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ABSTRACT

We study the problem of lifting of polynomial symplectomorphisms in charac-
teristic zero to automorphisms of theWeyl algebra bymeans of approximation
by tame automorphisms. In 1983, Anick proved the fundamental result on
approximation of polynomial automorphisms. We obtain similar approxima-
tion theorems for symplectomorphisms and Weyl algebra authomorphisms.
We then formulate the lifting problem.More precisely, we prove the possibility
of lifting of a symplectomorphism to an automorphism of the power series
completion of theWeyl algebra of the corresponding rank. The lifting problem
has its origins in the context of deformation quantization of the a�ne space
and is closely related to several major open problems in algebraic geometry
and ring theory.
This paper is a continuation of the study [19].
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1. Introduction

One of the active research areas in ring theory concerns the geometry of polynomial endomorphisms—
that is, endomorphisms of �nitely generated associative algebras (typically over a �eld K) subject to a
set of polynomial identities and possibly carrying other structures. Arguably, the most renowned—and
notoriously di�cult—open problems in this area is the Jacobian conjecture of Keller [31], open for all
N ≥ 2:

Conjecture 1.1. If K is a �eld of characteristic zero and ϕ : AN
K

→ AN
K
is a polynomial mapping of the

a�ne space of dimension N with unit Jacobian:

J(ϕ) = det

[

∂ϕ(xi)

∂xj

]

= 1

then ϕ is invertible (and the inverse is also a polynomial mapping).

Tsuchimoto [27, 28], and independently Kanel-Belov and Kontsevich [16], found a deep connection
between the Jacobian conjecture and a celebrated conjecture of Dixmier [10] on endomorphisms of the
Weyl algebra, which is stated as follows:

Conjecture 1.2. Any endomorphism φ of the n-thWeyl algebraWn(K) in characteristic zero is invertible.
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The correspondence between the two open problems, in the case of algebraically closed K, is based
on the existence of a composition-preserving map

EndWn(K) → EndK[x1, . . . , x2n]

which is a homomorphism for the corresponding automorphism groups. Furthermore, the map-
pings that belong to the image of this homomorphism preserve the standard symplectic form on the
2n-dimensional a�ne space A2n

K
. In accordance with this, Kontsevich and Kanel-Belov [15] formulated

several conjectures on correspondence between automorphisms of theWeyl algebraWn and the Poisson
algebra Pn (which is the polynomial algebraK[x1, . . . , x2n] endowed with the standard Poisson bracket)
in characteristic zero. In particular, there is a

Conjecture 1.3. The automorphism groups of the n-th Weyl algebra and the polynomial algebra in 2n
variables with Poisson structure over the rational numbers are isomorphic:

AutWn(Q) ≃ AutPn(Q)

Relatively little is known about the case K = Q, and the proof techniques developed in [15]
rely heavily on model-theoretic objects such as in�nite prime numbers (in the sense of non-standard
analysis); that in turn requires the base �eld K to be of characteristic zero and algebraically closed
(e�ectively C by the Lefschetz principle). However, even the seemingly easier analogue of the above
conjecture, the caseK = C, is known (and positive) only for n = 1.

In the case n = 1, the a�rmative answer to the Kontsevich conjecture, as well as positivity of
several isomorphism statements for algebras of similar nature, relies on the fact that all automorphisms
of the algebras in question are tame (see de�nition below). Groups of tame automorphisms are rather
interesting objects. Anick [1] has proved that the group of tame automorphisms ofK[x1, . . . , xN] is dense
(in power series topology) in the subspace of all endomorphisms with non-zero constant Jacobian. This
fundamental result enables one to reformulate the Jacobian conjecture as a statement on invertibility of
limits of tame automorphism sequences.

Another interesting problem is to ask whether all automorphisms of a given algebra are tame [9, 12,
26, 29, 32]. For instance, it is the case [21, 22] for K[x, y], the free associative algebra K〈x, y〉 and the
free Poisson algebraK{x, y}. It is also the case for free Lie algebras (a result of P. M. Cohn). On the other
hand, tameness is no longer the case for K[x, y, z] (the wild automorphism example is provided by the
well-known Nagata automorphism, cf. [23, 25]).

