrower) and both parties agree that the loan must be paid off in some
period of time h, i.e. at time t1 = t0 +h. In other applications we may say that
a customer deposits some money into his savings account, or an investor invests
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6 CHAPTER 1. INTEREST

his capital/buys some securities, etc.
It is generally accepted that the lender should receive an amount A (accu-

mulation) which is greater than P . The additional amount I = A − P (the
interest) is a reward to the lender for the use of his capital. The addition of
interest to the principal is called compounding.

The interest is usually expressed in relative terms as a ratio i = I
P . This ratio

is said to be the rate of interest or the effective rate of interest to distinguish
from the nominal rates of interest which will be introduced later. Sometimes
the rate of interest is called the rate of return.

In finance rates of interest are usually expressed as a percentage rather than
a common or decimal fraction. However, to perform calculations it is necessary
to transform a percentage in a fraction.

Since the accumulation A can be any positive number, greater than the
principle P , the rate of interest can take any value i > 0. It is possible that the
accumulation equals the principle. In this case the interest I = A − P equals
0. Correspondingly, the rate of interest is i = I

P = 0. Moreover, in many cases
financial losses are possible. It means, that ”the accumulation” is less than the
principle. Correspondingly the rate of interest i = A−P

P is negative. However,
since A ≥ 0 this number is always greater than (or equal to) −P

P = −1. The
case i = −1 means that the accumulation is 0, i.e. the principle is lost. If we
assume that ”the accumulation” can be negative (which means that finally, as
the result of the transaction, the lender owes money to the borrower), then the
rate of interest can take the value less than −1. However, sensible theory can
be developed only if will consider the rates of interest i greater than −1.

The definition of the interest rate can be rewritten in the following form:

I = iP,

so that the total amount to be paid to the lender is

A = P + I = P + iP = P · (1 + i). (1.1)

The coefficient k = 1 + i is called accumulation factor.
To draw the importance of the interval [t0, t1], the rate of interest is said to

be the effective rate of interest for this interval.
Usually 1 year is considered as the basic unit of time and correspondingly

usually annual interest rates are used to describe profitability of financial oper-
ations.

Amounts of money are measured by integer numbers of pounds and pence
(or dollars and cents, etc.) But even if the amount P is expressed by an integer
number and the rate of interest i by an integer number or by a decimal fraction,
the accumulation A calculated with the help of equation (1.1) is not necessary
an integer number. Say, if P = £147, i = 3.5%, then A = £152.145, i.e. 152
pounds, 14 pence and a half of a penny (which does not exist). In more complex
financial calculation the amounts can be irrational real numbers. In such cases it
is generally accepted in commercial practice that the amount is rounded down
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to integer number of pence. In theoretical considerations it is convenient to
assume that amounts of money can take any real value.

The rates of interest which are used in majority of actuarial calculations in
insurance, are determined based on conservative assumptions about profitability
of future investments of the insurance company. These rates are considerably
lower real interest rates offered by financial market. The function of the interest
rates in actuarial calculations is to take into account the time value of money
which are paid as a price for insurance cover. To draw this fact, in the actuarial
mathematics the rate of interest used in actuarial calculations is often said to be
technical or actuarial rate of interest. As a matter of fact insurance companies
earn much higher interest; moreover it is one of the most important sources of
income for them.

1.2 The real rate of interest

If inflation in economy should be taken into account, then the interest rate is said
to be the money (or, sometimes, nominal) interest rate and inflation adjusted
interest rate is said to be the real interest rate.

Let (real or projected) rate of inflation over the year is f . Then amount of
money A(1 + f) at the end of the year has the same purchase power as amount
A in the beginning of the year, or, to put this in another words, the amount
A′ = A(1 + f) at the end of the year and amount A = A′

1+f in the beginning of
the year are equivalent.

If i is the effective rate of interest for one year deposit of P , then the nominal
(i.e. money) accumulation is A = P (1 + i). But this accumulation is due at
the end of the year. If it is measured in money at the beginning of the year,
then this amount is equivalent to A

1+f , i.e. the inflation adjusted interest is
A

1+f − P = P (i−f)
1+f . Correspondingly, the inflation adjusted rate of interest is

i−f
1+f . Since f usually is relatively small, i−f

1+f ≈ i − f , i.e. to calculate the real
rate of interest one should subtract the rate of inflation from the effective rate
of interest.

1.3 The simple and compound interest

Assume that the principal P can be invested into two successive intervals: [t0, t1]
and [t1, t2]; let i1 and i2 be the effective rates of interest for these intervals and
k1 = 1 + i1, k2 = 1 + i2 the corresponding accumulation factors.

There are two principles to calculate the total interest (or equivalently, the
accumulation) over the joint interval [t0, t2].

The principle of simple interest

According to this principle, only the principal earns the interest. Thus, the total
interest is I1 + I2 = Pi1 + Pi2 and the accumulation is A = P + Pi1 + Pi2.
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Correspondingly, the total rate of interest is the sum i1+i2 and the accumulation
factor is k = k1 + k2 − 1.

If the principal P is invested under simple interest into n successive
intervals:

[t0, t1], [t1, t2], . . . , [tn−1, tn]

and i1, i2, . . . , in be the effective rates of interest for these intervals, then the
amount to be paid off at time tn is

A = P + Pi1 + Pi2 + · · ·+ Pin. (1.2)

This amount is the accumulation at time tn of an investment of the principal P
at time t0 under the simple interest.

If all intervals
[t0, t1], [t1, t2], . . . , [tn−1, tn]

have the same length (without loss of generality we can assume that the common
length is 1) and the effective rates of interests over these intervals are identical
(i1 = i2 = · · · = in ≡ i), then equation (1.2) becomes:

A = P + Pin. (1.3)

Equation (1.5) is used even if n is not integer.

The principle of compound interest

According to this principle, the interest earned during the first period of time
is added to the principal and thus can earn further interest during the second
period of time. Thus, by the end of the second interval the accumulation is
A = P (1+ i1)(1+ i2). Correspondingly, the interest is A−P = P (i1 + i2 + i1i2),
so that the effective rate of interest for the period [t0, t2] is i = i1 + i2 + i1i2 and
the accumulation factor is k = k1k2.

If the principal P is invested under compound interest into n successive
intervals:

[t0, t1], [t1, t2], . . . , [tn−1, tn]

and i1, i2, . . . , in be the effective rates of interest for these intervals, then the
amount to be paid off at time tn is

A = P (1 + i1)(1 + i2) . . . (1 + in). (1.4)

This amount is the accumulation at time tn of an investment of the principal P
at time t0.

If ik > 0 then during the interval [tk−1, tk] the accumulation grows, if ik =
0 then during the interval [tk−1, tk] the accumulation does not change and if
−1 < ik < 0 then during the interval [tk−1, tk] the accumulation decreases.

If all intervals
[t0, t1], [t1, t2], . . . , [tn−1, tn]
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have the same length (without loss of generality we can assume that the common
length is 1) and the effective rates of interests over these intervals are identical
(i1 = i2 = · · · = in ≡ i), then equation (1.4) becomes:

A = P (1 + i)n ≡ Pkn, (1.5)

where k = 1 + i is the accumulation factor.
It can be shown that equation (1.5) must be used even if n is not integer.
In actuarial calculations it is always assumed that the time value of money

is estimated with the help of equation (1.5) (which expresses the principle of
compound interest) even if n is not integer. So we will do later on unless
otherwise stated.

1.4 The force of interest

Consider again equation (1.4). It yields that to calculate the accumulation over
the period [t0, tn] it is necessary to perform a multiplication. It is not a problem
at all even with the help a simple calculator. Modern software, say Microsoft Ex-
cel, further simplifies many financial calculations. To calculate the accumulation
given by equation (1.4) with the help of Microsoft Excel one can use the func-
tion =FVSCHEDULE. For example, if the principal P = 180 is invested for 3
years and the rates of interest are 3%, 5%, 2% correspondingly, then to find the
accumulation A = P (1+i1)(1+i2)(1+i3) = 180·1.03·1.05·1.02 it is necessary to
enter in a cell, say A1, the formula =FVSCHEDULE(180,{0.03,0.05,0.02})
and then press Enter. Immediately after this in the cell A1 we will see the re-
sult: 198.5634.

As the equation (1.4) is very simple, the same result can be obtained with
the help of the formula =180*1.03*1.05*1.02.

However without calculator calculation of the value

A = 180 · 1.03 · 1.05 · 1.02 = 198.5634

a relatively difficult task. Now we cannot even imagine how to perform calcu-
lations without a calculator, but a few decades ago scientists, engineers and all
the more students did not have these electronic instruments.

To simplify calculations which involves multiplications (as well as divisions,
powers, roots) mathematicians developed (as early as in the beginning of 17th
century) the method of logarithms, tables of logarithms and shortly after that
the slide rule, which as a matter of fact is a mechanical analog computer. The
tables of logarithms and slide rules were widely used till the mid of 1970’s.
Even modern textbooks on actuarial and financial mathematics contain tables
for values of various widely used expressions, such as 1−(1+i)−n

i .
To calculate the accumulation, given by equation (1.4), with the help of the

slide rule (or the table of logarithms) it is necessary to rewrite it as follows:

ln A = ln P + ln(1 + i1) + ln(1 + i2) + · · ·+ ln(1 + in), (1.6)
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then calculate all logarithms in the right-hand side and sum them. This will
give us a value of ln A: ln A = V . And finally, again with the help of either the
slide rule or the table of logarithms it is necessary to find A.

To simplify (at least partially) this process it is more convenient to use
quantities δk = ln(1 + ik) rather than the interest rates ik, k = 1, 2, . . . , n.

Then (1.4) becomes:
A = Peδ1+δ2+···+δn . (1.7)

Since the effective rate of interest can be expressed through the parameter
δ as i = eδ − 1, the parameter δ is just another (convenient) way to describe
the rate of interest. However, its real function reveals in continuous models of
financial mathematics.

Continuous models of financial mathematics

Let the effective rate of interest is constant. Consider the accumulation over pe-
riod [0, t], A = P (1+i)t, as a function of time, assuming that time is continuous,
i.e. can take any real value. Then the rate of the growth of the accumulation is
the derivative A′(t) = P (1 + i)t ln(1 + i) and the relative rate of the growth of
the accumulation is

A′(t)
A(t)

=
P (1 + i)t ln(1 + i)

P (1 + i)t
= ln(1 + i) = δ.

Taking this into account the quantity δ = ln(1+ i) is called the force of interest.
Now assume that in some investment project with the only initial investment

of the principle P at time t0 = 0 we know the dependence of the accumulation
on time, i.e. we know the function A(t) (which need not have the form A(t) =
(1 + i)t). Then, by definition the instantaneous force of interest at time t, δ(t),
is A′(t)

A(t) :

δ(t) =
A′(t)
A(t)

. (1.8)

In continuous models of financial mathematics it is usually assumed that the
force of interest δ(t) is given. In this case the definition (1.8) can be thought
as a differential equation for an unknown function A(t). This equation can be
easily solved; since A′(t)

A(t) = (ln A(t))′, equation (1.8) can be rewritten as

δ(t) = (ln A(t))′ ,

so that

ln A(t) = ln A(0) +
∫ t

0

δ(u)du ⇔ A(t) = A(0) exp
(∫ t

0

δ(u)du

)
.

Since A(0) = P , we finally have:

A(t) = P exp
(∫ t

0

δ(u)du

)
. (1.9)
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1.5 Nominal rates of interest

As we noted, usually in financial calculations 1 year is considered as the basic
unit of time. Typical value of the annual interest rate say for a 1-year fixed
term bank deposit could be a few percent.

However quite often investors deal with investment projects shorter than 1
year, say a lender can lend some amount to a borrower for 1 month only. In
this case the effective interest rate i∗ is relatively small, say 0.2%, which seems
not too attractive.

To present the effective interest rate i∗ for a short period of time of length h in
a more attractive way and simplify comparison of different investment projects,
in financial mathematics the profitability of an investment for a short period of
time of length h is usually described with the help of the scaled effective rate of
interest

i(h) =
i∗
h

. (1.10)

This rate is said to be the nominal rate of interest. The adjective ”nominal”
means that this rate is just a ”name” and does not exists in reality (as opposite
to the effective rate of interest i∗ which represents real income from investment).

If the basic unit of time is one year then the following values of h are of
special interest: h = 1

2 – half year, h = 1
4 – one quarter, h = 1

12 – one month,
h = 1

52 – one week, h = 1
365 – one day. For h = 1

p the nominal rate of interest is
denoted as i(p) and is said to be the nominal rate of interest payable (convertible)
pthly:

i(p) = pi∗. (1.11)

The effective rate of interest for this period is i
(p)
∗ = i(p)

p .
It should be noted that in the modern financial mathematics the profitability

of an investment project is described with the help of so called internal rate of
return (IRR). To define IRR, consider an auxiliary savings account with effective
annual rate of return i and assume that the deposit grows according to the
formula of compound interest, i.e. an investment of P for a period of length
t gives the accumulation A = P (1 + i)t. Then IRR is defined as such annual
effective rate of interest for this auxiliary savings account that the accumulation
at the account at the end of the period under consideration is identical to the
income from the investment project.

If i∗ is the effective interest rate for a short period of time of length h, then
i = IRR is calculated with the help of equation

(1 + i)h = 1 + i∗, (1.12)

i.e.
i = (1 + i∗)

1
h − 1. (1.13)

In particular, if h = 1
p , then i = IRR is given by the formula:

i =
(
1 + i

(p)
∗

)p

− 1.
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Like the nominal rate of interest, i = IRR is an ”equivalent” annual rate
of interest, but equivalent in the sense of compound interest rather than simple
interest (as is the case for the nominal rate of interest).

Equation (1.12) can be rewritten in an equivalent form as

ln(1 + i) =
ln(1 + i∗)

h
,

or introducing the corresponding forces of interest δ = ln(1 + i), δ = ln(1 + i∗),
as

δ =
δ∗
h

.

Thus the use of IRR as an ”equivalent” annual rate of interest means normalizing
of the effective force of interest, whereas the use of the conventional nominal
rate of interest i = i∗

h means normalizing of the effective rate of interest.
Eliminating i∗ from equations (1.10) and (1.13)we get a relation connecting

the nominal rate of interest and i = IRR:

i =
(
1 + hi(h)

) 1
h − 1 ⇔ i(h) =

(1 + i)h − 1
h

.

In particular, if h = 1
p we have:

i =
(

1 +
i(p)

p

)p

− 1 ⇔ i(p) = p
(
(1 + i)

1
p − 1

)
. (1.14)

Thus, if we are given the nominal rate of interest (and the number of periods
p) then we can calculate the corresponding IRR, and vice versa.

Microsoft Excel has two functions: NOMINAL and EFFECT, which allow to
make the calculations easier. Say, if we know monthly nominal rate of interest
i(12) = 5% then IRR can be calculated if we enter in a cell the following formula:
=EFFECT(0.05,12), and if the annual effective rate of interest IRR = 6%
then quarterly nominal rate of interest i(4) can be calculated if we enter in a
cell the following formula: =NOMINAL(0.06,4).

Now consider behavior of the nominal rate of interest i(p) as a function of
p with fixed value of the equivalent annual rate of interest i (which is given by
(1.14)).

Lets start with the following simple numerical example. Assume that the
effective annual rate of interest i is 20%, so that the force of interest is δ =
18.23%. With the help of (1.14) we can easily construct the table 1.1 for the
values of i(p) for p = 2, 4, 12, 52, 365 (these values of p correspond to a
half-year, a quarter, a month, a week, a day):

It is easy to see that as the parameter p grows, the nominal rate of interest
i(p) tends to the force of interest δ = 18.23%.

This result can be obtained in a general case if we calculate the limit

lim
p→∞

i(p) = lim
p→∞

p · (eδ/p − 1) = lim
p→∞

p ·
(

1 +
δ

p
+ o

(
1
p

)
− 1

)

= lim
p→∞

(δ + o(1)) = δ, (1.15)
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Table 1.1:
p i(p)

2 19.09%
4 18.65%
12 18.37%
52 18.26%
365 18.24%

Thus, if p is sufficiently large we can use an approximation

i(p) ≈ δ. (1.16)

The table 1.1 shows that the accuracy of this approximation is sufficiently good.
Say, even for p = 12 the relative error is less than 1%.

This result shows that the continuous model discussed in section 1.4 can be
used as an approximate way to describe the situation when the nominal rates
of interest change sufficiently often, say daily.

The approximation (1.16) can be improved if we take more terms in expan-
sion of the exponential function in the right hand side of (1.15). Say if we add
the term 1

p2 , we get:

i(p) = p ·
(

1 +
δ

p
+

δ2

2p2
+ o

(
1
p2

)
− 1

)
= δ +

δ2

2p
+ o

(
1
p

)
. (1.17)

Thus we can use the following approximation:

i(p) ≈ δ +
δ2

2p
. (1.18)

Table 1.2 contains exact values of the nominal rate of interest i(p) and the
approximate values calculated with the help of (1.18) in the case i = 20%.
It is easy to see that the accuracy is very high. The approximate values are

Table 1.2:
p i(p) i(p)

Exact Approximate

1 20% 19.89%
2 19.09% 19.06%
4 18.65% 18.65%
12 18.37% 18.37%

practically identical to the exact.
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Chapter 2

Time value of money

2.1 Present values

Opportunity to invest money to get some return means that the value of money
changes in the course of time. For example, if the effective annual rate of return
is i = 25%, then amount C = 500 now (at time t0 = 0) becomes 500(1+i) = 625
in one year (at time t1 = 1). On the other hand amount C = 500 now can be
obtained investing 500(1+ i)−1 = 400 a year ago (at time t2 = −1). To put this
in other words, if, for example, someone must pay us at time t0 = 0 amount
500, then we can agree to get amount 400 at time t = −1 (taking the trouble to
invest this amount we will get at time t0 = 0 amount 400·1.25 = 500). However,
at time t = 1 we have to require amount 625 (if at time t0 = 0 we got 500, then
investing this amount, at time t = 1 we would have 625).

Thus, amounts

• 400 at time t = −1

• 500 at time t = 0

• 625 at time t = +1

as a matter of fact are equivalent (under given rate of return i = 25%). This
result means that the value of money changes in the course of time.

Similar considerations show in a general case, for any t > 0, the value at
time t0 = 0 of amount C due at time t > 0 is C ′ = C · (1 + i)−t: if we invest
this amount at time t0 then at time t > 0 we will get amount C ′ · (1 + i)t =
C · (1 + i)−t · (1 + i)t = C.

If t < 0, then value at time t0 = 0 of amount C due at time t is accumulation
over the period of length −t, i.e. C · (1 + i)−t.

Thus, for any value of the sign of t the value (at time t0 = 0) of amount C
due at time t is

P (t) = C · (1 + i)−t. (2.1)

15
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The amount P (t) is said to be the present value (or the discounted value) of
amount C due at time t.

The present value of the unit sum, i.e. C = 1, is denoted as v(t) and is said
to be the discount function:

v(t) = (1 + i)−t. (2.2)

The variable v = (1 + i)−1 is said to be the discount factor. With its help we
can rewrite (2.1) in the form

P (t) = Cvt. (2.3)

The discount factor can be expressed in terms of the force of interest δ = ln(1+i)
as

v = e−δ,

so that the discount function is

v(t) = e−δt

and the present value P (t) is

P (t) = Ce−δt.

Since the origin of time can be take arbitrary, the value C1 at time t1 of
amount C2 due at time t2 is given by formula: C1 = C2v

t2−t1 . This yields that
C1v

t1 = C2v
t2 – this equation expresses equal value of both sums at time t0 = 0.

If the rate of interest used to evaluate the present value is assumed to be i1
for the first period of time (0, 1), i2 for the second period of time (1, 2), and so
on, then the above arguments yield that the present value (at time t0 = 0) of
amount C due at time t = n is

P (t) = C(1 + i1)−1(1 + i2)−1 . . . (1 + in)−1. (2.4)

Correspondingly, the present value of the unit sum, i.e. the discount function is

v(n) = (1 + i1)−1(1 + i2)−1 . . . (1 + in)−1. (2.5)

Thus the discount factor varies and for the period (k − 1, k) is vk = (1 + ik)−1.
With its help we can rewrite (2.4) in the form

P (n) = Cv1v2 . . . vn. (2.6)

The discount factor vk can be expressed in terms of the force of interest δk =
ln(1 + ik) as

vk = e−δk ,

so that the discount function is

v(n) = e−(δ1+δ2+···+δn)
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and the present value P (n) is

P (n) = Ce−(δ1+δ2+···+δn).

If time value of money is described with the help of the continuous model
discussed in section 1.4 (with the force of interest δ(t) as the main characteris-
tics), then the above arguments and equation (1.9) yield that the present value
(at time t0 = 0) of amount C due at time t is

P (t) = C exp
(
−

∫ t

0

δ(u)du

)
. (2.7)

Correspondingly, the present value of the unit sum, i.e. the discount function is

v(t) = exp
(
−

∫ t

0

δ(u)du

)
. (2.8)

2.2 The rate of discount

Assume that at time t0 = 0 a lender lends amount C for one year. Then at time
t = 1 a borrower have to return amount C(1 + i) = C + Ci, which consists of
the principal C and the interest I = Ci.

The interest Ci (due at time t = 1), at time t0 = 0 has the discounted value
Ci(1 + i)−1. Since amounts Ci(1 + i)−1 (at time t = 0) and Ci (at time t = 1)
are equivalent, both parties could agree that the interest is to be paid off in
advance, i.e. at time t0 = 0 of the deal. This discounted interest is a quota dC,
where d = i

1+i , of the loan amount C. The value d is said to be the effective
rate of discount.

The effective rate of discount d can be expressed in terms of both the force
of interest δ = ln(1 + i) and the discount factor v = 1

1+i :

d = 1− v = 1− e−δ. (2.9)

2.3 The nominal rate of discount

Now assume that a loan of amount C is made at time t = 0 at the annual rate
of interest i for the period of length 1

p with the interest payable in advance. As

we saw in section 1.5, the effective rate of interest is i
(p)
∗ = i(p)

p = (1 + i)
1
p − 1.

Thus the interest due at time t = 1
p is Ci

(p)
∗ . According to (2.1), the present

value of this amount at time t0 = 0 is Ci
(p)
∗ · (1 + i)−

1
p = C

(
1− (1 + i)−

1
p

)
.

Thus the discounted interest is a quota d
(p)
∗ C, where d

(p)
∗ = 1 − (1 + i)−

1
p , of

the loan amount C. The value d
(p)
∗ is said to be the effective rate of discount

per period 1
p .
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Since i = d
1−d , the effective rate of discount per period 1

p can be expressed
as

d
(p)
∗ = 1− (1− d)

1
p . (2.10)

Typically d
(p)
∗ is very low quantity. Taking this into account and simplify com-

parison of different investment projects, we introduce the scaled effective dis-
count rate

d(p) = p · d(p)
∗ . (2.11)

This rate is said to be the nominal rate of discount convertible pthly.
From (2.10) we can express the nominal rate of discount in terms of the

effective rate of discount d:

d(p) = p
(
1− (1− d)

1
p

)
. (2.12)

Similarly, we can express the nominal rate of discount in terms of the dis-
count factor v, the force of interest δ and the effective rate of interest i:

d(p) = p
(
1− v

1
p

)
= p

(
1− e−

δ
p

)
= p

(
1− (1 + i)−

1
p

)
. (2.13)

It should be noted that if (on the analogy with the basic definition of the

discount rate) we define the effective rate of discount for the period 1
p as i(p)

∗
1+i

(p)
∗

,
then

i
(p)
∗

1 + i
(p)
∗

=
i(p)

p + i(p)
=

p((1 + i)1/p − 1)
p + p((1 + i)1/p − 1)

=
(1 + i)1/p − 1

(1 + i)1/p
= 1− (1 + i)−1/p =

d(p)

p
= d

(p)
∗ .

Now consider behavior of the nominal rate of discount d(p) as a function of
p with fixed value of the equivalent annual rate of interest i (which is given by
(2.13)).

Lets start with the following simple numerical example. Assume that the
effective annual rate of interest i is 20%, so that the force of interest is δ =
18.23%. With the help of (2.13) we can easily construct the table 2.1 for the
values of d(p) for p = 2, 4, 12, 52, 365 (these values of p correspond to a
half-year, a quarter, a month, a week, a day).

It is easy to see that as the parameter p grows, the nominal rate of discount
d(p) tends to the force of interest δ = 18.23%.

This result can be obtained in a general case if we calculate the limit

lim
p→∞

d(p) = lim
p→∞

p · (1− e−δ/p) = lim
p→∞

p ·
(

1− 1 +
δ

p
+ o

(
1
p

))

= lim
p→∞

(δ + o(1)) = δ, (2.14)
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Table 2.1:
p d(p)

2 17.43%
4 17.82%
12 18.09%
52 18.20%
365 18.23%

Thus, if p is sufficiently large we can use an approximation

d(p) ≈ δ. (2.15)

The table 2.1 shows that the accuracy of this approximation is sufficiently good.
Say, even for p = 12 the relative error is less than 1%.

The approximation (2.15) can be improved if we take more terms in expan-
sion of the exponential function in the right hand side of (2.14). Say if we add
the term 1

p2 , we get:

d(p) = p ·
(

1− 1 +
δ

p
− δ2

2p2
+ o

(
1
p2

))
= δ − δ2

2p
+ o

(
1
p

)
. (2.16)

Thus we can use the following approximation:

d(p) ≈ δ − δ2

2p
. (2.17)

Table 2.2 contains exact values of the nominal rate of discount d(p) and the
approximate values calculated with the help of (2.17) in the case i = 20%.
It is easy to see that the accuracy is very high. The approximate values are

Table 2.2:
p d(p) d(p)

Exact Approximate

1 16.67% 16.57%
2 17.43% 17.40%
4 17.82% 17.82%
12 18.09% 18.09%

practically identical to the exact.

2.4 Valuing cash flows

Assume that a borrower must pay to a lender amount p1 = 400 at time t1 = 1
and amount p2 = 600 at time t2 = 2. Assume further that the borrower would
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like to repay his debts now (at time t0 = 0) and the lender agrees with this.
How much should the borrower pay?

If we calculate this amount as a simple algebraic sum p = p1+p2 = 1000, then
instead of to pay the debts immediately the borrower could deposit this amount
to a bank account which pays interest at some annual rate of interest i, for
simplicity of calculations assume that i = 25% = 1

4 and thus the accumulation
factor 1+ i = 5

4 . At time t1 = 1 this initial investment accumulates to 1000 · 54 =
1250. Then (according to the original agreement) at time t1 the borrower pays
to the lender amount 400 and the rest, i.e. 1250−400 = 850 invests for another
year. At time t2 = 1 this amount accumulates to 850 · 5

4 = 1062.50. Then
(according to the original agreement) at time t2 = 2 the borrower pays to the
lender amount 600 and the rest, i.e. 1062.50− 600 = 462.50 is his pure risk-free
income. Thus returning at time t0 = 0 a simple algebraic sum p = p1+p2 = 1000
of his debts the borrower overpays to the lender.

Taking these considerations into account, lets try to calculate the ”fair”
amount p the borrower should pay now.

As in the above example assume that sum p is invested at the annual rate
of interest i.

At time t1 = 1 this initial investment accumulates to p(1 + i)t1 . Then
(according to the original agreement) at time t1 the lender receives amount p1

and the rest, i.e. p(1 + i)t1 − p1 is invested for another year. At time t2 this
amount accumulates to (p(1 + i)t1 − p1)(1 + i)t2−t1 . Then (according to the
original agreement) at time t2 the lender receives amount p2, so that the rest is
b = (p(1 + i)t1 − p1)(1 + i)t2−t1 − p2.

If b > 0, then either the borrower or the lender (depending on which of them
will invest amount p) gets a risk-free income from the described deal.

If b < 0, i.e. p(1 + i)t2 < p1(1 + i)t2−t1 + p2, the lender should prefer
to get amounts p1 and p2 according to the original schedule, i.e. at times
t1 and t2 accordingly. In this case at time t2 he would have accumulation
p1(1 + i)t2−t1 + p2, which is greater than the total accumulation p(1 + i)t2 by
time t2 from investment of p at time t0 = 0. Thus in the case b < 0 the
requirement to pay amount p at time t0 = 0 is not fair with respect to the
lender.

Therefore, the fair solution to the problem is given by equation (p(1+ i)t1 −
p1)(1+ i)t2−t1 −p2 = 0, which means that neither party can gain. From this we
have:

p = p1(1 + i)−t1 + p2(1 + i)−t2 .

Thus the fair present value of the loan due at some times in future is algebraic
sum of the amounts p1 and p2 due, but with coefficients: (1 + i)−t1 = vt1 and
(1 + i)−t2 = vt2 accordingly. These coefficients are discount factors. Amount
p1v

t1 is the present value (at time t0 = 0) of amount p1 due at time t1 and
amount p2v

t2 is the present value (at time t0 = 0) of amount p2 due at time t2.
Returning to the specific example we started this section with, we have the

following scheme to calculate the fair amount to be paid at time t0 = 0.

• calculate the discount factor v = (1 + i)−1 = 4
5 ;
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• calculate the present values of amounts p1 = 400 (due at time t1 = 1) – it
is 400 · 4

5 = 320, and p2 = 600 (due at time t1 = 2) – it is 400 · ( 4
5

)2 = 384;

• calculate the present value of the debts as the sum of the present values:
320 + 384 = 704 – this is the amount to be returned at time t0.

This simple example shows that we can add (subtract, compare and perform
any other operations) sums of money only if all these amounts are considered
at the same epoch of time.

Microsoft Excel has a function NPV which allows to calculate the present
value p of a series of future payments of amounts p1, p2, . . . , pn at times t1 =
1, t2 = 2, . . . , tn = n.

The present value p of a series of n future payments of amounts p1, p2, . . . , pn

at times t1 = 1, t2 = 2, . . . , tn = n can be calculated with the help of a stan-
dard function NPV of Microsoft Excel. This is done by the formula =NPV(i,
p1, p2, . . . , pn). Say in the above example we must use the formula: =NPV(0.25,
400, 600). Alternatively we may enter the amounts p1 = 400, p2 = 600 in
cells, say A1, A2 and use the formula: =NPV(0.25, A1:A2).

2.5 The principle of equivalence

For applications to life insurance and pension schemes one of the most important
is the following problem. Assume that a person wishes to buy now (at time t0 =
0) a pension, which pays sums b1, b2, . . . , bn at times t1, t2, . . . , tn accordingly.
How much is the price a of this cover now, if the pension fund invests the
contribution a and guarantees return i per annum? Above-stated arguments
shows that a must be equal to the present value of the cash flow of benefits:

a = b1v
t1 + b2v

t2 + · · ·+ bnvtn . (2.18)

Indeed, if a is given by (2.18), then at time t1 the pension fund will have amount

a(1 + i)t1 = av−t1 = b1 + b2v
t2−t1 + · · ·+ bnvtn−t1 .

This will allow at time t1 pay the first benefit b1.
The rest a1 = b2v

t2−t1 + · · · + bnvtn−t1 at time t2, i.e. after time t2 − t1,
accumulates to

a1(1 + i)t2−t1 = a1v
−t2+t1 = b2 + b3v

t3−t2 + · · ·+ bnvtn−t2 .

This will allow at time t2 pay the second benefit b2, an so on.
After payment of (n− 1)th benefit at time tn−1 the fund will have amount

bnvtn−tn−1 . At time tn, i.e. after time tn − tn−1, this amount will grow to bn,
which will allow to pay the final benefit bn. This means that the formula (2.18)
is fair with respect to pension fund (as it is able to make all payments only from
the contribution a and subsequent accumulations). On the other hand after the
final payment the rest of the money paid by the member of the pension scheme
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is 0, which means that the formula (2.18) is fair with respect to the person
which bought the pension (as he did not overpay for the benefits).

The the right-hand side of (2.18) is the present value of all benefits and left-
hand side of (2.18) can be thought of as the present value of contributions to
the pension fund. Thus equation (2.18) expresses the principle of equivalence of
obligations of both parties.

In the problem we have just considered, it is assumed that the member of
the pension scheme pays the price a for the future benefits as a lump sum at
the time when he buys the cover. However usually contributions to the pension
scheme form a sequence of payments c1, ·, ck at some agreed times τ1, ·, τk.

The present value of all contributions to the pension fund is

aC = c1v
τ1 + ... + ckvτk ,

and the present value of all benefits is

aB = b1v
t1 + ... + bnvtn .

Thus according to the principle of equivalence, fair relation between contribu-
tions ci and benefits bi is given by the formula:

c1v
τ1 + ... + ckvτk = b1v

t1 + ... + bnvtn . (2.19)

To proof (2.19) consider the sequence of times

T1, T2, . . . , Tn+k,

when either the member pays his contribution or the pension fund pays benefits.
To put this in other words, join sequences

t1, t2, . . . , tn

and
τ1, τ2, . . . , τk. (2.20)

Let ui be the amount of payment made by the pension fund at time Ti. This
means, that if Ti = tj when a benefit bj is paid (for some j) then ui = bj . But
if if Ti = τj when a contribution cj is paid (for some j) then ui = −cj .

Then equation (2.21) can be rewritten as

u1v
T1 + ... + un+kvTn+k = 0. (2.21)

This relation has the same structure as (2.18). It is easy to see that arguments
used to prove relation (2.18) can be applied in the case when some of the values
bi are negative. In this case we consider them as contributions so that when the
assets of the fund at time ti changes from bi+bi+1v

ti+1−ti +... to bi+1v
ti+1−ti +...

it mean that the assets increases. Thus relation (2.21) states that the final
balance is 0.
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At some times Ti a negative balance is possible, which means that the mem-
ber owes pension fund. During corresponding intervals the debt grows according
to the formula of compound interest and later on this debt is paid by the the
future contributions. It should be noted that if the benefits are due after all
contributions have been paid this situation is not possible.
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Chapter 3

Deterministic annuities

3.1 Level annuities

3.1.1 Definitions

Consider a sequence of n consecutive unit intervals

(0, 1), . . . , (n− 1, n).

Usually, time t0 = 0 means now and the unit of time is one year, but equally as
the unit of time one quarter, months, etc. can be considered.

A series of n level payments, each of amount 1, made at the end of these
intervals, i.e. at times 1, 2, . . . , n, is said to be immediate annuity or annuity
payable in arrear.

This cash flow is shown on figure 3.1.

Figure 3.1:

-
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2 . . .

6

n− 1
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n

A series of n level payments, each of amount 1, made at the beginning of
these intervals, i.e. at times 0, 1, . . . , n− 1, is said to be annuity-due or annuity
payable in advance.

This cash flow is shown on figure 3.2.

3.1.2 The present values

The present value of the immediate annuity at time t0 = 0 is denoted by a
symbol an| and the present value of the annuity-due at time t0 = 0 is denoted
by a symbol än|).

25
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Figure 3.2:
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To calculate these values it is necessary to reduce each of n payments to the
present time t0 = 0 and then sum the present values:

an| = v + v2 + ... + vn, (3.1)

än| = 1 + v + v2 + ... + vn−1. (3.2)

Applying the formula for n terms of geometrical progression we have (if
v 6= 1, i.e. i 6= 0):

an| =
v − vn+1

1− v
=

v(1− vn)
1− v

=
1− vn

1/v − 1
=

1− vn

i
, (3.3)

än| =
1− vn

1− v
=

1− vn

d
. (3.4)

In the trivial case i = 0, when money do not change the value in a course of
time, obviously we have: an| = än| = n.

Besides it is convenient to define a0| and ä0| as 0. These definitions coordi-
nate with a common agreement that a sum which does not contain summands
equals 0.

It is clear from figures 3.1 and 3.2 that the difference between the immediate
annuity and annuity-due is connected with the choice of the origin of time: if
time t = 1 is taken as the origin then immediate annuity can be thought of as
an annuity-due. This observation can be expressed in algebraic form as follows:

an| = v(1 + v + · · ·+ vn−1) = vän|.

Relations (3.3) and (3.4) can be rewritten as follows:

ian| + vn = 1, (3.5)
dän| + vn = 1. (3.6)

Note that although (3.3) and (3.4) hold only for i 6= 0, relations (3.6) and (3.6)
hold for i = 0 as well.

In the form (3.6) and (3.6) formulas for the present values of annuities can
be proved with the help of the following ”financial” arguments.
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At time t0 = 0 deposit amount P = 1 to a saving account which pays interest
at the rate i per annum.

At time t1 = 1 we will have the accumulation P (1+ i) = 1+ i, which can be
divided into interest i and the principal. Withdraw the interest i and reinvest
the principal P = 1.

At time t2 = 2 we will have the accumulation P (1 + i) = 1 + i, which
can be divided into interest i and the principal. Withdraw the interest i and
reinvest the principal P = 1, and so on, till time tn when we stop the process
of reinvestment.

Thus investment of P = 1 at time t0 = 0 produces:

• a series of n payments, each of amount i, at the end of every unit interval,
i.e. immediate annuity; its value at time t0 = 0 is ian|.

• amount P = 1 at time tn = n; its value at time t0 = 0 is 1 · vn = vn.

By the principle of equivalence the value of the total at time t0 = 0 of the
income from the investment equals the amount invested. This equality is exactly
relation (3.5).

To prove (3.6), at time t0 = 0 deposit amount P = 1 to a saving account
which pays interest at the rate i per annum.

As opposite to the previous case, withdraw the interest in advance, i.e. with-
draw amount iv = d at time t0 = 0.

At time t1 = 1 we will have the same principal P = 1. Reinvest it and
withdraw the interest in advance, i.e. withdraw amount iv = d at time t1 = 1.

At time t2 = 2 we will have the same principal P = 1. Reinvest it and
withdraw the interest in advance, i.e. withdraw amount iv = d at time t2 = 2,
and so on, till time tn when we stop the process.

Thus investment of P = 1 at time t0 = 0 produces:

• a series of n payments, each of amount d, at the beginning of every unit
interval, i.e. annuity-due; its value at time t0 = 0 is dän|.

• amount P = 1 at time tn = n; its value at time t0 = 0 is 1 · vn = vn.

By the principle of equivalence the value of the total at time t0 = 0 of the
income from the investment equals the amount invested. This equality is exactly
relation (3.6).

Microsoft Excel has a function PV which allows to calculate the present value
of both the annuity-due and the immediate annuity. The present value of the
immediate annuity with n level payments of p evaluated at the rate of interest
i is calculated by the formula: =-PV(i, n, p, 0) and the present value of the
annuity-due with n level payments of p evaluated at the rate of interest i is
calculated by the formula: =-PV(i, n, p, 1) (note that the result of the use
of the function PV is negative because it represents money that you would pay
to get the annuity payments).
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3.1.3 Recursive relations

Directly from (3.1) and (3.2) we have:

an| = v + v(v + v2 + · · ·+ vn−1) = v + van−1|, (3.7)

än| = 1 + v + v2 + ... + vn−1 = 1 + vän−1|. (3.8)

Starting with a0| = 0 and ä0| = 0 these formulas allow to calculate recursively
the present values an| and än|.

3.1.4 Accumulations

Sometimes the value of an annuity at the end t = n of the final interval (n−1, n)
is of interest. This value can be thought of as the total amount accumulated
on a bank account after a series of a regular deposits, each of amount 1. It is
denoted similar to the present value, but the letter a is replaced by letter s.

Thus sn| is the value of the immediate annuity at time tn = n when the final
payment is made, and s̈n| is the value of the immediate annuity at the same
time tn = n (i.e. one unit of time after the final payment is made).

Formulas for the accumulations sn|, s̈n| can be obtained if we calculate the
value of each of n payments at time tn = n and then sum all these values.
Applying the formula for n terms of geometrical progression we have (if v 6= 1,
i.e. i 6= 0):

sn| = (1 + i)n−1 + ... + 1 =
(1 + i)n − 1

i
, (3.9)

s̈n| = (1 + i)n + ... + (1 + i) =
(1 + i)n+1 − (1 + i)

i

=
(1 + i)n − 1

i/(1 + i)
=

(1 + i)n − 1
d

. (3.10)

In the trivial case i = 0, when money do not change the value in a course of
time, obviously we have: sn| = s̈n| = n.