Anick’s approximation theorem was established for polynomial automorphisms in 1983. We obtain
the approximation theorems for polynomial symplectomorphisms and Weyl algebra automorphisms.
These new cases are established a�er more than 30 years. The focus of this paper is the problem of

li�ing of symplectomorphisms:
– can an arbitrary symplectomorphism in dimension 2n be li�ed to an automorphism of the n-th Weyl

algebra in characteristic zero?
The li�ing problem is the milestone in the Kontsevich conjecture. The use of tame approximation

is advantageous due to the fact that tame symplectomorphisms correspond to Weyl algebra automor-
phisms: in fact [15], the tame automorphism subgroups are isomorphic whenK = C.

The problems formulated above, as well as other statements of similar �avor, outline behavior
of algebro-geometric objects when subject to quantization. Conversely, quantization (and anti-
quantization in the sense of Tsuchimoto) provides a new perspective for the study of various properties
of classical objects; many of such properties are of distinctly K-theoretic nature. The li�ing problem is
a subject of a thorough study of Artamonov [2–5], one of the main results of which is the proof of an
analogue of the Serre—Quillen—Suslin theorem for metabelian algebras. The possibility of li�ing of
(commutative) polynomial automorphisms to automorphisms of metabelian algebra is a well-known
result of Umirbaev, cf. [30]; themetabelian li�ing property was instrumental in Umirbaev’s resolution of
the Anick’s conjecture (which says that a speci�c automorphism of the free algebraK〈x, y, z〉, charK = 0
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is wild). Related to that also is a series ofwell-knownpapers [24–26, 29] for non-commutative ring theory
we recommend the book [8].

An interesting and in a sense essential generalization of this line of inquiry is obtained by taking
it to the realm of quantum algebra. Indeed, the algebraic and K-theoretic language of quantization
can be extended naturally to account for the relevant non-commutative geometry. Accordingly, the
vast majority of problems formulated above may also be posed in the quantum algebraic context.
Automorphism groups of algebras of quantum polynomials were the subject of an investigation of
Artamonov [6, 7]. Such algebras provide a generalization of the Weyl algebra, and it is a question
of legitimate interest whether the topology of the corresponding automorphism group allows for
approximation theorems analogous to the ones discussed in the present paper.

We establish the approximation property for polynomial symplectomorphisms and comment on the
li�ing problem of polynomial symplectomorphisms andWeyl algebra automorphisms. In particular, the
main results discussed here are as follows.

Main Theorem 1. Let ϕ = (ϕ(x1), . . . , ϕ(xN)) be an automorphism of the polynomial algebra
K[x1, . . . , xN] over a �eld K of characteristic zero, such that its Jacobian is equal to 1. Then there exists
a sequence {ψk} ⊂ TAutK[x1, . . . , xN] of tame automorphisms which converges to ϕ in formal power
series topology.

Anick [1] proved the tame approximation theorem for polynomial automorphisms. We present
a slightly modi�ed elementary proof of Anick’s theorem, which is then adapted to the problem of
approximation by polynomial symplectomorphisms. That in turn allows us to attack the problem of
approximating Weyl algebra automorphisms—as tame symplectomorphisms have (unique) preimages
under the Kanel-Belov—Kontsevich homomorphism [15].

Main Theorem 2. Let σ = (σ (x1), . . . , σ(xn), σ(p1), . . . , σ(pn)) be a symplectomorphism of
K[x1, . . . , xn, p1, . . . , pn] with unit Jacobian. Then there exists a sequence {τk} ⊂ TAutPn(K) of tame
symplectomorphisms which converges to σ in formal power series topology.

Main Theorem 3. Let K = C and let σ : Pn(C) → Pn(C) be a symplectomorphism over complex
numbers. Then there exists a sequence

ψ1, ψ2, . . . , ψk, . . .

of tame automorphisms of the n-th Weyl algebra Wn(C), such that their images σk in AutPn(C) converge
to σ .

The last theorem is of main concern to us. As we shall see, sequences of tame symplectomorphisms
li�ed to automorphisms of Weyl algebra (either by means of the isomorphism of [15], or explicitly
through deformation quantization Pn(C) → Pn(C)[[h̄]]) are such that their limits may be thought of
as power series in Weyl algebra generators. If we could establish that those power series were actually
polynomials, then the Dixmier conjecture would imply the Kontsevich’s conjecture (with Q replaced
by C). Conversely, approximation by tame automorphisms provides a possible means to attack the
Dixmier conjecture (and, correspondingly, the Jacobian conjecture).