Formulas (3.9) and (3.11) can be obtained if we first calculate the present
value of the corresponding annuity at time t0 = 0 and then find the accumulation
of the obtained value at time tn = n:

sn| = an|(1 + i)n =
1− (1 + i)−n

i
(1 + i)n =

(1 + i)n − 1
i

,

s̈n| = än|(1 + i)n =
1− (1 + i)−n

d
(1 + i)n =

(1 + i)n − 1
d

.

3.2 Deferred annuities

3.2.1 Definitions

For conventional immediate annuity and annuity-due payments starts at the first
time interval (0; 1) (in the end of the interval for immediate annuity and in the
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beginning of the interval for annuity-due). In some cases payments start later,
i.e. are deferred. Corresponding cash flows are said to be deferred annuities.

To be more exact, consider n consecutive unit intervals

(m, m + 1), . . . , (m + n− 1,m + n).

As usually, time t0 = 0 means now, so that interval (m,m + n) is deferred from
the present time for m units of time.

A series of n level payments, each of amount 1, made at the end of these
intervals, i.e. at times m + 1,m + 2, . . . , m + n, is said to be deferred immediate
annuity or deferred annuity payable in arrear.

This cash flow is shown on figure 3.3.

Figure 3.3:
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A series of n level payments, each of amount 1, made at the beginning of
these intervals, i.e. at times m,m + 1, . . . ,m + n − 1, is said to be deferred
annuity-due or deferred annuity payable in advance.

This cash flow is shown on figure 3.4.

Figure 3.4:
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3.2.2 The present values

The present value of the deferred immediate annuity at time t0 = 0 is denoted
by a symbol m|an| and the present value of the deferred annuity-due at time
t0 = 0 is denoted by a symbol m|än|.

To calculate these values it is necessary to reduce each of n payments to the
present time t0 = 0 and then sum the present values:

m|an| = vm+1 + ... + vm+n, (3.11)

m|än| = vm + ... + vm+n−1. (3.12)



30 CHAPTER 3. DETERMINISTIC ANNUITIES

Applying the formula for n terms of geometrical progression we have (if
v 6= 1, i.e. i 6= 0):

m|an| =
vm+1 − vm+n+1

1− v
= vm+1 1− vn

1− v

= vm 1− vn

1/v − 1
= vm 1− vn

i
, (3.13)

m|än| =
vm − vm+n

1− v
= vm 1− vn

d
. (3.14)

In the trivial case i = 0, when money do not change the value in a course of
time, obviously we have: m|an| =m| än| = n.

Besides it is convenient to define m|a0| and m|ä0| as 0. These definitions
coordinate with a common agreement that sum which contains no summands
equals 0.

3.2.3 Relation with conventional annuities

Comparing equations (3.3), (3.4) with equations (3.13), (3.14) we can express
the present values of deferred annuities through the present values of conven-
tional annuities (in the case i 6= 0):

m|an| = vman|, (3.15)

m|än| = vmän|. (3.16)

If i = 0, i.e. v = 1, these relations hold trivially.
Relations (3.15) (3.16) can be obtained directly from (3.11), (3.12); factoring

out vm, we get:

m|an| = vm(v + ... + vn) = vman|,

m|än| = vm(1 + ... + vn−1) = vm · än|.

These relations can be also obtained with the help of the following reason.
To find the present value (at time t0 = 0) of the deferred annuity (either payable
in advance or in arrear) we can

• Find the reduced value of this cash flow at time t = m. Since time t = m
is the beginning of the first interval from the list (m,m + 1), . . . , (m +
n− 1,m + n) with respect to the point t = m the deferred annuity is the
corresponding conventional annuity. Thus its value at time t = m is an|
or än|) (depending on the case under consideration). This means that the
deferred annuity can be replaced by the corresponding single payment at
time t = m.

• Then find the present value of this payment at time t0 = 0. According
to equation (2.3), this is done by multiplication at the discount coefficient
vm (since the distance from t0 = 0 to t = m is m).
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Besides, sums (3.11), (3.12) can be viewed as tails of sums (3.1), (3.2). Cor-
respondingly, writing these sums as differences we can express the present value
of deferred annuity as the difference of the present values of two conventional
annuities:

m|an| = (v + ... + vm + vm+1 + ... + vm+n)− (v + ... + vm)
= am+n| − am|, (3.17)

m|än| = (1 + ... + vm−1 + vm + ... + vm+n−1)− (1 + ... + vm−1)
= äm+n| − äm|. (3.18)

3.2.4 Accumulations

From the point of view of the final payment period deferred annuities and
the corresponding conventional annuities cannot be distinguished one from the
other. Thus, we need not any specific notations for the accumulations at the end
of the final payment period for deferred annuities. To put this in other words, if
we denote as m|sn| the value of the deferred immediate annuity at time m + n,
then

m|sn| = sn|.

3.3 Increasing annuities

3.3.1 Definitions

Consider again sequence of n consecutive unit intervals

(0, 1), . . . , (n− 1, n).

As usual, t0 = 0 means the present time.
A series of n payments p1 = 1, p2 = 2, . . . , pn = n made at the end of

these intervals, i.e. at times 1, 2, . . . , n, is called increasing immediate annuity
or increasing annuity payable in arrear.

This cash flow is shown on figure 3.5.

Figure 3.5:
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A series of n payments p1 = 1, p2 = 2, . . . , pn = n made at the beginning
of these intervals, i.e. at times 0, 1, . . . , n − 1, is called increasing annuity-due
or increasing annuity payable in advance.

This cash flow is shown on figure 3.6.
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Figure 3.6:
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3.3.2 The present values

The present value of the immediate increasing annuity at time t0 = 0 is denoted
by a symbol (Ia)n| and the present value of the increasing annuity-due at time
t0 = 0 is denoted by a symbol (Iä)n|).

To calculate these values it is necessary to reduce each of n payments to the
present time t0 = 0 and then sum the present values:

(Ia)n| = v + 2v2 + ... + nvn, (3.19)

(Iä)n| = 1 + 2v + 3v2 + ... + nvn−1. (3.20)

The sum in the right-hand side of (3.20) is the derivative of the sum v + v2 +
· · ·+ vn of n terms of geometrical progression with the common ratio v (in fact
the later sum is the present value of the immediate annuity). If v 6= 1, then

v + v2 + · · ·+ vn =
v − vn+1

1− v
,

so that

(Ia)n| =
(

v − vn+1

1− v

)′

v

=
1− (n + 1)vn + nvn+1

(1− v)2
. (3.21)

The sum in the right-hand side of (3.19) can be written as

v(1 + 2v + ... + nvn−1) = v(Iä)n|,

so that applying (3.21) we get:

(Iä)n| = v
1− (n + 1)vn + nvn+1

(1− v)2
. (3.22)

In the trivial case i = 0, when money do not change the value in a course of
time, obviously we have: (Ia)n| = (Iä)n| = n(n+1)

2 .
Besides it is convenient to define (Ia)0| and (Iä)0| as 0.

3.3.3 Relation with the level annuities

Comparing equations (3.3), (3.4) with equations (3.21), (3.22), the present val-
ues of the increasing annuities can be expressed in terms of the present values
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of the corresponding level annuities (in the case i 6= 01):

(Ia)n| =
1− vn

i(1− v)
− nvn

i
=

an|
1− v

− nvn

i
=

(1 + i)an| − nvn

i
, (3.23)

(Iä)n| =
1− vn

(1− v)2
− nvn

1− v
=

än| − nvn

1− v
=

än| − nvn

d
. (3.24)

3.3.4 Accumulations

The symbol (Is)n| is the value of the increasing immediate annuity at time
tn = n when the final payment is made, and (Is̈)n| is the value of the increasing
annuity-due at the same time tn = n (i.e. one unit of time after the final
payment is made).

Formulas for the accumulations (Is)n|, (Is̈)n| can be obtained if we first
calculate the present value of the corresponding annuity at time t0 = 0 and
then find the accumulation of the obtained value at time tn = n:

(Is̈)n| = (1 + i)n(Iä)n| =
s̈n| − n

1− v
=

s̈n| − n

d
, (3.25)

(Is)n| = (1 + i)n(Ia)n| =
sn|

1− v
− n

i
=

sn|
d
− n

i
. (3.26)

3.4 Decreasing annuities

Consider again sequence of n consecutive unit intervals

(0, 1), . . . , (n− 1, n).

As usual, t0 = 0 means the present time.
A series of n payments p1 = n, p2 = n − 1, . . . , pn = 1 made at the end of

these intervals, i.e. at times 1, 2, . . . , n, is called decreasing immediate annuity
or decreasing annuity payable in arrear. Its present value at time t0 = 0 is
denoted as (Da)n|.

A series of n payments p1 = n, p2 = n − 1, . . . , pn = 1 made at the end
of these intervals, i.e. at times 0, 1, . . . , n − 1, is called decreasing annuity-due
or decreasing annuity payable in advance. Its present value at time t0 = 0 is
denoted as (Dä)n|.

Union of the decreasing immediate annuity (or the decreasing annuity due)
and the increasing immediate annuity (correspondingly, the increasing annuity-
due) is the level immediate annuity (correspondingly, the level annuity-due)
with the amount of the payment n + 1. Thus,

(Da)n| + (Ia)n| = (n + 1)an|,

(Dä)n| + (Iä)n| = (n + 1)än|,

1Later on, unless otherwise stated, we will not consider this trivial case
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and equations (3.22), (3.23), (3.21), (3.24) yield:

(Da)n| =
(ni− 1)an| + nvn

i
,

(Dä)n| =
(ni− 1)än| + nvn−1

i
.

From these relations for the accumulations (Ds)n|, (Ds̈)n| at time t = n we
get:

(Ds)n| = (1 + i)n(Da)n| =
(ni− 1)sn| + n

i

=
(ni− 1)(1 + i)n + 1

i2
,

(Ds̈)n| = (1 + i)n(Dä)n| =
(ni− 1)s̈n| + n(1 + i)

i
= (1 + i)(Ds)n|.

3.5 Level annuities payable pthly

3.5.1 Definitions

Consider again sequence of n consecutive unit intervals

(0, 1), . . . , (n− 1, n).

Let t0 = 0 means the present time, and one unit of time is thought of as one
year.

Divide each of n unit intervals into p equal subintervals, each of length 1/p.
The most interesting are the following cases:

p = 12 (the subinterval of length 1/p corresponds to one month),
p = 4 (the subinterval of length 1/p corresponds to one quarter),
p = 2 (the subinterval of length 1/p corresponds to a half-year).
A series of np level payments, each of amount 1

p , made at the end of these
subintervals, i.e. at times

1/p, ..., p/p = 1; 1 + 1/p, ..., 1 + p/p = 2; ...;
n− 1 + 1/p, ..., n− 1 + p/p = n,

is called immediate annuity payable pthly or annuity payable pthly in arrear.
A series of np level payments, each of amount 1

p , made at the beginning of
these subintervals, i.e. at times

0, 1/p, ..., (p− 1)/p; 1, 1 + 1/p, ..., 1 + (p− 1)/p; ...;
n− 1, n− 1 + 1/p, ..., n− 1 + (p− 1)/p,

is called pthly annuity-due or annuity payable pthly in advance.
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3.5.2 The present values

The present value (at time t0 = 0) of the immediate annuity payable pthly is
denoted by a symbol a

(p)
n| , and value at time tn = n (the end of the final payment

year), i.e. the accumulation, is noted as s
(p)
n| .

The present value (at time t0 = 0) of the pthly annuity-due is denoted by a
symbol ä

(p)
n| , and value at time tn = n (the end of the final payment year), i.e.

the accumulation, is noted as s̈
(p)
n| .

Note that in these standard level annuities payable pthly each payment is
of amount 1/p, so that as a monetary unit we consider algebraic sum of all
payments for the unit interval (in the typical case, for one year). For example,
if over 5 years in the end of every month amount £100 is paid, then the unit
sum is £1200, so that the present value of this cash flow is 1200a

(12)

5| .
Since the immediate annuity and the annuity due differs only at times t0 = 0

and tn = n, we have:

a
(p)
n| = ä

(p)
n| −

1
p

+
1
p
vn. (3.27)

Indeed, to get the immediate annuity from the annuity-due we must take out
the payment of amount 1/p at time t0 = 0 and add the payment of amount 1/p
at time tn = n. However, since all payments are reduced to time t0 = 0, the
latter operation leads to the term 1

p · vn, which is the present value (at time
t0 = 0) of amount 1/p due at time tn = n.

Thus it is sufficient to get a formula for ä
(p)
n| .

With this goal introduce a new unit of time which is equal to pth part of
the original unit interval (for example, if p = 12 and the original unit interval is
one year, then the new unit interval is one month). The effective rate of interest
for the new unit interval is i

(p)
∗ = i(p)

p , where i(p) is the nominal rate of interest

convertible pthly (see section 1.5), the new rate of discount d
(p)
∗ is d(p)

p , the new

discount factor v
(p)
∗ = 1− d

(p)
∗ = (1 + i

(p)
∗ )−1 is

v
(p)
∗ = v

1
p .

Now we can consider the pthly annuity-due payable over interval (0, n) as the
conventional level annuity-due payable over interval (0, np). Since the amount
of each payment is 1/p, we have:

ä
(p)
n|@i =

1
p
· änp|@i(p)/p, (3.28)

where symbol @i indicates the effective rate of interest for the interval which is
considered as the uinit.

Applying first formula (3.4), and then formulas (2.13), (2.9), (3.3), we get
(note that for the new unit interval parameters i

(p)
∗ , d

(p)
∗ , v

(p)
∗ play the role of
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parameters i, d, v):

ä
(p)
n|@i =

1
p
· 1− (v(p)

∗ )np

d
(p)
∗

=
1
p
· 1− (1− d(p)/p)np

d(p)/p

=
1− (1− d(p)/p)np

d(p)
=

1− ((1− d)1/p)np

d(p)

=
1− (1− d)n

d(p)
=

1− vn

d(p)

=
1− vn

d
· d

d(p)
=

d

d(p)
än|. (3.29)

Now from (3.27) for a
(p)
n| we get:

a
(p)
n| =

1− vn

d(p)
− 1

p
+

1
p
vn =

1− vn

d(p)
− 1− vn

p

=
(1− vn)(p− d(p))

pd(p)
.

With the help of (2.13), (1.14), (3.4) this relation can be reduced to the
form:

a
(p)
n| =

(1− vn)(1− d)1/p

p(1− (1− d)1/p)
=

1− vn

p((1− d)−1/p − 1)

=
1− vn

p((1 + i)1/p − 1)
=

1− vn

i(p)

=
1− vn

i
· i

i(p)
=

i

i(p)
an|. (3.30)

We have defined ä
(p)
n| a

(p)
n| only for integer n. It is easy to see that the use

of the new unit of time allows to define in a natural way ä
(p)

t| a
(p)

t| in the case

t = n + k
p , 0 ≤ k ≤ n− 1. Namely,

ä
(p)

t|@i
=

1
p
· ä(p)

np+k|@i(p)/p

=
1
p
· 1− (v(p)

∗ )np+k

d
(p)
∗

=
1
p
· 1− (1− d(p)/p)np+k

d(p)/p

=
1− (1− d(p)/p)np+k

d(p)
=

1− ((1− d)1/p)np+k

d(p)

=
1− (1− d)n+k/p

d(p)
=

1− vt

d(p)
. (3.31)

Now

a
(p)

t|@i
= ä

(p)

t|@i
− 1

p
+

1
p
vt =

1− vt

i(p)
. (3.32)
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3.5.3 The accumulations

Quantities a
(p)
n| and s

(p)
n| , as well as the quantities ä

(p)
n| and s̈

(p)
n| , are the values

of the same cash flow, but at different times (t0 = 0 and tn = n).
Thus, the following simple relations hold:

a
(p)
n| = s

(p)
n| · vn, (3.33)

s
(p)
n| = a

(p)
n| · (1 + i)n, (3.34)

ä
(p)
n| = s̈

(p)
n| · vn, (3.35)

s̈
(p)
n| = ä

(p)
n| · (1 + i)n, (3.36)

and the formulas for the present values a
(p)
n| and ä

(p)
n| allow to calculate the

accumulations.

3.6 Continuous annuities

Consider immediate annuity and annuity due payable pthly over period [0, n]
and assume that p → ∞. Using equations (1.15), (2.14), (3.29), (3.30), (3.3),
(3.4) we get:

lim
p→∞

ä
(p)
n| =

d

δ
än| =

1− vn

δ
, (3.37)

lim
p→∞

a
(p)
n| =

i

δ
an| =

1− vn

δ
. (3.38)

Coincidence of the limits (3.37) and (3.38) can be explained as follows.
If p → ∞ then both annuities consist of large number of small payments

(of amount 1/p each) paid in short intervals of length 1/p. Finally, when p
is very close to ∞ the difference between the immediate annuity and annuity
due becomes negligible, and both cash flows can be thought of as a continuous
process similar to flow of fluid. The resulting process is called the continuous
annuity.

Let (t, t + ∆) be a small period of time. It consists (approximately) of ∆p
intervals each of length 1/p, so that over the period (t, t+∆) amount 1

p ·(∆p) = ∆
will be paid. Thus in the continuous model the rate of payment at time t per
unit time is ρ(t) = ∆

∆ = 1.
We can consider a more general continuously payable annuity when the rate

of payment at time t is a general function ρ(t). This means that the total
amount of payment over small interval (t, t + ∆) is ρ(t)∆ + o(∆).

Clearly, the continuous annuity can be considered for any interval (0, T ),
when T need not to be an integer.

The present value of the general continuous annuity payable with the rate
ρ(t) over interval (0, T ) can be calculated directly as follows.
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With the help of points t0 = 0 < t1 < t2 < ... < tk = T divide interval [0, T ]
into large number n of small intervals ∆j = (tj , tj+1).

The total payment over the period ∆j is approximately ρ(tj)∆j . Its present
value at time t0 = 0 is vtj ρ(tj)∆j , so that the total present value of the whole
continuous annuity is approximately

∑

j

vtj ρ(tj)∆j . (3.39)

This sum can be thought as the integral sum for the definite integral
∫ T

0

vtρ(t)dt.

Thus,

lim
max ∆j→0

∑

j

vtj ρ(tj)∆j =
∫ T

0

vtρ(t)dt. (3.40)

On the other hand, as max ∆j → 0 the sum (3.39) gives the exact present value
at time t0 = 0 of the continuous annuity. Therefore, for the present value (PV)
of the continuous annuity the following formula hold

PV of the continuous annuity =
∫ T

0

vtρ(t)dt. (3.41)

Word for word repetition of the above arguments shows that for the continuous
model of interest (introduced in section 1.4), when the force of interest is a
general function of t,

PV of the continuous annuity =
∫ T

0

ρ(t) exp
(
−

∫ t

0

δ(u)du

)
dt. (3.42)

If the rate of payment ρ(t) is 1, the present value of the continuous annuity
is denoted as aT |. According to the (3.41):

aT | =
∫ n

0

vtdt =
∫ T

0

e−δtdt = −1
δ
e−δt

∣∣∣
T

0
=

1− vT

δ
. (3.43)

Clearly, if T = n is an integer, aT | can be calculated as either of two limits
(3.37), (3.38).

If T > 0 is a general real, it can be approximated by a sequence of numbers
t = n + k

p , 0 ≤ k ≤ n− 1, and then aT | can be calculated as either of two limits
(3.31), (3.32).

The value of the continuous annuity payable over interval (0, T ) at time T
is called the accumulation. To calculate the accumulation we can calculate the
present value and then reduce this to time T .

For the conventional continuous annuity payable with the rate ρ(t) = 1 over
interval (0, T ) the accumulation is denoted as sT |. Applying this argument we
have:

sT | = aT | · (1 + i)T =
(1 + i)T − 1

δ
. (3.44)



Chapter 4

Assessment of investment
projects

4.1 The internal rate of return

Consider an investment project, when at times t′1 < t′2 < · · · < t′l an investor
invests the sums a′1, a

′
2, . . . , a

′
l accordingly, and then at times t′′1 < t′′2 < · · · < t′′m

receives income a′′1 , a′′2 , . . . , a′′m accordingly.
Times t′1, t

′
2, . . . , when the investor invests his money can precede times

t′′1 , t′′2 , . . . when the investor receives income. Often these times alternate.
Side by side with this investment project consider a bank account which

earns compound interest at the rate i per annum. Assume that the bank offers
to the investor the following deal: at times t′k the amounts a′k are deposited into
the account, and at times t′′k the amounts a′′k are withdrawn from this auxiliary
bank account. This auxiliary bank account is equivalent to the investment
project under consideration in the sense that it requires from the investor the
same outlays and generates the same income.

It should be noted that during some periods negative balance is possible, i.e.
the investor owes money to the bank. We assume that during these period the
amount of the debt grows according to the same rate i, i.e. the rate at which
the bank credits the interest equals to the rate at which the bank lends money.

Let T = maxk{t′k, t′′k} be the time when the project is completed. Corre-
spondingly at this time the auxiliary bank account should be closed. If the deal
offered by the bank is fair then the total value of all deposits must be equal to
the total value of all withdrawals. Taking into account the fundamental concept
of the present value we can write this condition as follows:

l∑

k=1

a′kvt′k =
m∑

k=1

a′′kvt′′k , (4.1)

where v = 1
1+i is the discount factor which corresponds to the rate of interest i.

39
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Relating the investment project under consideration and the auxiliary bank
account, it is natural to take as a measure of profitability of the investment
project the rate of interest i for this bank account. This rate is called the internal
rate of return – IRR, money-weighted rate of return or (with applications to
fixed-interest securities) the yield to the redemption. The internal rate of return
is a root of the equation (4.1); this equation is called the yield equation.

Sometimes it is convenient to join the sequences t′1, t
′
2, . . . , t

′
l and t′′1 , t′′2 , . . . , t′′m

into a single sequence t1 < t2 < · · · < tn (n = l+m) and consider the joint cash
flow assuming that

1. if tk = t′′i , then at time tk the project generates income ck = a′′i ,

2. if tk = t′j , then at time tk the project generates negative income ck = −a′′j .

The sequence (t1, c1), . . . , (tn, cn) is called the net cash flow.
Then the yield equation (4.1) can be written as

n∑

k=1

ck(1 + i)−tk = 0. (4.2)

4.2 Roots of the yield equation

In general, without any assumption about the structure of the flow of outlays
(t′k, a′k) and the flow of income (t′′k , a′′k) we cannot say anything about roots of
the yield equation (4.1). By definition, the yield is defined only when the yield
equation has the only root and this root is positive (i.e. the investor really has
some income from the project). Sometimes a weaker assumption, that this root
is greater that −1, is made. If i ∈ (−1, 0) then it means that the investor as a
matter of fact lost some money he invested as the result of the transaction.

Under some natural assumption we can establish that the yield is well-
defined. Assume, for example, that all outlays precede the receipt of any income,
i.e.

t′1 < t′2 < · · · < t′l < t′′1 < t′′2 < · · · < t′′m.

Rewrite the yield equation (4.1) as follows:

l∑

k=1

a′k(1 + i)t′l−t′k =
m∑

k=1

a′′k(1 + i)tl−t′′k . (4.3)

In the left-hand side of this equation all powers are positive (except for t′l−t′k = 0
when k = l). Thus, for i ∈ (−1;+∞) the right-hand side, as a function of i,
either increases from a′l to +∞ or is the constant a′l (if l = 1, i.e. the project
involves the only outlay).

In the right-hand side of this equation all powers are negative. Thus, for
i ∈ (−1;+∞) the right-hand side, as a function of i, decreases from +∞ to 0.

Thus equation (4.3) has the only root i0 on the interval (−1, +∞).
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If, in addition, we assume that the total amount of all outlays is less than
the total amount of income, i.e.

l∑

k=1

a′k <

m∑

k=1

a′′k , (4.4)

then at the point i = 0 the left-hand side of (4.3) is less than the right-hand
side. Thus the root i0 is positive.

In general, to assess an investment project it is necessary to investigate the
problem about the number of roots of the yield equation first. This step will
help to calculate the yield if it exists.

Microsoft Excel has a function, IRR, which calculates the yield of an in-
vestment project described by the net cash flow (t1, c1), . . . , (tn, cn) where t1 =
0, t1 = 1, . . . , tn = n.

It should be noted that the internal rate of return is the simplest character-
istics of the profitability of an investment project. In some cases the use of this
characteristics can lead to a wrong conclusions and thus other characteristics of
the profitability are needed.
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Chapter 5

The loan schedule

5.1 A general scheme

Assume that one year is chosen as a unit of time and a loan of amount A is
made at time t = 0 at the annual rate of interest i. The loan is to be repaid
in n repayments, each of the same amount p, to be made at times t1 = 1, t2 =
2, . . . tn = n.

Important problems are

• to find the value of r;

• construct a schedule showing the division of each payment into capital
and interest.

There are several ways to solve these problems.

5.1.1 Solution based on solving the functional equation

To solve this problem, introduce the sequence x1, x2, . . . , xn, where xk is the
loan outstanding just after the kth payment.

Obviously the following relations hold:

x1 = A(1 + i)− p = x0(1 + i)− p, where x0 = A,

x2 = x1(1 + i)− p,

. . .

xn = xn−1(1 + i)− p,

or in short
xk = xk−1(1 + i)− p, 1 ≤ k ≤ n. (5.1)

To solve this functional equation (i.e. to find the formula for the general term
of the sequence xk) introduce a new sequence yk by the formula:

yk = xk − x ⇔ xk = yk + x,
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where the parameter x will be defined later on.
For this new sequence recursive equation (5.1) becomes:

yk + x = (yk−1 + x) (1 + i)− p, 1 ≤ k ≤ n.

or equivalently
yk = yk−1(1 + i) + ix− p, 1 ≤ k ≤ n. (5.2)

If we chose x such that ix− p = 0, i.e x = p
i , then equation (5.2) becomes:

yk = yk−1(1 + i), 1 ≤ k ≤ n.

This equation is exactly the equation which defines geometrical progression
(which members are numbered starting from 0) with the common ratio q = 1+i,
so that

yk = y0(1 + i)k, 0 ≤ k ≤ n.

For the main sequence xk this result gives:

xk − p

i
=

(
x0 − p

i

)
(1 + i)k, 0 ≤ k ≤ n,

so that
xk =

(
A− p

i

)
(1 + i)k +

p

i
, 0 ≤ k ≤ n. (5.3)

Taking into account the boundary condition xn = 0 (the loan must be repaid
by the end of nth year) we find the amount of the regular payments p:

p = Ai
(1 + i)n

(1 + i)n − 1
= A

i

1− vn
, (5.4)

where
v =

1
1 + i

is the discount factor.
Now for the loan outstanding after the kth payment (5.3) becomes:

xk = A
(1 + i)n − (1 + i)k

(1 + i)n − 1
≡ A

1− vn−k

1− vn
, 0 ≤ k ≤ n. (5.5)

The difference

ck ≡ xk−1 − xk = A
(1 + i)k − (1 + i)k−1

(1 + i)n − 1
= p · vn−k+1 (5.6)

is the decrease of the loan after kth payment and thus it is the share of kth
payments which repays the capital, whereas

ik = p− ck = p · (1− vn−k+1
) ≡ Ai

1− vn−k+1

1− vn
, 0 ≤ k ≤ n, (5.7)
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is interest content of kth payment.
Note that the value of ik can also be obtained as ixk−1.

Equation (5.1) can also be solved as follows. Divide both sides of this equa-
tion by (1 + i)k:

xk

(1 + i)k
=

xk−1

(1 + i)k−1
− p

(1 + i)k
, 1 ≤ k ≤ n,

and then sum over k = l + 1, l + 2, . . . , n. All terms xk

(1+i)k , except for xn

(1+i)n in
the left-hand side and xl

(1+i)l in the right-hand side eliminate in pairs:

xn

(1 + i)n
=

xl

(1 + i)l
− p

(
n∑

k=l+1

1
(1 + i)k

)
.

Taking into account the boundary condition xn = 0 we get:

xl = p

n∑

k=l+1

(1 + i)l−k, 0 ≤ l ≤ n.

The sum in the right-hand side of this equation can be calculated with the help
of the formula for the sum of geometrical progression, so that we have:

xl = p

1
1+i − 1

(1+i)n−l+1

1− 1
1+i

= r
1− 1

(1+i)n−l

i
= r

1− vn−l

i
, (5.8)

In particular, if l = 0 we get:

A = p
1− vn

i
,

which is equivalent to (5.4).
With the help of this result equation (5.8) becomes:

xl = A
1− vn−l

1− vn
,

which is exactly equation (5.5).

5.1.2 Financial approach

The main formula (5.4) can also be obtained with the help of the following
financial considerations.

Consider the loan as a deposit of the capital A into an account ’A’, which
earns interest at the rate i. Repayment of the loan means regular level with-
drawal of funds (the amount of each withdrawal is p) from this account. If we
assume that the customer opens another similar account, say account ’B’, which
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earns interest at the same rate i, and deposits every withdrawal into this new
account, then for the customer the situation is as if he has the only account
which earns interest at the rate i and made only the initial deposit of A at
time t = 0. Thus, in total at time t = n the customer will accumulate amount
A(1 + i)n.

On the other hand, at time t = n the account ’A’ will have no funds at all
(the loan if fully paid off), whereas the account ’B’ will accumulate:

• the amount p(1 + i)n−1 from the first deposit,

• the amount p(1 + i)n−2 from the second deposit, and so on,

• the amount p from the final, nth, deposit,

i.e. in total the account ’B’ will accumulate

p(1 + i)n−1 + p(1 + i)n−2 + · · ·+ p ≡ p

n∑

k=1

(1 + i)n−k.

Thus,

A(1 + i)n = p

n∑

k=1

(1 + i)n−k,

which is equivalent to (5.4).

5.1.3 Solution based on the principle of equivalence

A loan is an agreement between the lender and the borrower. According to this
agreement the lender at time t = 0 gives to the borrower the amount A. In
return, the borrower pays to the lender a level amount p at times t1 = 1, t2 =
2, . . . , tn = n.

The principle of equivalence states that the obligations of both parties of the
deal must be identical. However, we cannot equate the sums paid by the lender
and the borrower since the payments are make at different times. Thus consider
the financial obligations of both parties at the time t = 0 when the agreement
is concluded, i.i. consider the present values of these obligations.

Clearly, the present value of the lender’s obligations is A, whereas the present
value of the borrower’s obligations is the present value of the level immediate
annuity, i.e. pan|. Thus, the principle of equivalence means requires that

A = pan| ⇔ A = p
1− vn

i
,

which is equivalent to (5.4).
To find the amount xk of the loan outstanding just after the kth payment

note that it is exactly the obligations of the borrower at time k, i.e. the present
value (at time k) of the level annuity payable at times tk+1 = k + 1, tk+2 =
k + 2, . . . , tn = n. Thus

xk = pan−k| = p
1− vn−k

i
= A

1− vn−k

1− vn
.



Chapter 6

Problems

6.1 Interest rates

Problem 6.1 1 A 90-days government bill is purchased for £96 at the time
of issue and is sold after 45 days to another investor for £97.90. The second
investor holds the bill until maturity and receives £100.

Determine which investor receives the higher rate of return.

Solution. First note that both investors invested money for the same period
of length 45 days.

For the first investor the effective rate of return for the period of 45 days is

i1 =
97.90− 96

96
=

1.90
96

≈ 1.979%,

and for the second investor the effective rate of return for the period of 45 days
is

i2 =
100− 97.90

97.90
2.10
97.90

≈ 2.145%.

Thus the second investor receives the higher rate of return. 2

Problem 6.2 2 Calculate the time in days for £1, 500 to accumulate to £1, 550
at:

(a) a simple rate of interest of 5% per annum
(b) a force of interest of 5% per annum.

Solution. (a) Assume that a simple interest is applied. Then in t (years) the
initial value P = 1, 500 of the fund becomes A = P (1 + it) = 1500 (1 + 0.05t).
We are given that A = 1550. Thus we have the following equation for t:

1550 = 1500 (1 + 0.05t) ⇔ t =
2
3

year = 8 months = 243 days.

1The Institute of Actuaries, Exam CT1, September 2007, Problem 1
2The Institute of Actuaries, Exam CT1, September 2005, Problem 3

47
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Here we assumed that the year consists of 12 months or, equivalently, 365 days.
(b) Assume that a compound interest is applied. Then in t (years) the initial

value P = 1, 500 of the fund becomes A = Peδt = 1500e0.05t. We are given that
A = 1550. Thus we have the following equation for t:

1550 = 1500e0.05t ⇔ t = 20 ln
155
150

≈ 0.655796 year = 7.87 months = 239 days.

2

Problem 6.3 3 An investor purchases a share for 769p at the beginning of the
year. Halfway through the year he receives a dividend, net of tax, of 4p and
immediately sells the share for 800p. Capital gain tax of 30% is paid on the
difference between the sale and the purchase price.

Calculate the net annual effective rate of return the investor obtains on the
investment.

Solution. The amount of the investment is P = 769.
The accumulation consists of three components:

• dividend: 4p;

• sale price of the share: 800p;

• capital gain tax: since the difference between the sale and the purchase
price is 800− 769 = 31, the tax is 0.3 · 31 = 9.3.

Thus, the total amount received by the investor is 794.7p, i.e. income is I =
25.7p. Therefore the effective rate of return for a 6 months period is i∗ = 25.7

769 ≈
0.03342.

The equivalent annual rate of return, i, is defined as the annual effective rate
of interest for an auxiliary savings account which (according to the concept of
compound interest) generates at the end of the period under consideration the
same income as the investment project.

The equivalent annual rate of return (i.e. the internal rate of return), i, can
be found from the equation

(1 + i)
1
2 = 1 + i∗,

so that
i = (1 + i∗)2 − 1 = 2i∗ + i2∗ ≈ 6.7957%.

Note that the corresponding nominal annual rate of return is 2i∗ = 6.684%, i.e
very close to the IRR (the relative error is less than 2%).

2

3The Institute of Actuaries, Exam CT1, September 2007, Problem 2
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Problem 6.4 4 An investor has earned a money rate of return from a portfolio
of bonds in a particular country of 1% per annum effective over a period of
ten years. The country has experienced deflation (negative inflation) of 2% per
annum effective during the period.

Calculate the real rate of return per annum over the ten years.

Solution. If i = 1% is the effective money rate of return and f = −2% the rate
of inflation, then the inflation adjusted rate of return is

i− f

1 + f
=

0.01 + 0.02
1 + 0.02

≈ 0.030612 = 3.0612%.

2

Problem 6.5 5 An investment is discounted for 28 days at a simple rate of
discount of 4.5% per annum. Calculate the annual effective rate of interest.

Solution. First note that d = 4.5% per annum is the nominal discount rate.
The effective discount rate for the 28 days period is d∗ = 28

365d ≈ 0.3452055%.
This means (by the definition of the effective discount rate) that investment

of amount 1− d∗ at time 0 in 28 days will accumulate amount 1.
The corresponding annual effective rate of interest i is such a rate that

savings account which earns this rate of interest per annum and credits the
interest for a shorter period of time according to the principle of compound
interest will have the same result, i.e.

(1− d∗)(1 + i)
28
365 = 1.

From this we have:

i = (1− d∗)
− 365

28 − 1 =
(

1− 28
365

d

)− 365
28

− 1 ≈ 0.046109 = 4.6109%.

2

Stochastic interest rates

Problem 6.6 6 (i) In any given year, the interest rate per annum effective on
monies invested with a given bank has mean value j and standard deviation s
and is independent of the interest rates in all previous years.

Let Sn be the accumulated amount after n years of a single investment of 1
at time t = 0.

(a) Show that ESn = (1 + j)n.
(b) Show that V arSn = (1 + 2j + j2 + s2)n − (1 + j)2n.

4The Institute of Actuaries, Exam CT1, September 2005, Problem 2
5The Institute of Actuaries, Exam CT1, April 2006, Problem 1
6The Institute of Actuaries, Exam CT1, April 2005, Problem 10
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(ii) The interest rate per annum effective in (i), in any year, is equally likely
to be i1 or i2 (i1 > i2). No other values are possible.

(a) Derive expressions for j and s2 in terms of i1 and i2.
(b) The accumulated value at time t = 25 years of £1 million invested with

the bank at time t = 0 has expected value £5.5 million and standard deviation
£0.5 million.

Calculate the values of i1 and i2.

Solution. (i)
(a) Let ξk be the interest rate in the kth year. We are given that ξ1, ξ2, . . . , ξn

are independent and identically distributed (i.i.d.) random variables (r.v.) with
the mean values Eξk = j and variances V arξk = s2.

The accumulated amount after n years is given by the formula

Sn = (1 + ξ1)(1 + ξ2) . . . (1 + ξn),

so that it is a random variable.
For its mean value we have:

ESn = E [(1 + ξ1)(1 + ξ2) . . . (1 + ξn)] .

Since random variables ξk, 1 ≤ k ≤ n, are independent, the mean value of the
product is the product of the mean values:

ESn = E(1 + ξ1) · E(1 + ξ2) · · · · · E(1 + ξn).

Since random variables ξk, 1 ≤ k ≤ n, are identically distributed, for any k we
have:

E(1 + ξk) = 1 + Eξk = 1 + j,

so that for ESn we finally have:

ESn = (1 + j)n.

(b) To find V arSn = ES2
n − (ESn)2 we must find ES2

n:

ES2
n = E

[
(1 + ξ1)2(1 + ξ2)2 . . . (1 + ξn)2

]

= E(1 + ξ1)2 · E(1 + ξ2)2 · · · · · E(1 + ξn)2.

Since random variables ξk, 1 ≤ k ≤ n, are identically distributed, for any k we
have:

E(1 + ξk)2 = E(1 + 2ξk + ξ2
k) = 1 + 2Eξk + Eξ2

k

= 1 + 2Eξk + V arξk + (Eξk)2 = 1 + 2j + s2 + j2,

so that for ES2
n we finally have:

ESn = (1 + 2j + j2 + s2)n
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and correspondingly for V arSn:

V arSn = (1 + 2j + j2 + s2)n − (1 + j)2n.

(ii) We are given that for any k

P (ξk = i1) =
1
2
, P (ξk = i2) =

1
2
.

Thus,

j ≡ Eξk =
1
2
i1 +

1
2
i2 =

i1 + i2
2

,

and

Eξ2
k =

1
2
i21 +

1
2
i22 =

i21 + i22
2

,

so that

s2 = V arξk = Eξ2
k − (Eξk)=

i21 + i22
2

−
(

i1 + i2
2

)2

=
(i1 − i2)2

4
.

In this particular case the above formulas for ESn and V arSn becomes:

ESn =
(

k1 + k2

2

)n

,

V arSn =
(

k2
1 + k2

2

2

)n

−
(

k1 + k2

2

)2n

,

where k1 = 1 + i1, k2 = 1 + i2.
Next, we are given that the accumulated value at time t = 25 years of £1

million invested with the bank at time t = 0 has expected value £5.5 million and
standard deviation £0.5 million. It means that n = 25, ESn = 5.5, V arSn =
0.25 (we take £1 million as a new monetary unit). Using the above formulas
we get the following set of equations:





(
k1+k2

2

)25
= 5.5,(

k2
1+k2

2
2

)25

− (
k1+k2

2

)50
= 0.25.

⇔
{

k1 + k2 = 2a
k2
1 + k2

2 = 2b

where a = 25
√

5.5, b = 25
√

30.5. This set of two equations with two unknowns
can be easily solved; it has the unique solution such that k1 > k2:

k1 = a +
√

b− a2, k2 = a−
√

b− a2.

In our case, we have:

k1 ≈ 1.08995, k2 ≈ 1.051142,

so that
i1 ≈ 0.089995, i2 ≈ 0.051142.