Another important detail of approximation by tame automorphisms is its natural behavior with
respect to the m-adic topology on local rings of automorphism varieties. This is formalized in the
following two results.

MainTheorem 4. Let ϕ be a polynomial automorphism and letOϕ be the local ring of AutC[x1, . . . , xn]
with its maximal idealm. If {ψk} is a tame sequence which converges to ϕ in power series topology, then
the coordinates of ψk converge to coordinates of ϕ inm-adic topology.
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Main Theorem 5. Let σ be a symplectomorphism and let Oσ be the local ring of AutPn(C) with its
maximal ideal m. If {σk} is a tame sequence which converges to σ in power series topology, then the
coordinates of σk converge to coordinates of σ inm-adic topology.

The present paper serves as a continuation and expansion of our previous study of quantization [19].

2. Endomorphisms ofK[x1, . . . , xn],Wn(K) and Pn(K)

2.1. De�nitions and notation

The n-th Weyl algebraWn(K) overK is by de�nition the quotient of the free associative algebra

K〈a1, . . . , an, b1, . . . , bn〉

by the two-sided ideal generated by elements

biaj − ajbi − δij, aiaj − ajai, bibj − bjbi,

with 1 ≤ i, j ≤ n. One can think ofWn(K) as the algebra

K[x1, . . . , xn, y1, . . . , yn]

with two sets of n mutually commuting generators (images of the free generators under the canonical
projection) which interact according to [yi, xj] = yixj − xjyi = δij; henceforth we denote the Weyl
algebra byWn(K) in order to avoid confusion withK[X]—notation reserved for the ring of polynomials
in commuting variables.

The polynomial algebra K[x1, . . . , xN] itself is the quotient of the free associative algebra by the
congruence that makes all its generators commutative. When the number N of generators is even, the
algebraK[x1, . . . , x2n] carries an additional structure of the Poisson algebra—namely, a bilinear map

{ , } : K[x1, . . . , x2n] ⊗ K[x1, . . . , x2n] → K[x1, . . . , x2n]

that turns K[x1, . . . , x2n] into a Lie algebra and acts as a derivation with respect to polynomial
multiplication. Under a �xed choice of generators, this map is given by the standard Poisson bracket

{xi, xj} = δi,n+j − δi+n,j.

We denote the pair (K[x1, . . . , x2n], { , }) by Pn(K). In our discussion the coe�cient ring K is a �eld
of characteristic zero, and for later purposes (Proposition 4.3) we require K to be algebraically closed.
Thus one may safely assumeK = C in the sequel.

Throughoutwe assume all homomorphisms to be unital and preserving all de�ning structures carried
by the objects in question. Thus, by a Weyl algebra endomorphism we always mean a K-linear ring
homomorphism Wn(K) into itself that maps 1 to 1. Similarly, the set EndK[x1, . . . , xn] consists of all
K-endomorphisms of the polynomial algebra, while EndPn IS the set of polynomial endomorphisms
preserving the Poisson structure. We will call elements of the group AutPn polynomial symplectomor-

phisms, due to the fact that they can be identi�ed with polynomial one-to-one mappings A2n
K

→ A2n
K

of the a�ne space A2n
K

which preserve the symplectic form

ω =
∑

i

dpi ∧ dxi.

Any endomorphism ϕ ofK[x1, . . . , xN], Pn(K) orWn(K) can be identi�ed with the ordered set

(ϕ(x1), ϕ(x2), . . .)

of images of generators of the corresponding algebra. For K[x1, . . . , xN] and Pn(K), the polynomials
ϕ(xi) can be decomposed into sums of homogeneous components; this means that the endomorphism
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ϕ may be written as a formal sum

ϕ = ϕ0 + ϕ1 + · · · ,

where ϕk is a string (of length N and 2n, respectively) whose entries are homogeneous polynomials of
total degree k.1 Accordingly, the height ht(ϕ) of the endomorphism is de�ned as

ht(ϕ) = inf{k | ϕk 6= 0}, ht(0) = ∞.