2
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Problem 6.7 7 £80, 000 is invested in a bank account which pays interest at
the end of each year. interest is always reinvested in the account. The rate of
interest is determined at the beginning of each year and remains unchanged until
the beginning of the next year. The rate of interest applicable in any one year
is independent of the rate applicable in any other year.

During the first year, the annual effective rate of interest will be one of 4%,
6% or 8% with equal probability.

During the second year, the annual effective rate of interest will be either 7%
with probability 0.75 or 5% with probability 0.25.

During the third year, the annual effective rate of interest will be either 6%
with probability 0.7 or 4% with probability 0.3.

(i) Derive the expected accumulated amount in the bank account at the end
of three years.

(ii) Derive the variance of the accumulated amount in the bank account at
the end of three years.

(iii) Calculate the probability that the accumulated amount is more than
£97, 000 at the end of three years.

Solution. Let ξ1, ξ2, ξ3 be the annual interest rates for the first, second,
third year correspondingly. If we take the initial investment £80, 000 as the
new monetary unit, then the accumulation at the end of the third year is A =
(1 + ξ1)(1 + ξ2)(1 + ξ3). It is a random variable, which takes 12 values:

• 1.04 · 1.07 · 1.06 = 1.179568 with the probability 1
3 · 3

4 · 7
10 = 21

120 ;

• 1.04 · 1.07 · 1.04 = 1.157312 with the probability 1
3 · 3

4 · 3
10 = 9

120 ;

• 1.04 · 1.05 · 1.06 = 1.157520 with the probability 1
3 · 1

3 · 7
10 = 7

120 ;

• 1.04 · 1.05 · 1.04 = 1.135680 with the probability 1
3 · 1

3 · 3
10 = 3

120 ;

• 1.06 · 1.07 · 1.06 = 1.202252 with the probability 1
3 · 3

4 · 7
10 = 21

120 ;

• 1.06 · 1.07 · 1.04 = 1.179568 with the probability 1
3 · 3

4 · 3
10 = 9

120 ;

• 1.06 · 1.05 · 1.06 = 1.179780 with the probability 1
3 · 1

3 · 7
10 = 7

120 ;

• 1.06 · 1.05 · 1.04 = 1.157520 with the probability 1
3 · 1

3 · 3
10 = 3

120 ;

• 1.08 · 1.07 · 1.06 = 1.224936 with the probability 1
3 · 3

4 · 7
10 = 21

120 ;

• 1.08 · 1.07 · 1.04 = 1.201824 with the probability 1
3 · 3

4 · 3
10 = 9

120 ;

• 1.08 · 1.05 · 1.06 = 1.202040 with the probability 1
3 · 1

3 · 7
10 = 7

120 ;

• 1.08 · 1.05 · 1.04 = 1.179360 with the probability 1
3 · 1

3 · 3
10 = 3

120 .

Note that
7The Institute of Actuaries, Exam CT1, April 2007, Problem 11
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• the value A = 1.157520 is obtained when ξ1 = 0.04, ξ2 = 0.05, ξ3 = 0.06
and when ξ1 = 0.06, ξ2 = 0.05, ξ3 = 0.04;

• the value A = 1.179568 is obtained when ξ1 = 0.04, ξ2 = 0.07, ξ3 = 0.06
and when ξ1 = 0.06, ξ2 = 0.07, ξ3 = 0.04,

so that strictly speaking the random variable A takes 10 values and

• the probability of the value A = 1.157520 is the sum 7
120 + 3

120 = 10
120 ;

• the probability of the value A = 1.179568 is the sum 21
120 + 9

120 = 30
120 .

Now the expectation EA can be found with the help of the general formula
EA =

∑
x xP (A = x):

EA = 1.1898606 (new monetary units) = £95 188.848.

To calculate V arA first find the second moment EA2 by the general formula
EA2 =

∑
x x2P (A = x):

EA2 = 1.416305 (new monetary units2) ,

so that

V arA = EA2−(EA)2 = 0.0005367301 (new monetary units2) = 3 435 072.82(£2).

More interesting measure of the dispersion is the standard deviation s =
√

V arA:

s = £1 853.4.

The value £97, 000 in the new monetary units is 97 000
80 000 = 1.2125. Among

possible values of the accumulated amount at the end of three years only one
value exceeds the level 1.2125; it is 1.224936 which corresponds to ξ1 = 0.08,
ξ2 = 0.07, ξ3 = 0.06. The probability of this outcome is 21

120 = 7
40 = 0.175.

Note that EA and V arA could be calculated with the help of the approach
used to solve the problem 6.6.

2

Problem 6.8 8 The expected effective annual rate of return from a bank’s in-
vestment portfolio is 6% and the standard deviation of annual effective returns
is 8%. The annual effective returns are independent and (1+it) are lognormally
distributed, where it is the return in year t.

Deriving any necessary formulae:
(i) calculate the expected value of an investment of £2 million after 10 years.
(ii) calculate the probability that the accumulation of the investment will be

less than 80% of the expected value.

8The Institute of Actuaries, Exam CT1, September 2007, Problem 9
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Solution.
(i) Consider £2 million as a new monetary unit. Then the accumulated

amount after n = 10 years is given by the formula

S = (1 + i1)(1 + i2) . . . (1 + i10),

so that it is a random variable.
For its mean value we have:

ES = E [(1 + i1)(1 + i2) . . . (1 + i10)] .

Since random variables ik, 1 ≤ k ≤ 10, are independent, the mean value of the
product is the product of the mean values:

ES = E(1 + i1) · E(1 + i2) · . . . · E(1 + i10).

Besides, since random variables ik, 1 ≤ k ≤ n, are identically distributed, all
values E(1 + ik) are identical and equal to 1 + Eik = 1.06. Thus,

ES = 1.0610 ≈ 1.790848 (new monetary units) = £3.581695 (million).

(ii) First recall that a positive random variable η has a log-normal distribu-
tion with the parameters a and σ iff ln η has a normal distribution with some
parameters (a, σ):

P (ln η < x) =
1√
2πσ

∫ x

−∞
e−

(t−a)2

2σ2 dt.

Thus the assumption that the annual effective returns are independent and
(1 + it) are lognormally distributed, means that the forces of interest δ1 =
ln(1 + i1), . . . , δ10 = ln(1 + i10) are independent and have the same normal
distribution with the identical parameters (a, σ).

Obviously, if random variables η1, . . . , ηn are independent and have log-
normal distributions some parameters (a1, σ1), . . . , (an, σn) correspondingly, then
their product has a log-normal distribution with the parameters a = a1+· · ·+an

and σ2 = σ2
1 + · · ·+ σ2

n.
Thus random variable S also has a log-normal distribution with the param-

eters 10a,
√

10σ, where a and σ are the parameters of the log-normal random
variable ηt = 1 + it.

If η has a log-normal log-normal distribution with the parameters a and σ
then its mean value is given by

Eη = ea+ σ2
2

and the coefficient of variation c =
√

V arη
Eη is given by

c =
√

eσ2 − 1. (6.1)
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In particular, ES can be written in the form

ES = e10a+5σ2
. (6.2)

We must calculate the probability P = P (S < 0.8ES). First note that
the events {S < x} and {ln S < ln x} are identical. Besides, since ln S ∼
N(10a,

√
10σ), the shifted and scaled random variable ln S−10a√

10σ
has the standard

(0, 1) normal distribution. Thus,

P = P (S < 0.8ES) = P (ln S < ln(0.8ES)) = Φ
(

ln(0.8ES)− 10a√
10σ

)
.

Taking into account (6.2) we have:

P = Φ
(

ln 0.8 + 5σ2

√
10σ

)
. (6.3)

Since E(1 + it) = 1 + Eit = 1.06. V ar(1 + it) = V arit = 0.64, the coefficient
of variation of ηt = 1 + it is 0.08

1.06 = 4
53 . On the other hand, it is given by (6.1).

Thus √
eσ2 − 1 =

4
53
⇔ σ2 = ln

2825
2809

,

so that the argument of the function Φ in (6.2) is

ln 0.8 + 5 ln 2825
2809√

10 ln 2825
2809

≈ −0.8171428

and therefore P ≈ 0.2069.
It should be noted that Microsoft Excel has a function

LOGNORMDIST (x,MEAN, DEV IATION)

which allows calculation of the value at a given point x of the distribution
function of the log-normal random variable with a given mean value MEAN
and standard deviation DEV IATION . With the help of this function the
problem could be solved as follows:

• enter in a cell A1 the value 0.06 (the mean value of i);

• enter in a cell A2 the value 0.08 (the value of
√

V ari);

• enter in a cell A3 a formula =(1+A1)∧10 to calculate ES;

• enter in a cell A4 a formula =LN((A2/(1+A1))∧2+1) to calculate σ2;

• enter in a cell A5 a formula =-A4/2+LN(1+A1) to calculate a;

• enter in a cell A6 a formula =LOGNORMDIST(0.8*A3,10*A5,SQRT(10*A4))
to get the answer.
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2

Problem 6.9 9 An insurance company has just written contracts that require it
to make payments to policyholders of £1, 000, 000 in five years’ time. The total
premiums paid by policyholders amounted to £850, 000. The insurance company
is to invest half the premium in fixed interest securities that provide a return of
3% per annum effective. The other half of the premium income is to be invested
in assets that have an uncertain return. The return from these assets in year t,
it, has a mean value of 3.5% per annum effective and a standard deviation of
3% per annum effective. (1 + it) are independently and lognormally distributed.

(i) Deriving all necessary formulae, calculate the mean and standard devia-
tion of the accumulation of the premiums over the five-year period.

(ii) A director of the company suggests that investing all the premiums in
the assets with an uncertain return would be preferable because the expected
accumulation of the premiums would be greater that the payments due to the
policyholders.

Explain why this still may be a more risky investment policy.

Solution. (i) Consider £1, 000, 000 as a new monetary unit. Then the premium
collected is 0.85. The amount invested in fixed interest securities (at 3% annual
interest) is 0.425, so that in five years it accumulates to

Sf = 0.425(1 + i)5 = 0.492691482.

The amount invested in assets is 0.425 and in five years it accumulates to

Sa = 0.425(1 + i1)(1 + i2)(1 + i3)(1 + i4)(1 + i5).

Since the rates i1, . . . , i5 are random variables, so is the accumulation Sa.
For its mean value we have:

ESa = 0.425E [(1 + i1) . . . (1 + i5)] = 0.425E(1 + i1) . . . E(1 + i5)

= 0.425 (1 + Eit)
5 = 0.50476668.

The total accumulation of the premiums over the five-years period is S =
Sf + Sa. Thus

ES = Sf + ESa = 0.997458161,

i.e. ES = £997 458.16. It means, in particular, that on average the accumula-
tion is not sufficient to cover obligations of the insurer.

To find the standard deviation σS of the accumulation of the premiums over
the five-year period, note that

σ2
S = V arS = V ar(Sf + Sa) = V arSa = ES2

a − (ESa)2 .

9The Institute of Actuaries, Exam CT1, September 2005, Problem 8
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We have already calculated ESa, and

ES2
a = 0.4252 · E [

(1 + i1)2 . . . (1 + i5)2
]

= 0.4252
(
E(1 + it)2

)5

= 0.4252
(
1 + 2Eit + Ei2t

)5
= 0.4252

(
1 + 2Eit + V arit + (Eit)

2
)5

= 0.4252 (1 + 0.07 + 0.0009 + 0.001225)5 ≈ 0.25586152,

so that
V arSa ≈ 0.001072119

and σS ≈ 0.032743226, i.e. σS ≈ £32 743.23.
(ii) The answer to the second question depends on the criterion adopted.
1. Decisions are compared according to the expected accumulation.
Under the decision of the director, the accumulation over the five-year period

is (in pounds)
S′ = 0.85(1 + i1) . . . (1 + i5),

so that
ES′ = 0.85 (E(1 + it))

5 = 0.85 · 1.0355 ≈ 1.00953336,

i.e. £1 009 533.36, whereas the first strategy gives ES = £997 458.16. Thus in
this case the director’s decision is better.

2. Decisions are compared according to the probability of loss, i.e the prob-
ability that the total accumulation is less than the obligations of the company.

In the first case this probability is

P (S < 1) = P (Sf + Sa < 1) = P (Sa < 1− Sf )
= P (0.425ξ < 1− 0.425 · 1.0355) ≈ P (ξ < 1.165254871)
= Fξ(1.165254871).

where ξ = (1 + i1) . . . (1 + i5) and Fξ(x) is the distribution function of ξ.
In the second case this probability is

P (S′ < 1) = P (0.85ξ < 1) ≈ P (ξ < 1.176470588) = Fξ(1.176470588).

Since distribution function of any continuous random variable is increasing,
P (S′ < 1) > P (S < 1). Thus the second decision is more risky. It should be
noted that the arguments of Fξ are very close, so that the difference between
both decisions is not too high.

More important is the following remark. Since we know the distribution
of the random annual rate of return of investment into risky assets, we can
calculate both probabilities of ruin.

Let a and σ be the mean and the standard deviation of (normally distributed)
random variable ln ηt = ln(1 + it).

Then,

Eηt = ea+ σ2
2

cηt =
√

eσ2 − 1.
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We are given that Eηt = 1.035, cηt
= 0.03

1.035 . Thus,

eσ2
=

(
30

1035

)2

+ 1,

ea =
1.035√(
30

1035

)2 + 1
,

so that

σ =

√√√√ln

((
30

1035

)2

+ 1

)
≈ 0.028979422,

a = ln 1.035− 1
2

ln

((
30

1035

)2

+ 1

)
≈ 0.033981523.

Random variable ln ξ as a sum of 5 independent and identically distributed
random variables ln(1 + i1), . . . , ln(1 + i5) has a normal distribution with the
mean 5a and the variance 5σ2.

Thus for P (S < 1) we have:

P (S < 1) = P (ξ < 1.165254871) = P (ln ξ < ln 1.165254871)

= P

(
ln ξ − 5a√

5σ
<

ln 1.165254871− 5a√
5σ

)

= Φ
(

ln 1.165254871− 5a√
5σ

)
= Φ(−0.26184863) ≈ 0.4.

Similar calculations gives that

P (S′ < 1) = Φ
(

ln 1.176470588− 5a√
5σ

)
= Φ(−0.26184863) ≈ 0.45.

These values of the ruin probability are unacceptable, so that as a matter of
fact the insurer should not write contracts.

2

6.2 Present values. Valuing cash flows

Problem 6.10 10

(i) Calculate the present value of £100 over ten years at the following rates
of interest/discount:

(a) a rate of interest of 5% per annum convertible monthly

(b) a rate of discount of 5% per annum convertible monthly

10The Institute of Actuaries, Exam CT1, September 2005, Problem 5
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(c) a force of interest of 5% per annum

(ii) A 91-day treasury bill is bought for $98.91 and is redeemed at $100.
Calculate the annual effective rate of interest obtained from the bill.

Solution. (i)
(a) We are given that the nominal rate of interest i(12) is 0.05. Thus the

effective monthly rate of interest is i
(12)
∗ = 1

12 i(12) = 1
240 . Consider one month

as a new unit of time. Then ten years has length n = 10 × 12 = 120 (units).
Thus, the present value of £100 is

PV1 = 100 ·
(
1 + i

(12)
∗

)−120

= 100 ·
(

1 +
1

240

)−120

≈ 60.72. (6.4)

(b) We are given that the nominal rate of discount d(12) is 0.05. Thus the
effective monthly rate of discount is d

(12)
∗ = 1

12d(12) = 1
240 . Again consider one

month as a new unit of time. Then ten years has length n = 10 × 12 = 120
(units). Thus, the present value of £100 is

PV2 = 100 ·
(
1− d

(12)
∗

)120

= 100 ·
(

1− 1
240

)120

≈ 60.59. (6.5)

(c) We are given that the force of interest δ is 0.05. Thus, the present value
of £100 is

PV3 = 100 · e−10δ = 100 · e−0.5 =
100√

e
≈ 60.65. (6.6)

If we rewrite the formulae (6.4) and (6.5) as

PV1 =
100√(

1 + 1
240

)240

and
PV2 =

100√(
1− 1

240

)−240

respectively, then we can apply the classic limit

lim
x→0

(1 + x)
1
x = e.

As ± 1
240 ”is close to 0”, both PV1 and PV2 are close to

100√
e

,

which is exactly PV3.
(ii) Treasury bills are government securities issued to borrow money for a

short period (4, 13, 36 or 52 weeks). As opposite to conventional bonds, which
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are issued for a longer periods and regularly pay interest (the coupon), they do
not pay any interest. Upon maturity an investor gets only the par value of the
bill, so that investor buys the bill at some discount of the face value. From this
point of view treasury bills can be considered as a sort of zero-coupon bonds.

The bill under consideration is issued for h = 13 week (= 13× 7 = 91 days).
The par value is $100 and the purchase price is $98.91. Thus the effective rate
of discount for the 13 weeks period is

d∗ =
100− 98.91

100
= 1.09%

and the effective rate of interest for the 13 weeks period is

i∗ =
100− 98.91

98.91
≈ 1.102%.

The equivalent annual rate of return, i, is defined as the annual effective rate
of interest for an auxiliary savings account which (according to the concept of
compound interest) generates at the end of the period under consideration the
same income as the treasury bill. Thus, assuming that the year consists of 365
days, the equivalent annual rate of return can be found from the equation

(1 + i)
91
365 = 1 + i∗,

so that

i = (1 + i∗)
365
91 − 1 =

(
100

98.91

) 365
91

− 1 ≈ 4.494%.

2

Problem 6.11 11 On January 1, 2002, Pat, age 40, purchases a 5-payment,
10-year term insurance of 100,000:

(i) Death benefits are payable at the moment of death.

(ii) Contract premiums of 4000 are payable annually at the beginning of each
year for 5 years.

(iii) i = 0.05

(iv) L is the loss random variable at time of issue.

Calculate the value of L if Pat dies on June 30, 2004.

Solution. The situation described in the problem can be represented with
the help of the figure 6.1.

Since the future life time T40 is known exactly:

T40 = 2.5,

11Course/Exam 3 – Actuarial Models, The Society of Actuaries and the Casualty Actuarial
Society, May 2001, Problem 2.
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Figure 6.1:

-?
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4000

?
1 2003

4000

?
2 2004

4000

3

6

s

100000

in the situation under consideration there is no element of uncertainty.
The insurer’s obligations are to pay amount 100 000 at the time T40 = 2.5

(we take the time when the policy was issued as the initial). The present value
of these obligations is

100 000 · (1.05)−2.5 ≈ 88 517.

We know that the insured paid exactly 3 premiums (4000 each): on 1 January
2002, on 1 January 2003, on 1 January 2004. The present value of this cash
flow is

4 000 · (1 + 1.05−1 + 1.05−2) ≈ 11 438.

Thus the present value of the company’s loss equals 77 079. 2

Problem 6.12 12 An eleven month forward contract is issued on 1 March 2008
on a stock with a price of £10 per share at that date. Dividends of 50 pence per
share are expected to be paid on 1 April and 1 October 2008.

Calculate the forward price at issue, assuming a risk-free rate of interest of
5% per annum effective and no arbitrage.

Solution. First remind the notions used in the text of the problem. The
risk-free interest rate is the rate which can be obtained by investing into assets
without any risk of default. The most common example is US treasury bills
(the US government always can print as many new dollar banknotes as needed
to pay the obligations nominated in US dollars).

The term arbitrage describes the situation when a person/institution can
earn money without any risk using market unbalance. For example, assume
that one bank buys US dollars at the rate 0.63 (£ per dollar) and sells US
dollars at the rate 0.64 (£ per dollar) and another bank buys US dollars at the
rate 0.60 (£ per dollar) and sells US dollars at the rate 0.62 (£ per dollar).
Then a person having USD100 can sell this amount to the first bank and get
£63. Then this amount is sold to the second bank and the person receives
63

0.62 = 101.61 (USD). The profit USD1.61 is earned without any risk (unless the

12The Institute of Actuaries, Exam CT1, April 2008, Problem 1
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second bank change its rates before the transaction is completed). Obviously,
in this situation many people will sell dollars to the first bank and then buy
dollars from the second bank. This excessive demand for pounds in the first
bank and dollars in the second bank will cause pressure to reduce the purchase
price (of dollars) in the first bank and increase sell price in the second bank to
the levels when the opportunity to make money from ”air” disappears.