This is not to be confused with the degree of endomorphism, which is de�ned as deg(ϕ) =

sup{k | ϕk 6= 0}.2 The height ht(f ) of a polynomial f is de�ned quite similarly to be the minimal
number k such that the homogeneous component fk is not zero. Evidently, for an endomorphism
ϕ = (ϕ(x1), . . . , ϕ(xN)) one has

ht(ϕ) = inf{ht(ϕ(xi)) | 1 ≤ i ≤ N}.

The function

d(ϕ,ψ) = exp(−ht(ϕ − ψ))

is a metric on EndK[x1, . . . , xN]. We will refer to the corresponding topology on End (and on subspaces
such as Aut and TAut) as the formal power series topology.

2.2. Tame automorphisms

We call an automorphism ϕ ∈ AutK[x1, . . . , xN] elementary if it is of the form

ϕ = (x1, . . . , xk−1, axk + f (x1, . . . , xk−1, xk+1, . . . , xN), xk+1, . . . , xN)

with a ∈ K×. Observe that linear invertible changes of variables—that is, transformations of the form

(x1, . . . , xN) 7→ (x1, . . . , xN)A, A ∈ GL(N,K)

are realized as compositions of elementary automorphisms.
The subgroup of AutK[x1, . . . , xN] generated by all elementary automorphisms is the group

TAutK[x1, . . . , xN] of so-called tame automorphisms.
Let Pn(K) = K[x1, . . . , xn, p1, . . . , pn] be the polynomial algebra in 2n variables with Poisson

structure. It is clear that for an elementaryϕ ∈ AutK[x1, . . . , xn, p1, . . . , pn] to be a symplectomorphism,
it must be either a linear symplectic change of variables—that is, a transformation of the form

(x1, . . . , xn, p1, . . . , pn) 7→ (x1, . . . , xn, p1, . . . , pn)A

with A ∈ Sp(2n,K) a symplectic matrix, or an elementary transformation of one of two following types:

(x1, . . . , xk−1, xk + f (p1, . . . , pn), xk+1, . . . , xn, p1, . . . , pn)

and

(x1, . . . , xn, p1, . . . , pk−1, pk + g(x1, . . . , xn), pk+1, . . . , pn).

Note that in both cases we do not include translations of the a�ne space into our consideration, so we
may safely assume the polynomials f and g to be at least of height one.

The subgroup of Aut Pn(K) generated by all such automorphisms is the group TAutPn(K) of tame

symplectomorphisms. One similarly de�nes the notion of tameness for the Weyl algebraWn(K), with
tame elementary automorphisms having the exact same form as for Pn(K).

The automorphisms which are not tame are calledwild. It is unknown at the time of writing whether
the algebrasWn and Pn have anywild automorphisms in characteristic zero for n > 1, however for n = 1

1We set deg xi = 1.
2ForWn the degree is well de�ned, but the height depends on the ordering of the generators.
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all automorphisms are known to be tame [12, 20, 21, 32]. On the other hand, the celebrated example of
Nagata

(x + (x2 − yz)x, y + 2(x2 − yz)x + (x2 − yz)2z, z)

provides a wild automorphism of the polynomial algebraK[x, y, z].
It is known due to Kanel-Belov and Kontsevich [15, 16] that forK = C the groups

TAutWn(C) and TAutPn(C)

are isomorphic. The homomorphismbetween the tame subgroups is obtained bymeans of non-standard
analysis and involves certain non-constructible entities, such as free ultra�lters and in�nite prime
numbers. Recent e�ort [13, 14] has been directed to proving the homomorphism’s independence of
such auxiliary objects, with limited success.

3. Approximation by tame automorphisms

Let ϕ ∈ AutK[x1, . . . , xN] be a polynomial automorphism. We say that ϕ is approximated by tame
automorphisms if there is a sequence

ψ1, ψ2, . . . , ψk, . . .

of tame automorphisms such that

ht((ψ−1
k ◦ ϕ)(xi)− xi) ≥ k

for 1 ≤ i ≤ N and all k su�ciently large. Observe that any tame automorphism ψ is approximated by
itself—that is, by a stationary sequence ψk = ψ .

This and the next section are dedicated to the proof of the �rst two main results stated in the
introduction, which we reproduce here.