The ”no arbitrage” assumption means that this and similar situations are
not possible (which is theoretically the case in financial markets). In particular,
it means that if two financial instruments have identical cash flows, then they
must have identical prices.

Now consider the notion of forward contract.
We know that on 1 March 2008 (time t0 = 0) one share under consideration

has a price of S = £10. This price assumes that if at time t0 = 0 someone (the
investor) pays to the owner of the share this amount in cash, then in return he
immediately, on the spot, receives this share. Correspondingly this price is said
to be the cash price or the spot price.

In the problem, however, other situation is discussed. It is assumed that the
seller agrees to sell the share on 1 February 2009 (time T > 0) and the buyer
agrees to buy it. It should be noted that in this deal money and shares will
change hands at time T rather than today (at time 0), so that in fact at time
0 (when the deal is discussed) ”the seller” need not to own any share and ”the
buyer” need not to have any money. The seller of the share is said to hold a
short forward position and the buyer of the share is said to hold a long forward
position.

Clearly nobody knows the market price of the share in 11 month time from
now. Thus, both parties must reach an agreement about the price K in their
specific deal. This price is said to be the forward price.

To calculate this price consider two scenarios of behavior for an investor.
1. At time t0 = 0 buy one share at the spot price S and enter a forward

contract to sell one share at forward price K at time T (in our problem T = 11
12 ).

During the interval [0, T ] the share provides to the shareholder dividends:
D1 = 0.50 at time t1 = 1

12 and D2 = 0.50 at time t1 = 7
12 . At time T according

to the forward contract the shareholder will sell the share for the forward price
and receive amount K.

Thus, in return for the initial investment of S this policy produces the fol-
lowing cash flow:

D1 at time t1, D2 at time t2, K at time T . (6.7)

2. At time t0 = 0 invest an amount KvT + D1v
t1 + D2v

t2 (where v =
frac11 + i is the discount factor which corresponds to the risk-free rate of in-
terest i) in the risk free-investment.

By time t1 this amount accumulates to
(
KvT + D1v

t1 + D2v
t2

)
(1 + i)t1 = KvT−t1 + D1 + D2v

t2−t1 .

Then at time t1 the investor should withdraw amount D1 and reinvest the rest,
i.e. amount KvT−t1 + D2v

t2−t1 .
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By time t2 this amount accumulates to
(
KvT−t1 + D2v

t2−t1
)
(1 + i)t2−t1 = KvT−t2 + D2.

Then at time t2 the investor should withdraw amount D2 and reinvest the rest,
i.e. amount KvT−t2 .

By time T this amount accumulates to
(
KvT−t2

)
(1 + i)T−t2 = K,

so that at this time the investor can receive amount K.
Thus, in return for the initial investment of KvT +D1v

t1 +D2v
t2 this policy

produces the following cash flow:

D1 at time t1, D2 at time t2, K at time T . (6.8)

Since cash flows (6.7) and (6.8) are identical, the ”no arbitrage” assumption
yields that prices of both instruments must be identical:

S = KvT + D1v
t1 + D2v

t2 ,

and thus the forward price K is given by the following formula:

K = S(1 + i)T −D1(1 + i)T−t1 −D2(1 + i)T−t2 . (6.9)

To put this in other words, the forward price is the accumulation of the spot
price (at the risk-free rate of interest) minus the total accumulation from all
dividends.

In our case this result gives:

K = 10 · 1.05
11
12 − 0.5 · 1.05

10
12 − 0.5 · 1.05

4
12 ≈ 9.43.

The main formula (6.9) can be rewritten as

K =
(
S −D1v

t1 −D2v
t2

) · (1 + i)T = P · (1 + i)T ,

where P = S −D1v
t1 −D2v

t2 is the present value of the cash flow formed by
the spot price and (negative) dividends. In this form it is convenient for the use
of Microsoft Excel.

First in cells A1,A2,A3 enter the dates 1 March 2008, 1 April 2008, 1 October
2008 (note that these cells should be formatted accordingly) and in cells B1, B2,
B3 the corresponding cash flows: 10, -0.5, -0.5.

Then the present value P can be calculated with the help of function XNPV.
To do this in a cell, say C1, enter the formula: =XNPV(0.05,B1:B3,A1:A3)
and press Enter. Then in the cell C1 you will see the value of P ; in our case:
9.016167859.

To calculate the forward price as the accumulation of P over 11 months, enter
in a cell, say C2, the formula: =C1*1.05∧(11/12) and press Enter. Then in
the cell C2 you will see the value of K; in our case: 9.43.
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It should be noted that if we calculate the value of P as

10− 0.5 · 1.05−
1
12 − 0.5 · 1.05−

7
12 ,

then we get a slightly different result: P = 9.016058662. The difference is
connected with the different ways of calculating the length of time intervals: if
we think that interval between 1 March and 1 October contains 214 days (as
it is assumed by XNPV function) then it is 214

365 = 0.58630137 of year, if we
think that interval between 1 March and 1 October contains 213 days then it
is 213

365 = 0.583561644 of year, if we think of this interval as 7 months then it is
7
12 = 0.583333333 of year.

2

Problem 6.13 13 A share currently trades at £10 and will pay a dividend of
50p in one month’s time. A six-month forward contract is available on the share
for £9.70. Show that an investor can make a risk-free profit if the risk-free force
of interest is 3% per annum.

Solution. First an investor should borrow £10 at the risk-free rate of interest,
i.e. at 3% per annum effective, for 6 months. As a consequence, he must return
in six months time the amount 10e

1
2 ·0.03 ≈ 10.1511.

To get this amount he must buy one share £10. Owning this share he can
inter the forward contract to sell one share for £9.70 in six moths time without
any risk. Besides, he will get a dividend of £)0.50 in one month’s time, which
should be invested at the risk-free rate of interest for 5 months. As a result he
will get 0.5e

5
12 ·0.03 ≈ 0.5063. With £9.70 for the share he will get approximately

£10.2063.
This will allow him to repay 10.15, so that the net income is approximately

0.0552. This profit can be obtained without any risk.
2

Problem 6.14 14 A one-year forward contract is issued on 1 April 2007 on a
share with a price of 900p at this date. Dividends of 50p per share are expected on
30 September 2007 and 31 March 2008. The 6-month and 12-month spot, risk-
free rates of interest are i1 = 5% and i2 = 6% per annum effective respectively
on 1 April 2007.

Calculate the forward price at issue, stating any assumptions.

Solution. Let 1 April 2007 be time t0 = 0, so that 30 September 2007 is time
t1 = 1

2 and 31 March 2008 is the time T = 1.
To calculate the forward price at issue consider two scenarios of behavior for

an investor.
1. At time t0 = 0 buy one share at the spot price S = £9 and enter a

forward contract to sell one share at forward price K at time T = 1.
During the interval [0, T ] the share provides to the shareholder dividends:

D1 = 0.50 at time t1 = 1
2 and D2 = 0.50 at time T = 1. At time T = 1

13The Institute of Actuaries, Exam CT1, April 2006, Problem 5
14The Institute of Actuaries, Exam CT1, September 2007, Problem 5
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according to the forward contract the shareholder will sell the share for the
forward price and receive amount K.

Thus, in return for the initial investment of S = £9 this policy produces the
following cash flow:

D1 at time t1 = 1
2 , D2 + K at time T = 1. (6.10)

2. At time t0 = 0 invest

• the amount D1v
t1
1 (where v1 = 1

1+0.05 is the discount factor which corre-
sponds to 6-month spot, risk-free rates of interest) for 6 months

• the amount KvT
2 + D2v

T
2 (where v2 = 1

1+0.06 is the discount factor which
corresponds to the 12-month spot, risk-free rate of interest) for 1 year.

At time t1 the first investment will provide the amount D1 and at time T the
second investment will provide the amount K + D2.

Thus, in return for the initial investment of D1v
t1
1 +KvT

2 +D2v
T
2 this policy

produces the following cash flow:

D1 at time t1, D2 + K at time T . (6.11)

Since cash flows (6.10) and (6.11) are identical, the ”no arbitrage” assump-
tion yields that prices of both instruments must be identical:

S = KvT
2 + D1v

t1 + D2v
T ,

and thus the forward price K is given by the following formula:

K = S(1 + i2)−D1
1 + i2√
1 + i1

−D2 ≈ 8.52277. (6.12)

2

6.3 Annuities

Problem 6.15 15 A bank offers two repayment alternatives for a loan that is
to be repaid over ten years. The first requires the borrower to pay £1, 200 per
annum quarterly in advance and the second requires the borrower to make pay-
ments at an annual rate of £1, 260 every second year in arrears.

Determine which term would provide the best deal for the borrower at a rate
of interest of 4% per annum effective.

Solution. Divide the ten year period into 5 sub-periods:

(0, 2], (2, 4], (4, 6], (6, 8], (8, 10].

15The Institute of Actuaries, Exam CT1, September 2008, Problem 5
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According to the first alternative, during the first sub-period the borrower
makes 8 payments, £300 each, at the beginning of each quarter. If we consider
one quarter as the basic unit of time, then this cash flow is the standard annuity-
due; corresponding technical rate of interest is i

(4)
∗ = (1+i)

1
4 −1, where i = 0.04

is the main technical rate of interest. By the end of sub-period (0, 2]) these
payments accumulate to

S = 300s̈8| = 300
(1 + i

(4)
∗ )8 − 1

i
(4)
∗

= 300
2i + i2

4
√

1 + i− 1
≈ 2484.42.

Now we can replace 8 payments , £300 each, at the beginning of each quarter,
by a single payment of £2484.42 at the end of the sub-period.

Now the first alternative assumes 5 payments of £2484.42 at times 2, 4, 6, 8, 10,
whereas the second alternative assumes 5 payments of £2520 at the same times.
Clearly, the borrower should prefer the first alternative.

It should be noted that the answer strongly depends on the technical rate
of interest i used to evaluate cash flows. Say, if i = 6%, then S = 2526.94 and
the borrower should prefer the second alternative.

If i = 5.67404795% then S = 2520, so that both options are equivalent.
2

Problem 6.16 16 An annuity certain with payments of £150 at the end of each
quarter is to be replaced by an annuity with the same term and present value,
but with payments at the beginning of each month instead.

Calculate the revised payments, assuming annual force of interest of 10%.

Solution. Let n (years) is the duration of the original annuity under consid-
eration. If i = 10% is annual effective rate of interest, then the effective rate
of interest per quarter is i

(4)
∗ = (1 + i)

1
4 − 1. Consider one quarter as a new

unit if time. Then this annuity certain with payments of £150 at the end of
each quarter is the standard immediate annuity with 4n payments of £150 each.
Thus its present value is

150 a4n|
∣∣∣
@i

(4)
∗

= 150
1− (1 + i

(4)
∗ )−4n

i
(4)
∗

= 150
1− (1 + i)−n

(1 + i)
1
4 − 1

.

Now consider the revised annuity. Let £X be the amount of a level monthly
payment. The effective rate of interest per month is i

(12)
∗ = (1 + i)

1
12 − 1.

Consider one month as a new unit if time. Then this annuity certain with
payments of £150 at the beginning of each month is the standard annuity due
with 12n payments of £X each. Thus its present value is

X ä4n|
∣∣∣
@i

(12)
∗

= X(1 + i
(12)
∗ )

1− (1 + i
(12)
∗ )−12n

i
(12)
∗

= X(1 + i)
1
12

1− (1 + i)−n

(1 + i)
1
12 − 1

.

16The Institute of Actuaries, Exam CT1, April 2006, Problem 2
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Since both annuities must have the same present value,

150
1− (1 + i)−n

(1 + i)
1
4 − 1

= X(1 + i)
1
12

1− (1 + i)−n

(1 + i)
1
12 − 1

,

which yields that

X = 150(1 + i)−
1
12

(1 + i)
1
12 − 1

(1 + i)
1
4 − 1

≈ 49.211 (pounds). (6.13)

It is interesting to note that the answer does not depend on the duration of the
original annuity under consideration (although it is not obvious a priori).

This solution can be written shorter with the help of the formulae for annu-
ities payable pthly.

The present value of the first annuity is 600·a(4)
n| = 600 1−vn

i(4)
(here 600 = 4·150

is the algebraic value of all annual payments).
The present value of the second annuity is 12X · ä(12)

n| = 12X 1−vn

d(12) (here 12X

is the algebraic value of all annual payments).
Since

600
1− vn

i(4)
= 12X

1− vn

d(12)
,

we can write X as follows:

X = 50
d(12)

i(4)
= 150

1− (1 + i)−
1
12

(1 + i)
1
4 − 1

,

which is identical to (6.13). 2

Problem 6.17 17 An investor pays 400 every half-year in advance into a 25-
year savings plan.

Calculate the accumulated fund at the end of the term if the interest rate
is 6% per annum convertible monthly for the first 15 years and 6% per annum
convertible half-yearly for the final 10 years.

Solution.
Consider the first 15 years of the project and take 1 month as a unit of time

and £400 as a new monetary unit.
The effective rate of interest for this new unit of time is i∗ ≡ i

(12)
∗ = 1

12 i(12),
where i(12) is the annual nominal rate of interest convertible monthly:

i∗ = 0.5%.

Correspondingly the accumulation factor k∗ = 1 + i∗ is 1.005.

17The Institute of Actuaries, Exam CT1, April 2007, Problem 1
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The length of the first period of the project is n = 12 · 15 = 180 (units of
time), so that the cash flow during the first 15 years can be thought of as an
annuity due with n = 180 payments. Its value at the end the 15 years period is

s̈n| = kn
∗ + kn−1

∗ + · · ·+ k∗ =
kn
∗ − 1
d∗

,

where d∗ = i∗
1+i∗

= 0.005
1.005 the corresponding effective rate of discount.

Thus the accumulation by the end of the first 15 years is

A′1 = 1.005
1.005180 − 1

0.005
= 292.2728 (new monetary units) ≡ £116 909.12.

Now consider the final 10 years of the project and take 6 month as a unit of
time. The effective rate of interest for this new unit of time is i∗ ≡ i

(2)
∗ = 1

2 i(2),
where i(2) is the annual nominal rate of interest convertible half-yearly:

i∗ = 3%.

Correspondingly the accumulation factor k∗ = 1 + i∗ is 1.03.
The length of the second period of the project is n = 2 · 10 = 20 (units of

time), so that the amount A′1 = £116 909.12 by by the end of the final 10 years
becomes

A1 = A′1 · k20
∗ = £211 150.88.

The cash flow of the regular payments of the investor during the final 10
years can be thought of as an annuity due with n = 20 payments. Its value at
the end the 10 years period is

s̈n| = kn
∗ + kn−1

∗ + · · ·+ k∗ =
kn
∗ − 1
d∗

,

where d∗ = i∗
1+i∗

= 0.03
1.03 the corresponding effective rate of discount.

Thus the accumulation of these payments by the end of the final 10 years is

A2 = 1.03
1.0320 − 1

0.03
= 27.67649 (new monetary units) ≡ £11 070.59.

The total accumulated fund at the end of the term is A1 +A2 = 222 221.47.
2

Problem 6.18 18 A pension fund purchased an office block nine months ago
for £5 million.

The pension fund will spend a further £900, 000 on refurbishment in two
months time.

A company has agreed to occupy the office block six months from now. The
lease agreement states that the company will rent the office block for fifteen years

18The Institute of Actuaries, Exam CT1, April 2009, Problem 6
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and will then purchase the property at the end of the fifteen year rental period
for £6 million.

It is further agreed that rents will be paid quarterly in advance and will be
increased every three years at the rate of 4% per annum compound. The initial
rent has been set at £800, 000 per annum with the first rental payment due
immediately on the date of occupation.

Calculate, as at the date of purchase of the office block, the net present value
of the project to the pension fund assuming an effective rate of interest of 8%
per annum.

Solution. Consider £1 million as a new monetary unit and the date of purchase
of the office block as time t = 0. and assume that time is measured in years.

The cash flow under consideration consists of negative payments, i.e. ex-
penses, and positive payments, i.e. income from sale the property and rental
income.

There are two negative payments:

1. c1 = −5 at time t1 = 0;

2. c2 = −0.9 and time t2 = 11
12 .

The present value of these payments is (below v = 1
1+i = 1

1.08 is a discount
factor)

a1 = c1v
t1 + c2v

t2 = −5 · v0 − 0.9 · v 11
12 = −5.838695025.

Now consider positive payments.
The company will occupy the office block six months from now, i.e. 15

months from the date t = 0 of purchase of the office block, and will buy the
property at the end of the fifteen year rental period, i.e. at time ts = 15 15

12 =
16.25. Since the property will be sold for the amount 6, the present value of
this payment is

6 · v16.25 = 1.717968608.

Rental payments form a specific annuity payable from time t0 = 15
12 . It can

be divided into 5 three year periods with the level annual rents:

1. from time t0 = 15
12 till time t1 = t0 + 3 annual payment is 0.8, so that

quarterly payment is 0.2;

2. from time t1 till time t2 = t1 + 3 annual payment is 0.8 · 1.043, so that
quarterly payment is 0.2 · 1.043;

3. from time t2 till time t3 = t2 + 3 annual payment is 0.8 · 1.046, so that
quarterly payment is 0.2 · 1.046;

4. from time t3 till time t4 = t3 + 3 annual payment is 0.8 · 1.049, so that
quarterly payment is 0.2 · 1.049;

5. from time t4 till time t5 = t4 + 3 annual payment is 0.8 · 1.0412, so that
quarterly payment is 0.2 · 1.0412.
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During each such period rental payments form a standard annuity due payable
quarterly. Thus its present value at the beginning of the corresponding period
is (below p is the annual payment for the corresponding period)

p · ä(4)

3| = p
1− v3

4
(
1− v

1
4

) .

If we replace rental payments during such a period by its present value payable
at the beginning of the period, then the flow of rental income will consists of 5
payments:

1. payment of 0.2 1−v3

1−v
1
4

at t0 = 15
12 ;

2. payment of 0.2 · 1.043 1−v3

1−v
1
4

at t1 = 3 15
12 ;

3. payment of 0.2 · 1.046 1−v3

1−v
1
4

at t2 = 6 15
12 ;

4. payment of 0.2 · 1.049 1−v3

1−v
1
4

at t3 = 9 15
12 ;

5. payment of 0.2 · 1.0412 1−v3

1−v
1
4

at t4 = 12 15
12 .

The present value of this cash flow is

0.2
1− v3

1− v
1
4
v

15
12

(
1 + 1.043v3 + 1.046v6 + 1.049v9 + 1.0412v12

) ≈ 7.936165561.

Thus, the present value of positive payments is

1.717968608 + 7.936165561 = 9.654134168,

so that the present value of the project is

−5.838695025 + 9.654134168 = 3.815439143 (new monetary units),

i.e. £3 815 439.14.
2

Problem 6.19 19 Jim began saving money for his retirement by making monthly
deposits of 200 into a fund earning 6% interest compounded monthly. The first
deposit occurred on January 1, 1985. Jim became unemployed and missed mak-
ing deposits 60 through 72. He then continued making monthly deposits of 200.

How much did Jim accumulate in his fund on December 31, 1999?

19Course/Exam 2 – Economics, Finance, and Interest Theory, The Society of Actuaries
and the Casualty Actuarial Society, May 2000, problem No.47
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Solution. Let one month is a new unit of time, and $200 is a new monetary
unit. The effective rate of interest for this unit interval is i∗ = 1

12 · 0.06 = 0.005.
Monthly deposits from 1 January 1985 till 1 November 1989 (inclusive) can

be thought of as the standard level annuity. Since the total number of deposits
is n = 59, the value of this annuity at the time of the final payment (1 November
1989) is

s
59| = (1 + i∗)58 + (1 + i∗)57 + · · ·+ (1 + i∗) + 1

=
(1 + i∗)59 − 1

i∗
≈ 68.42789.

Period from 1 November 1989 till 31 December 1999 consists of 122 months.
Thus by the end of 1999 this amount accumulates to

s
59| · (1 + i∗)122 ≈ 125.7455688.

Monthly deposits from 1 January 1991 till 1 December 1999 (inclusive) can be
thought of as the standard level annuity. Since the total number of deposits is
n = 108, the value of this annuity at the time of the final payment (1 December
1999) is

s
108| = (1 + i∗)107 + (1 + i∗)106 + · · ·+ (1 + i∗) + 1

=
(1 + i∗)108 − 1

i∗
≈ 142.7399.

For the period from 1 December 1999 till 31 December 1999 this amount grows
to

s
108| · (1 + i∗) ≈ 143.453599.

Thus on 31 December 1999 Jim accumulates in his fund 269.199168 (new mon-
etary units), i.e. in absolute figures approximately $53 839.83. 2

Problem 6.20 20 An actuarial student has created an interest rate model under
which the annual effective rate of interest is assumed to be fixed over the whole
of the next ten years. The annual effective rate is assumed to be 2%, 4% and
7% with probabilities 0.25, 0.55 and 0.2 respectively.

(a) Calculate the expected accumulated value of an annuity of £800 per an-
num payable annually in advance over the next ten years.

(b) Calculate the probability that the accumulated value will be greater than
£10, 000.

Solution. The annuity under consideration is annuity due with annual payment
£800 and the number of payments n = 10. Thus its accumulated value is (in
pounds)

A = 800s̈10| = 800(1 + i)
(1 + i)10 − 1

i
.

20The Institute of Actuaries, Exam CT1, April 2006, Problem 6
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Since the effective rate of interest i is a random variable, so is A. This random
variable takes tree values:

A1 = 800(1 + i) (1+i)10−1
i

∣∣∣
@i=2%

≈ 8 934.97 with probability 0.25;

A2 = 800(1 + i) (1+i)10−1
i

∣∣∣
@i=4%

≈ 9 989.08 with probability 0.55;

A3 = 800(1 + i) (1+i)10−1
i

∣∣∣
@i=7%

≈ 11 826.88 with probability 0.2.

Thus,
EA = A1 · 0.25 + A2 · 0.55 + A3 · 0.2 ≈ 10 093.11.

Random variable A is greater than 10 000 only when i = 7%, so that

P (A > 10 000) = P (i = 7%) = 0.2.

2

Problem 6.21 21 An individual wishes to receive an annuity which is payable
monthly in arrears for 15 years. The annuity is to commence in exactly 10
years at an initial rate of £12, 000 per annum. The payments increase at each
anniversary by 3% per annum. The individual would like to buy the annuity
with a single premium 10 years from now.

(i) Calculate the single premium required in 10 years’ time to purchase the
annuity assuming an interest rate of 6% per annum effective.

The individual wishes to invest a lump sum immediately in an investment
product such that, over the next 10 years, it will have accumulated to the pre-
mium calculated in (i). The annual effective returns from the investment product
are independent and (1+ ik) is lognormally distributed, where ik is the return in
the kth year. The expected annual effective rate of return is 6% and the standard
deviation of annual returns is 15%.

(ii) Calculate the lump sum which the individual should invest immediately in
order to have a probability of 0.98 that the proceeds will be sufficient to
purchase the annuity in 10 years’ time.

(iii) Comment your answer to (ii).

Solution. Consider one annuity year. During this period the individual will
receive 12 payments, £1 000 each, at the end of every month. If we consider
one month as the basic unit of time, then this cash flow is a standard immediate
annuity (to be evaluated at the rate i

(12)
∗ = (1 + i)

1
12 − 1), so that its present

value at the beginning of the year under consideration is

a = 1000a12| = 1000
1− (1 + i

(12)
∗ )−12

i
(12)
∗

= 1000
i

1 + i

1
12
√

1 + i− 1
≈ 11 628.80.

21The Institute of Actuaries, Exam CT1, April 2009, Problem 11
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Now we can replace 12 monthly payments during the annuity year by one pay-
ment of a = 11 628.80 at the beginning of the year. However, since the payments
increase at each anniversary by 3% per annum, as a matter of fact the kth pay-
ment, k = 1, . . . , 15, is 1.03k−1a.

Thus the present value of the flow of payments at the time of commencement
of the annuity is

P =
15∑

k=1

a1.03k−11.06−k+1 = a

14∑

l=0

(
103
106

)l

= a
1− (

103
106

)15

1− 103
106

≈ 143 774.42.

This is exactly the single premium required in 10 years’ time to purchase the
annuity.

If the individual invest a lump sum X immediately in an investment product
which earns interest at the rate ik in year k, then in 10 years he will have
accumulation S = X

∏10
k=1(1 + ik).

The mean value of the accumulation depends only on the mean rate of return
i = Eik and is

ES = X
10∏

k=1

E(1 + ik) = X
10∏

k=1

(1 + Eik) = X(1 + i)10 = X1.0610 ≈ 1.8X.

Thus, if the individual invest a lump sum

X0 =
P

(1 + i)10
≈ 80282.89,

then expected accumulation will be exactly the single premium P = 143 774.42
required in 10 years’ time to purchase the annuity.

However, since the rates ik are random variables, so is the accumulation
factor A =

∏10
k=1(1 + ik). Its distribution function is (for positive values of x)

FA(x) = P (A < x) = P (lnA < ln x) = P

(
10∑

k=1

ln(1 + ik) < ln x

)
.

Random variables ln(1 + ik) are independent and have identical normal distri-
bution with some parameters a and σ. We know that in this case

ea+ σ2
2 = E(1 + ik),

eσ2 − 1 =
V ar(1 + ik)
(E(1 + ik))2

,

so that

σ =

√
ln

(
V arik
(1 + i)2

+ 1
)

,

a = ln(1 + i)− 1
2

ln
(

V arik
(1 + i)2

+ 1
)

.
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In our case, when i = 0.03 and V arik = 0.15, we have:

σ ≈ 0.140808587,

a ≈ 0.048355379.

Random variable
∑10

k=1 ln(1 + ik) has a normal distribution with the mean
10a and the standard deviation

√
10σ. Thus shifted and scaled random variable

∑10
k=1 ln(1 + ik)− 10a√

10σ

is the standard N(0, 1) Gaussian variable.
It yields that

FA(x) = Φ
(

ln x− 10a√
10σ

)
.

Thus, the probability that the proceeds will be sufficient to purchase the
annuity in 10 years’ time is

P (S ≥ P ) = P (XA ≥ P ) = P

(
A ≥ P

X

)
= 1−FA

(
P

X

)
= 1−Φ

(
ln P − ln X − 10a√

10σ

)
.

If we are given the value α of this probability (α is close to 1), then

ln P − ln X − 10a√
10σ

= z1−α = −zα,

where zα is α percentile of the standard Gaussian distribution. Correspondingly,

X = Pe−10a+zα

√
10σ =

P

(1 + i)10
e5σ2+zα

√
10σ = X0e

5σ2+zα

√
10σ,

where X0 = P
(1+i)10 ≈ 80282.89, is the lump sum for which expected accumula-

tion would be exactly the single premium P = 143 774.42 required in 10 years’
time to purchase the annuity.

The coefficient e5σ2+zα

√
10σ is 2.75549832, so that X ≈ 221 219.36.

The value of the coefficient K = e5σ2+zα

√
10σ shows that the initial invest-

ment which would practically guarantee sufficient accumulation must be almost
triple investment calculated on average scenario. This result is a consequence
of the high standard deviation of ik. It is well-known that if ξ is a normal ran-
dom variable with the mean a and variance σ2 that for sure (with probability
99.5%) we can say only that ξ is somewhere between a − 3σ and a + 3σ. In
our case it means that the force of interest δk = ln(1 + ik) lies somewhere be-
tween −0.374070383 and 0.470781141, or equivalently the annual rate of return
ik lies somewhere between −0.312071508 and 0.601244503. Thus, although the
average rate of return is 6% it can be as high as 60%, but can be −31%, which
means losses for the investor.

However, if V arik is small, then the coefficient K is closer to 1, so that X
is closer to X0. Say, if the standard deviation

√
V arik is 1% then K ≈ 1.06.

2
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6.4 Continuous models

Problem 6.22 22 The force of interest, δ(t), is a function of time and at any
time t, measured in years, is given by the formula:

δ(t) =





0.04, if 0 ≤ t ≤ 5,
0.008t, if 5 < t ≤ 10,
0.005t + 0.0003t2, if 10 < t.

(i) calculate the present value of a unit sum of money due at time t = 12.
(ii) Calculate the effective annual rate of interest over the 12 years.
(iii) Calculate the present value at time t = 0 of a continuous payment

stream that is paid at the rate of e−0.05t per unit time between time t = 2 and
time t = 5.

Solution. (i) If δ(t) is the force of interest, then the present value at time
t0 = 0 of a unit sum of money due at time t = 12 is:

PV = exp
{
−

∫ 12

0

δ(t)dt

}
.

Since the function δ(t) is piece-wise, it is convenient to replace the integral∫ 12

0
δ(t)dt as the sum:

∫ 12

0

δ(t)dt =
∫ 5

0

δ(t)dt +
∫ 10

5

δ(t)dt +
∫ 12

10

δ(t)dt

=
∫ 5

0

0.04dt +
∫ 10

5

0.008tdt +
∫ 12

10

(
0.005t + 0.0003t2

)
dt.

All integrals in the right-hand side can be easily calculated:

∫ 5

0

0.04dt = 0.04 · (5− 0) = 0.2,

∫ 10

5

0.008tdt = 0.004t2
∣∣10
5

= 0.3,

∫ 12

10

(
0.005t + 0.0003t2

)
dt = 0.0025t2 + 0.0001t3

∣∣12
10

= 0.1828,

so that
PV = exp(−0.6828) ≈ 0.5052.

(ii) If i is effective annual rate of interest, then PV = (1 + i)−12, i.e.

i =
1

12
√

PV
− 1 ≈ 5.855%.

22The Institute of Actuaries, Exam CT1, April 2006, Problem 9
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(iii) According to the general formula,

PV =
∫ 5

0

ρ(t)V (t)dt.

If a continuous payment stream is paid only between time t = 2 and time t = 5,
then ρ(t) = 0 for t /∈ [2, 5], so that

PV =
∫ 5

2

ρ(t)V (t)dt.

Besides, on the interval [0, 5] the force of interest is constant: δ(t) = 0.04. Thus,
for t ∈ [0, 5],

V (t) ≡ exp
(
−

∫ t

0

δ(u)du

)
= e−0.04t.

Then,

PV =
∫ 5

2

ρ(t)V (t)dt =
∫ 5

2

e−0.05te−0.04tdt =
∫ 5

2

e−0.09tdt

=
1

−0.09
e−0.09t

∣∣∣∣
5

2

=
e−0.18 − e−0.45

0.09
≈ 2.196023.

2

Problem 6.23 23 The force of interest, δ(t), is a function of time and at any
time t, measured in years, is given by the formula:

δ(t) =





0.06, if 0 ≤ t ≤ 4,
0.10− 0.01t, if 4 < t ≤ 7,
0.01t− 0.04, if 7 < t.

(i) calculate the value at time t = 5 of 1,000 due for payment at time t = 10.
(ii) Calculate the constant rate of interest per annum convertible monthly

which leads to the same result as in (i) being obtained.
(iii) Calculate the accumulated amount at time t = 12 of a payment stream,

paid continuously from time t = 0 to t = 4, under which the rate of payment at
time t is ρ(t) = 100e0.02t.

Solution. If δ(t) is the force of interest, then the discounted value at time t1
of C due at time t2 is:

PV = C exp
{
−

∫ t2

t1

δ(t)dt

}
.

In our case
∫ t2

t1
δ(t)dt ≡ ∫ 10

5
δ(t)dt. This integral can be viewed as the area

under the graph of the function δ(t).
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Figure 6.2:

- time

6δ(t)

¡
¡

¡
¡

¡
¡

¡@
@

@
@

@
@

@

0.06

0.03

0.05

54 7 10

The graph of this function is shown on figure 6.2. Note that δ(5) = 0.05,
δ(7) = 0.03, δ(10) = 0.06.

This area, in turn, is the union of two trapezia. Thus,
∫ 10

5

δ(t)dt =
0.05 + 0.03

2
· 2 +

0.03 + 0.06
2

· 3 = 0.215,

so that
PV = 1000 · e−0.215 = 806.54.

(ii) If i(12) is the nominal rate of interest per annum convertible monthly
which leads to the same result as in (i) being obtained, then

PV = 1000
(

1 +
i(12)

12

)−60

,

i.e.

i(12) = 12

(
60

√
1000
PV

− 1

)
≈ 4.3077%.

(iii) According to the general formula, the accumulated amount is

A =
∫ 12

0

ρ(t) exp
(∫ 12

t

δ(u)du

)
dt.

23The Institute of Actuaries, Exam CT1, April 2008, Problem 9
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If a continuous payment stream is paid only between time t = 0 and time t = 4,
then ρ(t) = 0 for t /∈ [0, 4], so that

A =
∫ 4

0

ρ(t) exp
(∫ 12

t

δ(u)du

)
dt.

Besides, for t ∈ [0, 5],

∫ 12

t

δ(u)du =
∫ 4

t

δ(u)du +
∫ 7

4

δ(u)du +
∫ 12

7

δ(u)du

= (4− t) · 0.06 +
0.06 + 0.03

2
· 3 +

0.03 + 0.08
2

· 5
= 0.6− 0.06t.

Then,

A =
∫ 4

0

100e0.02te0.6−0.06tdt = 100e0.6

∫ 4

0

e−0.04tdt

=
100e0.6

−0.04
e−0.04t

∣∣∣∣
4

0

= 2500
(
e0.6 − e0.44

) ≈ 673.529.

2

6.5 Assessment of investment projects

Problem 6.24 24

An ordinary share pays annual dividends. The next dividend is due in exactly
eight months’ time. This dividend is expected to be £1.10 per share. Dividends
are expected to grow at a rate of 5% per annum compound from this level and
are expected to continue in perpetuity. Inflation is expected to be 3% per annum.
The price of the share is £21.50.

Calculate the expected effective annual real rate of return for an investor who
purchases the share.

Solution. Let one year is taken as the basic unit of time. Then in return for the
initial payment of the price p0 = £21.50 at time t0 = 0 the share will pay the first
dividend p1 = £1.10 at time t1 = 8

12 = 2
3 , the second dividend p2 = £1.10 · 1.05

at time t2 = 1 2
3 , the third dividend p3 = £1.10 · 1.052 at time t3 = 2 2

3 , and so
on, the kth dividend pk = £1.10 · 1.05k−1 at time tk = (k − 1) + 2

3 = k − 1
3

(k = 1, 2, . . . ). Thus the equation of value is

−p0 +
+∞∑

k=1

pkvk− 1
3 = 0 ⇔ −21.50 + 1.10

v
2
3

1− 1.05v
= 0 (for v < 1

1.05 ). (6.14)

24The Institute of Actuaries, Exam CT1, September 2007, Problem 3



6.5. ASSESSMENT OF INVESTMENT PROJECTS 79

Let x = v
1
3 . Then this equation becomes

1.10x2

1− 1.05x3
= 21.50. (6.15)

The function f(x) = 1.10x2

1−1.05x3 is defined for x < 1
3√1.05

(this condition is equiva-

lent to v < 1
1.05 ) and is increasing from f(0) = 0 to +∞ when x ∈

[
0, 1

3√1.05

)
.

Thus equation (6.15) has the unique root x0 ∈
[
0, 1

3√1.05

)
.

This root can be found with the help of Microsoft Excel using the Goal Seek
feature. To do this,

• Open a new, blank worksheet.

• In cell A1 enter any value for x, say, 0.

• In cell A2 enter the formula which defines f(x); in our case:

= 1.1 ∗A12/(1− 1.05 ∗A13)

• On the Data tab, in the Data Tools group, click What-If Analysis,
and then click Goal Seek.

• In the Set cell box, enter the reference for the cell that contains the
formula, i.e. A2.

• In the To value box, enter 21.50.

• In the By changing cell box, enter the reference for the cell that contains
the value of x, i.e. A1.

• Click OK.

After this Goal Seek runs and produces the following result:

Goal Seek Status:
Goal Seeking with Cell A2 found a solution
Target value: 21.5
Current value: 21.500006

After you click OK, in the cell A1 you will see the root x0 = 0.967891178.
Correspondingly, the equation of value (6.14) has the unique root v0 ∈[

0, 1
1.05

)
which is v0 = x3

0 = 0.906733361. Now the rate of return i0 can be
found as i0 = 1

v0
− 1 = 0.10286005.

It should be noted that this is money rate of return, since it does not take
into account the inflation. To find the real rate of return ir, note that the money
rate of return i0 means the following: if we invest at time t = 0 amount 1, then
we get amount 1 + i0 at time t = 1. However, purchase power of 1 at time
t = 0 is the same as purchase power of 1 + f at time t = 1 (f = 3% is the
inflation rate) or, equivalently, purchase power of 1

1+f at time t = 0 is the same
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as purchase power of 1 at time t = 1. Thus, in real money at time t = 1 we
receive amount 1+i0

1+f in return for investment of 1 at time t = 0. Thus,

ir =
1 + i0
1 + f

− 1 =
i0 − f

1 + f
= 0.0707.

2

Problem 6.25 25 An investor deposits 1000 on January 1, 2006, and deposits
another 1000 on January 1 2008 into a fund that matures on January 1 2010.
The interest rate on the fund differs every year and is equal to the annual effec-
tive rate of growth of the gross domestic product (GDP) during the 4th quarter
of the previous year. The following are the relevant GDP values for the past 4
years:

Table 6.1:
year III quarter IV quarter

2005 800.0 808.0
2006 850.0 858.5
2007 900.0 918.0
2008 930.0 948.6

What is the internal rate of return earned by the investor over the 4 year
period?

Solution.
The quarterly effective rate of growth of the gross domestic product during

the 4th quarter of 2005, 2006, 2007, 2008 is 1%, 1%, 2% and 2% respectively.
Thus the annual interest rate on the fund is is (1.014 − 1) ≈ 4.06% in 2006 and
2007, and (1.024 − 1) ≈ 8.24% in 2008 and 2009. By 1 January 2010 investor’s
deposits accumulate to

(
1000 · (1.014

)2
+ 1000

)
· (1.024

)2 ≈ 2440.40.

The net cash flow which describes this investment project is:

t1 = 0, t2 = 1, t3 = 2, t4 = 3, t5 = 4
c1 = −1000, c2 = 0, c3 = −1000, c4 = 0, c5 = 2440.40.

Thus the equation of value
∑

k

ck(1 + i)−tk = 0

becomes:
−1000− 1000 · (1 + i)−2 + 2440.40 · (1 + i)−4 = 0.

25Course 2 – Interest Theory, Economics and Finance, The Society of Actuaries and the
Casualty Actuarial Society, November 2000, problem No.51 – a revised version
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This equation can be solved with the help of the new unknown x = (1 + i)−2;
it has two real roots:

i1 ≈ 0.067822, i2 ≈ −2.067822.

The root we are interested in, must be greater than −1, so that the internal
rate of return earned by the investor over the 4 year period is 6.7822%.

2

6.6 Loans

Problem 6.26 26 A loan is amortized over five years with monthly payments at
a nominal interest rate of 9% compounded monthly. The first payment is 1000
and is to be paid one month from the date of the loan. Each succeeding monthly
payment will be 2% lower than the prior payment.

Calculate the outstanding loan balance immediately after the 40th payment
is made.

Solution. Let one month is a unit of time. Then the effective rate of interest for
this period, i

(12)
∗ , which corresponds to the nominal rate of interest i(12) = 9%

is

i
(12)
∗ =

1
12

i(12) = 0.75% = 0.0075.

Although we do not know the amount of the loan, the amounts of successive
payments varies according to a simple law and can be easily found. The amount
of the nth payment, pn, is given by the formula:

pn = 1000 · (1− 0.02)n−1, n = 1, . . . , 60.