Theorem3.1. Letϕ = (ϕ(x1), . . . , ϕ(xN)) be an automorphism of the polynomial algebraK[x1, . . . , xN]

over a �eldK of characteristic zero, such that its Jacobian

J(ϕ) = det

[

∂ϕ(xi)

∂xj

]

is equal to 1. Then there exists a sequence {ψk} ⊂ TAutK[x1, . . . , xN] of tame automorphisms approxi-
mating ϕ.

Theorem 3.2. Let σ = (σ (x1), . . . , σ(xn), σ(p1), . . . , σ(pn)) be a symplectomorphism of
K[x1, . . . , xn, p1, . . . , pn] with unit Jacobian. Then there exists a sequence {τk} ⊂ TAutPn(K) of tame
symplectomorphisms approximating σ .

Theorem 3.1 is a special case of a classical result of Anick [1] (Anick proved approximation for all
étale maps, not just automorphisms). We give here a slightly simpli�ed proof suitable for our context.
The second theorem �rst appeared in [11] and is essential in our approach to the li�ing problem in
deformation quantization.

The proof of Theorem 3.1 consists of several steps each of which amounts to composing a given
automorphism ϕ with a tame transformation of a speci�c type—an operation which allows one to
dispose in ϕ(xi) (1 ≤ i ≤ N) of monomial terms of a given total degree, assuming that the lower
degree terms have already been dealt with. Thus the approximating sequence of tame automorphisms
is constructed by induction. As it was mentioned before, we disregard translation automorphisms
completely: all automorphisms discussed here are origin-preserving, so that the polynomials ϕ(xi) have
zero free part. This of course leads to no loss of generality.
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The process starts with the following straightforward observation.

Lemma 3.3. There is a linear transformation A ∈ GL(N,K)

(x1, . . . , xN) 7→ (x1, . . . , xN)A

such that its composition ϕA with ϕ ful�lls

ht(ϕA(xi)− xi) ≥ 2

for all i ∈ {1, . . . ,N}.

Proof. Consider

A1 =

[

∂ϕ(xi)

∂xj

]

(0, . . . , 0)

– the linear part of ϕ. Its determinant is equal to the value of J(ϕ) at zero, and J(ϕ) is a non-zero constant.
Composingϕ with the linear change of variables induced byA−1

1 (on the le�) results in an automorphism
ϕA that is identity modulo O(x2).

Using the above lemma, we may replace ϕ with ϕA (and suppress the A subscript for convenience),
thus considering automorphisms which are close to the identity in the formal power series topology.

The next lemma justi�es the inductive step: suppose we have managed, by tame le� action, to
eliminate the terms of degree 2, . . . , k − 1, then there is a sequence of elementary automorphisms such
that their le� action eliminates the term of degree k. This statement translates into the following lemma.

Lemma 3.4. Let ϕ be a polynomial automorphism such that

ϕ(x1) = x1 + f1(x1, . . . , xn)+ r1, . . . , ϕ(xn) = xn + fn(x1, . . . , xn)+ rn

and fi are homogeneous of degree k and ri are the remaining terms (thus ht(ri) > k). Then one can �nd a
sequence σ1, . . . , σm of tame automorphisms whose composition with ϕ is given by

σm ◦ . . . ◦ σ1 ◦ ϕ : x1 7→ x1 + Fi(x1, . . . , xn)+ R1, . . . , xn 7→ xn + Fn(x1, . . . , xn)+ Rn

with Fi homogeneous of degree k + 1 and ht(Ri) > k + 1.

Proof. We will �rst show how to get rid of degree k monomials in the images of all but one generator
and then argue that the remaining image is recti�ed by an elementary automorphism. Let N ≤ n be the
number of images ϕ(xi) such that fi 6= 0, and let x1 and x2 be two generators

3 corresponding to non-zero
term of degree k. The image of x1 admits the following presentation as an element of the polynomial ring
K[x3, . . . , xn][x1, x2]:

ϕ(x1) = x1 +
∑

d

∑

p+q=d

λp,qx
p
1x

q
2 + ri

where the coe�cients λp,q are polynomials of the remaining variables (thus the double sum above is just
a way to express f1 as a polynomial in x1 and x2 with coe�cients given by polynomials in the rest of the
variables).