Thus lets calculate the outstanding loan balance immediately after the 40th
payment is made by prospective method. At time 40 it is necessary to make 20
payments

1000 · (0.98)40, 1000 · (0.98)41, . . . , 1000 · (0.98)59

at times 41, 42, . . . , 60 correspondingly. The present value of this cash flow at
time 40, immediately after 40th payment, is

20∑
n=1

1000 · (0.98)39+n(1.0075)−n

= 1000
(0.98)40(1.0075)−1 − (0.98)60(1.0075)−21

1− 0.98
1.0075

≈ 6889.11.

2

26Course 2 – Interest Theory, Economics and Finance, The Society of Actuaries and the
Casualty Actuarial Society, November 2001, problem No.9



82 CHAPTER 6. PROBLEMS

Problem 6.27 27

(i) State the features of a eurobond.

(ii) An investor purchases a eurobond on the date of issue at a price of £97
per £100 nominal. Coupons are paid annually in arrear. The bond will
be redeemed at par twenty years from the issue date. The rate of return
from the bond is 5% per annum effective.

(a) Calculate the annual rate of coupon paid by the bond.

(b) Calculate the duration of the bond.

Solution. Eurobond is a contract under which the issuer agrees to pay to the
bond holder the par value (i.e. the amount stated on the face of the bond) at
the maturity date, plus regular (usually, annual) interest payments (coupons)
which are expressed as a percentage of the face value of the bond.

The purchase price of the eurobond is the sum of the present value of the face
amount and the present value of cash flow of the interest payments calculated
according to the rate of return from the bond (as a matter of fact, it is the
internal rate of return for the transaction).

In the case under consideration:

• the face value is £100;

• the maturity date is n = 20 (from the date of issue);

• the interest payments form an immediate annuity with n = 20 level coupon
payments (the amount x of each interest payment is unknown);

• the purchase price is £97;

• the present values are calculated according to the interest rate i = 5%
(per annum).

Thus, the following equation holds:

The purchase price = The face value · vn + The amount of each coupon · an|,

where the discount factor v and the present value of the standard immediate
annuity an| are calculated at the interest rate i = 5% (per annum), or equiva-
lently,

97 = 100v20 + xa20|.

From this:

x =
97− 100v20

a20|
= i

97(1 + i)20 − 100
(1 + i)20 − 1

≈ 4.75927. (6.16)

27The Institute of Actuaries, Exam CT1, September 2005, Problem 6
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To calculate the duration τ of the bond, note that the bond holder will receive
20 payments of coupons at times t1 = 1, t2 = 2, . . . , t20 = 20 (the amount of
each coupon is x) and the final payments of the face value £100 at time tf = 20.

Since the present value of all these payments is £97 (the purchase price),
the weights of the payments are as follows:

• for the kth coupon (due at time tk = k) the weight is wk = xvk

97 , k =
1, 2, . . . , 20;

• for the final payments of the face value the weight is wf = 100v20

97 .

By the definition, the duration of the bond is the weighted average payment
time

τ =
20∑

k=1

wktk + wf tf .

Thus,

τ =
1
97

(
x

20∑

k=1

kvk + 2000v20

)

=
1
97

(
x

v

(1− v)2
(1− 21v20 + 20v21) + 2000v20

)

≈ 13.21467(years) ≈ 13(years) 2(months) 18(days).

2

Problem 6.28 28 A loan is to be repaid by an annuity payable annually in
arrear. The annuity starts at a rate of £300 per annum and increases each year
by £30 per annum. The annuity is to be paid for 20 years.

Repayments are calculated using a rate of interest of 7% per annum effective.
Calculate:

(i) The amount of the loan.

(ii) The capital outstanding immediately after the 5th payment has been made.

(iii) The capital and interest components of the final payment.

Solution. (i) Since the annuity starts at a rate of £300 per annum and increases
each year by £30 per annum, then the amount pk of kth payment (at time
tk = k) is given by the formula pk = 270 + 30k.

The amount L of the loan is the present value of the annuity; this present
value is to be evaluated at the technical rate of interest i = 0.07. Since the
amount to be paid off at time k is 270 + 30k, we have:

L =
20∑

k=1

(270 + 30k)vk = 270
20∑

k=1

vk + 30v

20∑

k=1

vk−1

= 270f(v) + 30vf ′(v),
28The Institute of Actuaries, Exam CT1, April 2009, Problem 3
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where

f(v) =
20∑

k=1

vk = a20| =
v − v21

1− v
,

so that

f ′(v) =
1− 21v20 + 20v21

(1− v)2
.

Thus,
L =

v

(1− v)2
(
300− 270v − 900v20 + 870v21

) ≈ 5 503.476.

This present value can be calculated with the help of Microsoft Excel with the
help of the function NPV(i, p1, p2, . . . , pn). This function returns the present
value of the series of payments p1, p2, . . . , pn to be made at times t1 = 1, t2 =
2, . . . , tn = n discounted according to the effective rate of interest per period i.
In our case one should enter in a cell the following formula:

=NPV(0.07,300,330,360,390,420,450,480,510,540,570,600,630,660,690,720,750,780,810,840,870)

and then press ”Enter”.
Immediately after this in the cell we will see the value 5 503.48 (if the cell

is formatted to display 2 decimal places).
(ii) The capital outstanding immediately after the 5th payment has been

made is equal to the obligations of the borrower at this time. At time t = 5 the
borrower still has to pay amounts p6, . . . , p20 at time t6 = 6, . . . , t20 = 20 (in
total, 15 payments). Thus

x5 =
20∑

k=6

(270 + 30k)vk−5.

To calculate the sum introduce a new index of summation l = k − 5:

x5 =
15∑

l=1

(270 + 30(l + 5))vl =
15∑

l=1

(420 + 30l)vl = 420
15∑

k=1

vl + 30v

15∑

l=1

vl−1

= 420g(v) + 30vg′(v),

where

g(v) =
15∑

l=1

vl = a15| =
v − v16

1− v
,

so that

g′(v) =
1− 16v15 + 15v16

(1− v)2
.

Thus,
x5 =

v

(1− v)2
(
450− 420v − 900v15 + 870v16

) ≈ 5 671.94.



6.6. LOANS 85

This present value can be calculated with the help of Microsoft Excel; the func-
tion NPV. In our case one should enter in a cell the following formula:

=NPV(0.07,450,480,510,540,570,600,630,660,690,720,750,780,810,840,870)

and then press ”Enter”.
Immediately after this in the cell we will see the value 5 671.94 (if the cell

is formatted to display 2 decimal places).
(iii) The capital outstanding immediately after the 19th payment has been

made is equal to the obligations of the borrower at this time. At time t = 19
the borrower still has to pay the final amount p20 = 870 at time t20 = 20. Thus

x19 = 870v =
870
1 + i

≈ 813.08.

This is exactly the capital component of the final payment.
To find the interest components of the final payment we may either deduct

x19 from the final payment: 870− 813.08 = 56.92, or calculate the interest due
as x19i = 813.08 · 0.07 ≈ 56.92.

2
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Chapter 7

Appendix 1

7.1 The Actuarial Profession

In United Kingdom The Actuarial Profession is a term which is used to denote
two (closely connected) professional organizations: The Institute of Actuaries
and the Faculty of Actuaries.

By definition an actuary is a member of either The Institute of Actuaries
or the Faculty of Actuaries. The actuarial qualification allows a person to get
very well-paid job in an insurance company, a bank, a consulting company, etc.
(which cannot be occupied without actuarial qualification).

To become an Associate or a Fellow of the Faculty or Institute of Actuaries
it is necessary to make a study of a number of courses ordered by the Profession
and prove the quality of the study by passing the examinations (as a rule).

7.2 Actuarial Examinations

The actuarial examinations usually are held twice a year (in April and Septem-
ber).

The exams are offered for those who has a status of a student member of
the Institute.

The courses ordered by the Profession are divided into four groups (stages
in terminology of the Profession):

1. Core Technical Stage

2. Core Applications Stage

3. Specialist Technical Stage

4. Specialist Applications Stage

The Core Technical Stage includes 9 courses:

87
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1. Financial Mathematics (Course CT1)

2. Finance and Financial Reporting (Course CT2)

3. Probability and Mathematical Statistics (Course CT3)

4. Models (Course CT4)

5. Contingencies (Course CT5)

6. Statistical Methods (Course CT6)

7. Business Economics (Course CT7)

8. Financial Economics (Course CT8)

9. Business Awareness Module (Course CT9)

The Core Application Stage includes 3 courses:

1. Actuarial Risk Management (Course CA1)

2. Model documentation , analysis and reporting (Course CA2)

3. Communications (Course CA3)

The Specialist Technical Stage includes 9 courses:

1. Health and Care (Course ST1)

2. Life Insurance (Course ST2)

3. General Insurance (Course ST3 - in 2010 this subject has been replaced
by subjects ST7 and ST8)

4. Pensions and Other Benefits (Course ST4)

5. Finance and Investment (Course ST5)

6. Finance and Investment (Course ST6)

7. General Insurance - Reserving and capital modeling (Course ST7)

8. General Insurance - Pricing (Course ST8)

9. Enterprize Risk Management (Course ST9)

The Specialist Applications Stage includes 6 courses:

1. Health and Care (Course SA1)

2. Life Insurance (Course SA2)

3. General Insurance (Course SA3)
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4. Pensions and Other Benefits (Course SA4)

5. Finance (Course SA5)

6. Investment (Course SA6)

For Associateship students must gain passes in all the Core Technical (CT1-
CT9) and Core Applications subjects (CA1-CA3). Students must also satisfy
any other conditions required by Councils for Associateship.

For Fellowship, in addition, candidates must gain passes two Specialist Tech-
nical subjects (from the list ST1-ST9) and one Specialist Applications subject
(from the list SA1-SA6). Candidates must also satisfy any other conditions re-
quired by Council of the Faculty of Actuaries or the Council of the Institute of
Actuaries for Fellowship.

From April 2009 the Actuarial Profession is offering for any university stu-
dent to take the first exam, CT1 (Financial Mathematics). In the case of success,
the candidate receives a Certificate in Financial Mathematics.

The students who complete or are exempted from all of the Core Techni-
cal stage subjects (CT1–CT9) automatically receive The Diploma in Actuarial
Techniques.

The students of the Faculty and Institute of Actuaries who complete or
are exempted from the courses CT1, CT2, CT4, CT7, CT8, CT9 and CA1
automatically receive The Certificate in Finance and Investment.

During the exams candidates may use actuarial tables including a list of
standard formulae and electronic calculators, but only the following calculators
are permitted: Casio FX85, Hewlett Packard HP9S, Hewlett Packard HP 12C,
Sharp EL531, Texas Instruments BA II Plus, Texas Instruments TI-30 (all the
models with or without any suffix).

7.3 Exemptions

To attract students to join the actuarial profession the Institute and Faculty of
Actuaries offer exemptions from some examinations for students of the univer-
sities which offer undergraduate and postgraduate actuarial, statistical, math-
ematical, economical programmes, particularly programmes accredited by the
Profession. The syllabus coverage on university accredited programmes is equiv-
alent but not necessarily identical to the Profession’s syllabus. In UK the accred-
ited programs are offered by University of Cambridge, University of Oxford Said
Business School, City University London, London School of Economics, Impe-
rial College Business School in London, University College Dublin, Heriot-Watt
University in Edinburgh, University of Kent, University of Leicester, University
of Manchester, Queen’s University Belfast, University of Southampton, Swansea
University.

Overseas the accredited programs are offered by:
In Ireland by University College Cork, Dublin City University
In Canada by University of Waterloo
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In Australia by Australian National University, Macquarie University Syd-
ney, University of Melbourne, University of New South Wales

In South Africa by University of Cape Town, University of the Free State
(Bloemfontein), University of Kwazulu-Natal, North West University (Potchef-
stroom), University of Pretoria, Stellenbosch University, University of the Wit-
watersrand (Johannesburg)

In Hong Kong by University of Hong Kong
In Singapore by Nanyang Technological University
In Egypt by Cairo University
Usually students of an university offering actuarial programs may expect

exemption from blocks of exams; the most common block consists of 8 Core
Technical Stage subjects (CT1-CT8). The get exemption the whole program
should be completed, i.e. it is not possible to get subject by subject exemp-
tions. But, say, in the case of University of Cambridge, programme M. Phil in
Statistical Science, only exemption from subjects CT3 and CT6 may be granted.
Sometimes, depending on modules taken, exemption from other courses may be
granted.

The exemption is not granted automatically; it requires an application and
payment of fees. The exemption fees for CT subjects is £150 per subject, for ST
subjects is £210 per subject, for CA subjects is from £400 to £210 per subject
(for overseas students the rates are much lower, approximately 25 − 35% of
the UK rates). Besides, a student must join either the Faculty or Institute of
Actuaries as a student member.



Chapter 8

Appendix 2

8.1 Syllabus for Subject CT1

The Actuarial Profession1

Aim

The aim of the Financial Mathematics subject is to provide a grounding in
financial mathematics and its simple applications.

Objectives

On completion of the subject the trainee actuary will be able to:

1. Describe how to use a generalized cashflow model to describe financial
transactions.

(a) For a given cashflow process, state the inflows and outflows in each
future time period and discuss whether the amount or the timing (or
both) is fixed or uncertain.

(b) Describe in the form of a cashflow model the operation of a zero
coupon bond, a fixed interest security, an index-linked security, cash
on deposit, an equity, an ”interest only” loan, a repayment loan, and
an annuity certain.

2. Describe how to take into account the time value of money using the
concepts of compound interest and discounting.

(a) Accumulate a single investment at a constant rate of interest under
the operation of simple/compound interest

1This is an official syllabus for the 2010 examinations of the Institute of Actuaries and the
Faculty of Actuaries

91



92 CHAPTER 8. APPENDIX 2

(b) Define the present value of a future payment.

(c) Discount a single investment under the operation of simple (commer-
cial) discount at a constant rate of discount.

(d) Describe how a compound interest model can be used to represent
the effect of investing a sum of money over a period.

3. Show how interest rates or discount rates may be expressed in terms of
different time periods.

(a) Derive the relationship between the rates of interest and discount
over one effective period arithmetically and by general reasoning.

(b) Derive the relationships between the rate of interest payable once
per effective period and the rate of interest payable p times per time
period and the force of interest.

(c) Explain the difference between nominal and effective rates of interest
and derive effective rates from nominal rates.

(d) Calculate the equivalent annual rate of interest implied by the accu-
mulation of a sum of money over a specified period where the force
of interest is a function of time.

4. Demonstrate a knowledge and understanding of real and money interest
rates.

5. Calculate the present value and the accumulated value of a stream of equal
or unequal payments using specified rates of interest and the net present
value at a real rate of interest, assuming a constant rate of inflation.

(a) Discount and accumulate a sum of money or a series (possibly infi-
nite) of cashflows to any point in time where: the rate of interest or
discount is constant, the rate of interest or discount varies with time
but is not a continuous function of time, either or both the rate of
cashflow and the force of interest are continuous functions of time

(b) Calculate the present value and accumulated value of a series of equal
or unequal payments made at regular intervals under the operation
of specified rates of interest where the first payment is deferred for a
period of time/not deferred

6. Define and use the more important compound interest functions including
annuities certain.

(a) Derive formulae in terms of i, v, n, d, δ, i(p) and d(p) for an|, sn|,
a
(p)
n| , s

(p)
n| , än|, s̈n|, ä

(p)
n| , s̈

(p)
n| , an| and sn|.

(b) i, v, n, d, δ, i(p) and d(p) for m|an|, m|a
(p)
n| , m|än|, m|ä

(p)
n| and m|an|.

(c) Derive formulae in terms of i, v, n, δ , an| and än| for (Ia)n|, (Iä)n|,
(Ia)n|, (Ia)n| and the respective deferred annuities.
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7. Define an equation of value.

(a) Define an equation of value, where payment or receipt is certain.

(b) Describe how an equation of value can be adjusted to allow for un-
certain receipts or payments.

(c) Understand the two conditions required for there to be an exact so-
lution to an equation of value.

8. Describe how a loan may be repaid by regular instalments of interest and
capital.

(a) Describe flat rates and annual effective rates.

(b) Calculate a schedule of repayments under a loan and identify the
interest and capital components of annuity payments where the an-
nuity is used to repay a loan for the case where annuity payments
are made once per effective time period or p times per effective time
period and identify the capital outstanding at any time.

9. Show how discounted cashflow techniques can be used in investment project
appraisal.

(a) Calculate the net present value and accumulated profit of the receipts
and payments from an investment project at given rates of interest.

(b) Calculate the internal rate of return implied by the receipts and pay-
ments from an investment project.

(c) Describe payback period and discounted payback period and discuss
their suitability for assessing the suitability of an investment project.

(d) Determine the payback period and discounted payback period im-
plied by the receipts and payments from an investment project.

(e) Calculate the money-weighted rate of return, the time-weighted rate
of return and the linked internal rate of return on an investment or
a fund.

10. Describe the investment and risk characteristics of the following types of
asset available for investment purposes: fixed interest government borrow-
ings, fixed interest borrowing by other bodies, shares and other equity-type
finance, derivatives

11. Analyze elementary compound interest problems.

(a) Calculate the present value of payments from a fixed interest security
where the coupon rate is constant and the security is redeemed in one
instalment.

(b) Calculate upper and lower bounds for the present value of a fixed
interest security that is redeemable on a single date within a given
range at the option of the borrower.
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(c) Calculate the running yield and the redemption yield from a fixed
interest security (as in 1.), given the price.

(d) Calculate the present value or yield from an ordinary share and a
property, given simple (but not necessarily constant) assumptions
about the growth of dividends and rents.

(e) Solve an equation of value for the real rate of interest implied by the
equation in the presence of specified inflationary growth.

(f) Calculate the present value or real yield from an index-linked bond,
given assumptions about the rate of inflation.

(g) Calculate the price of, or yield from, a fixed interest security where
the investor is subject to deduction of income tax on coupon pay-
ments and redemption payments are subject to the deduction of cap-
ital gains tax.

(h) Calculate the value of an investment where capital gains tax is payable,
in simple situations, where the rate of tax is constant, indexation al-
lowance is taken into account using specified index movements and
allowance is made for the case where an investor can offset capital
losses against capital gains.

12. Calculate the delivery price and the value of a forward contract using
arbitrage free pricing methods.

(a) Define ”arbitrage” and explain why arbitrage may be considered im-
possible in many markets.

(b) Calculate the price of a forward contract in the absence of arbitrage
assuming: no income or expenditure associated with the underlying
asset during the term of the contract, a fixed income from the asset
during the term, a fixed dividend yield from the asset during the
term.

(c) Explain what is meant by ”hedging” in the case of a forward contract.
(d) Calculate the value of a forward contract at any time during the term

of the contract in the absence of arbitrage, in the situations listed in
(b) above.

13. Show an understanding of the term structure of interest rates.

(a) Describe the main factors influencing the term structure of interest
rates.

(b) Explain what is meant by the par yield and yield to maturity.
(c) Explain what is meant by, derive the relationships between and eval-

uate: discrete spot rates and forward rates, continuous spot rates
and forward rates

(d) Define the duration and convexity of a cashflow sequence, and illus-
trate how these may be used to estimate the sensitivity of the value
of the cashflow sequence to a shift in interest rates.
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(e) Evaluate the duration and convexity of a cashflow sequence.

(f) Explain how duration and convexity are used in the (Redington)
immunization of a portfolio of liabilities.

14. Show an understanding of simple stochastic models for investment returns.

(a) Describe the concept of a stochastic interest rate model and the fun-
damental distinction between this and a deterministic model.

(b) Derive algebraically, for the model in which the annual rates of re-
turn are independently and identically distributed and for other sim-
ple models, expressions for the mean value and the variance of the
accumulated amount of a single premium.

(c) Derive algebraically, for the model in which the annual rates of return
are independently and identically distributed, recursive relationships
which permit the evaluation of the mean value and the variance of
the accumulated amount of an annual premium.

(d) Derive analytically, for the model in which each year the random
variable (1 + i) has an independent log-normal distribution, the dis-
tribution functions for the accumulated amount of a single premium
and for the present value of a sum due at a given specified future
time.

(e) Apply the above results to the calculation of the probability that a
simple sequence of payments will accumulate to a given amount at a
specific future time.
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