Consider the transformation8λµ of the following form

x1 7→ x1 − λ(x1 + µx2)
d, x2 7→ x2 − λµ−1(x1 + µx2)

d, x3 7→ x3, . . . , xn 7→ xn,

3Evidently, no loss of generality results from such explicit labelling.
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with λ ∈ K[x3, . . . , xn] and µ ∈ K. This mapping is equal to the composition ψµ ◦ φλµ ◦ ψ−1
µ with

ψµ : x1 7→ x1 + µx2, x2 7→ x2

and

φλµ : x1 7→ x1, x2 7→ x2 + λµ−1xd1

and so is a tame automorphism. As the ground �eld K has characteristic zero, it is in�nite, so that we
can �nd numbers µ1, . . . , µl(d) such that the polynomials

(x + µ1y)
d, . . . , (x + µl(d)y)

d

form a basis of theK-module of homogeneous polynomials in x and y of degree d (this is an easy exercise
in linear algebra). Therefore, by selecting8λµ with appropriate polynomials λp,q and µi corresponding
to the basis, we eliminate, by acting with8λµ on the le�, the degree d terms in the double sum. Iterating
for all d, we dispose of f1 entirely.

The above procedure yields a new automorphism ϕ̃ which is a composition of the initial automor-
phism ϕ with a tame automorphism. The number Ñ of images of xi under ϕ̃ with non-zero term of
degree k equals N − 1; therefore, the procedure can be repeated a �nite number of times to give an
automorphismϕ1, such that the image underϕ1 of only one generator contains a non-zero termof degree
k. Let

ϕ1(xn) = xn + gn(x1, . . . , xn)+ r̃n

be the image of that generator (again, no loss of generality results from us having labelled it xn).We claim
now that the polynomial gn does not depend on xn.

Indeed, otherwise the Jacobian of ϕ1 (whichmust be a constant and is in fact equal to 1 in our setting)
would have a degree k − 1 component given by

∂xngn(x1, . . . , xn) 6= 0

(remember that by construction g1 = . . . = gn−1 = 0), which yields a contradiction. Note that another
way of looking at this condition is that if a polynomial mapping of the form

x1 7→ x1 + H1(x1, . . . , xn), . . . , xn 7→ xn + Hn(x1, . . . , xn), ht(Hi) > 1

is an automorphism, the higher-degree part (H1, . . . ,Hn)must have traceless Jacobian:

tr

(

∂Hi

∂xj

)

= 0.

Finally, since gn does not contain xn, an elementary automorphism

x1 7→ x1, . . . , xn−1 7→ xn−1, xn 7→ xn − gn(x1, . . . , xn)

eliminates this term. The lemma is proved.

The last lemma concludes the proof of Theorem 3.1 by induction. The proof of the inductive step is
essentially a statement that a certain vector space invariant under a linear group action is, in a manner
of speaking, big enough to allow for elimination by elements of the group. More precisely, let Tn,k(K) be
the vector space of all traceless n by nmatrices whose entries are homogeneous of degree k polynomials
fromK[x1, . . . , xn], and let the groupGL(n,K) act on Tn,k as follows: forA ∈ GL(n,K) and v ∈ Tn,k, the
image A(v) is obtained by taking the product matrix vA−1 and then performing (entry-wise in vA−1)
the linear change of variables induced by A. Then one has the following

Proposition 3.5. If V ⊂ Tn,k(K) is aK-submodule invariant under the de�ned above action ofGL(n,K),
then either V = 0 or V = Tn,k(K).
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Properties of similar nature played an important role in [17, 18]. The invariance under linear group
action will become somewhat more pronounced in the symplectomorphism case.

4. Approximation by tame symplectomorphisms and lifting toWeyl algebra

We turn to the proof of the more relevant to our context Theorem 3.2. The strategy is analogous to the
proof of approximation for polynomial automorphisms with unit Jacobian, with a few more elaborate
details which we now consider.

The �rst step of the proof copies the polynomial automorphism case and takes the following form.

Lemma 4.1. There is a linear transformation A ∈ Sp(2n,K)

(x1, . . . , xn, p1, . . . , pn) 7→ (x1, . . . , xn, p1, . . . , pn)A

such that its composition σA with σ ful�lls

ht(σA(xi)− xi) ≥ 2, ht(σA(pi)− pi) ≥ 2

for all i ∈ {1, . . . , n}.

We now proceed to formulate the inductive step in the proof as the following main lemma.

Lemma 4.2. Let σ be a polynomial symplectomorphism such that

σ(xi) = xi + Ui, σ(pi) = pi + Vi

and Ui and Vi are of height at least k. Then there exists a tame symplectomorphism σk such that the
polynomials Ũi = (σ−1

k ◦ σ)(xi)− xi and Ṽi = (σ−1
k ◦ σ)(pi)− pi are of height at least k + 1.

Proof. In order to establish the inductive step, we are going to need the following lemma.

Lemma 4.3. Suppose K is an in�nite �eld, A = K[x1, . . . , xn, p1, . . . , pn] is the polynomial algebra with
standard Z-grading according to the total degree

A =
⊕

d≥0

Ad, Ad = {homogeneous polynomials of total degree d}.

Let V be a K-submodule of A invariant under the action of Sp(2n,K) (given by linear symplectic changes
of variables). Suppose V is contained in a given homogeneous component Ad. If V 6= 0 then V = Ad.

Proof. We �rst observe that if f =
∑

l fl is a non-zero polynomial given by the sum of degree d
monomials in xi, pj, then f ∈ V implies fl ∈ V for all l. Indeed, consider a linear symplectomorphism3

of the form

xi 7→ λixi, pi 7→ λ−1
i pi, λi 6= 0.

Then f 7→
∑

l

∏n
i=1 λ

kli
i fl ∈ V . As the ground �eld K is in�nite and fl are linearly independent, we can

take su�ciently many automorphisms of the form3 in order to produce a basis {31f , . . . ,3N f } of the
span of fl. Since by our assumptions3f ∈ V , the observation follows.

Next we observe that if V 6= 0 and V ∈ Ad, then every monomial of the form xdi , p
d
j belongs to

V . For if f ∈ V is a non-zero polynomial, then f has in its decomposition a monomial of the form

axk11 . . . x
kn
n pm1

1 . . . p
mn
n with non-zero a ∈ K. To prove that, say, p1 ∈ V , one needs to apply a sequence

of linear symplectomorphisms to f so that the image of xk11 . . . x
kn
n pm1

1 . . . p
mn
n is a sum that contains pd1 .

This is accomplished by means of the following procedure. First, we get rid of every xi by taking in
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succession

xi 7→ xi + pi, pi 7→ pi (other generators �xed)

and using the above homogeneity statement to single out themonomial withmaximal degree in pi. Thus

we obtain that pd11 . . . p
dn
n ∈ V for some d1, . . . , dn, d1 + · · · + dn = d. We then dispose of p2, . . . , pn by

applying symplectomorphisms of the form (written down for p2)

x1 7→ x1 − x2, x2 7→ x1 + x2, p1 7→ p1 + p2, p2 7→ p2 − p1

and again using homogeneity to single out the monomial with p1. A procedure identical to the above is
applied to show that xdi ∈ V , i = 1, . . . , n.

What remains to prove is that the mixed terms xk11 . . . x
kn
n pm1

1 . . . p
mn
n (where at least two powers are

non-zero) are inV . This can be done by looking at linear combinations of xdi and p
d
j and applying suitable

symplectomorphisms in a manner similar to our previous construction and using the homogeneity
argument. We leave details to the reader.

We now turn to the proof of the inductive step. Suppose that

σ : xi 7→ xi + fi + Pi, pj 7→ pj + gj + Qj

is a polynomial symplectomorphism, where fi and gj are degree k components and the height of Pi and
Qj is greater than k. The preservation of the symplectic structure by σ means that the k-th component
obeys the following identities:

{xi, fj} − {xj, fi} = 0

and

{pi, fj} − {pj, fi} = 0

where { , } is the Poisson bracket corresponding to the symplectic form. In the case of standard
symplectic structure these identities translate into

∂fi

∂pj
−
∂fj

∂pi
= 0,

∂gi

∂xj
−
∂gj

∂xi
= 0,

in which one recognizes the condition for an appropriate di�erential form to be closed. The triviality of
a�ne space cohomology then implies that there exists a polynomial F(x1, . . . , xn, p1, . . . , pn), homoge-
neous of degree k + 1, such that

∂F

∂pi
= fi,

∂F

∂xi
= gi;

in this way the k-component of a symplectomorphism is generated by a homogeneous polynomial. The
tame symplectomorphism group acts on the space of all such generating polynomials (the image of
a polynomial is the polynomial corresponding to the k-component of the composition with the tame
symplectomorphism), and the orbit of this tame action carries the structure of a K-module (one may
easily come up with a symplectomorphism corresponding to the sum of two generating polynomials).
Therefore this space ful�lls the conditions of the previous lemma, which in this case implies that one
can, by a composition with a tame symplectomorphism, eliminate the k-component. The main lemma,
and therefore the Theorem 3.2, is proved.

Once the approximation for the case of symplectomorphisms has been established, we can investigate
the problem of li�ing symplectomorphisms toWeyl algebra automorphisms.More precisely, one has the
following
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Proposition 4.4. LetK = C and let σ : Pn(C) → Pn(C) be a symplectomorphism over complex numbers.
Then there exists a sequence

ψ1, ψ2, . . . , ψk, . . .

of tame automorphisms of the n-th Weyl algebra Wn(C), such that their images σk in AutPn(C)
approximate σ .

Proof. This is an immediate corollary of Theorem 3.2 and the existence of tame subgroup isomorphism
[15].

A few comments are in order. First, the quantization of elementary symplectomorphisms is a
very simple procedure: one needs only replace the xi and pi by their counterparts x̂i and p̂i in the
Weyl algebra Wn. Because the transvection polynomials f and g (in the expressions for elementary
symplectomorphisms) depend, as it has been noted, on one type of generators (resp. p and x), the
quantization is well de�ned.

Second, as the tame automorphism groups TAutWn(C) and TAutPn(C) are isomorphic, the corre-
spondence between sequence of tame symplectomorphisms converging to symplectomorphisms and
sequences of tame Weyl algebra automorphisms is one to one. The main question is how one may
interpret these sequences as endomorphisms ofWn(C).

Our construction shows that these sequences of tame automorphisms may be thought of as (vectors
of) power series—that is, elements of

C[[x̂1, . . . , x̂n, p̂1, . . . , p̂n]]
2n.

The main problem therefore consists in verifying that these vectors have entries polynomial in
generators—that is, that the limits of li�ed tame sequences are Weyl algebra endomorphisms.

One could take a more straightforward (albeit an equivalent) approach to the li�ing of symplec-
tomorphisms by following the prescription of deformation quantization: starting with a symplectic
automorphism of the polynomial algebra A = K[x1, . . . , xn, p1, . . . , pn], one constructs a map of A[[h̄]],
the algebra of formal power series (in Planck’s constant h̄), which preserves the star product satisfying
Weyl algebra identities. The approximation theory as developed in this text is then a property of the
h̄-adic topology. The (algebraically closed version of) Conjecture 1.3 would then follow if one were to
establish a cuto� theorem.

In our closing remark we comment on the remaining two main theorems as stated in the
introduction. As the reader may infer from the proof of approximation theorems, the approx-
imation in formal power series topology is natural in the sense that it agrees with the m-adic
topology in the local ring generated by the coe�cients of the approximated automorphism. More
precisely, we have the following property, formulated separately for the two cases we consider in the
paper.

Theorem 4.5. Let ϕ be a polynomial automorphism and letOϕ be the local ring ofAutC[x1, . . . , xn] with
its maximal ideal m. If {ψk} is a tame sequence which converges to ϕ in power series topology, then the
coordinates of ψk converge to coordinates of ϕ inm-adic topology.

Theorem 4.6. Let σ be a symplectomorphism and letOσ be the local ring of Aut Pn(C) with its maximal
idealm. If {σk} is a tame sequence which converges to σ in power series topology, then the coordinates of σk
converge to coordinates of σ inm-adic topology.

These are our last two main results.
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5. Conclusion

We have developed tame approximation theory for symplectomorphisms in formal power series topol-
ogy. By virtue of the known correspondence between tame automorphisms of the even-dimensional
a�ne space and tame automorphisms of the Weyl algebra, which is the object corresponding to the
a�ne space in terms of deformation quantization, we have arrived at the li�ing property of symplecto-
morphisms. This line of research may yield new insights into endomorphisms of the Weyl algebra, the
Dixmier conjecture, and the Jacobian conjecture.
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