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We describe a special type of multiblock copolymers which are synthesized by a hypothetic procedure
of the modification of monomer units in a polymer melt according to a certain geometrical criterion.
In particular, we explore the case of lamellar-like structures: the sequence statistics of the resulting
multiblock copolymers is described and their ability to self-assemble is studied. It is found that the
block-size distribution P(k) for such random copolymers contains a large fraction of short blocks
with the asymptotic dependence ∼k−3/2, where k is the block size. A characteristic feature of such
multiblock copolymers is their extremely high block-size polydispersity with the polydispersity index
being proportional to the space period of the modification. The morphological behavior of such
copolymers is simulated by means of dissipative particle dynamics. A stable self-assembled lamellar
structure is observed, but the domain size appears to be sufficiently larger than the initial pattern
period. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4921685]

I. INTRODUCTION

Self-assembling in block copolymer systems has attracted
a great interest in recent decades; a number of applications
have been proposed in the literature, ranging from lithog-
raphy to biosensors and many others.1 For many years, re-
searchers focused on the synthesis and characterization of
mostly monodisperse diblock copolymers,2 but now more and
more studies are turning to polydisperse and even random
block-copolymers. Recently, the effect of polydispersity on the
phase behavior of multiblock copolymers has been actively
studied in experiments, theory, and computer simulations.3–11

Block-size variability is no more considered as a non-desirable
property of synthetic polymers; on the contrary, it is regarded
now as a tool to control the morphological phase behavior.12,13

Polydisperse block copolymers can be obtained via blend-
ing copolymers with different molecular weights or as a prod-
uct of polymerization or polycondensation reactions. The first
route was used, for example, by Noro, Matsushita, Takano
et al. for obtaining poly(styrene-b-2-vinylpyridine) (PS-PVP)
diblock and poly(styrene-b-2-vinylpyridine-b-styrene) (PS-
PVP-PS) triblock copolymers.14–17 The second method has
been employed in a number of investigations on diblock and
triblock copolymers18–22 and recently by Lee and Bates for
direct synthesis of alternating and random multiblock copol-
ymers.3 In the latter work, the morphology and thermal and
mechanical properties of multiblock copolymers were studied:
lamellar and bicontinuous-like morphologies were found, and
tensile tests of the material demonstrated much higher tough-
ness compared to the analogous poly(styrene-b-butadiene-b-
styrene) triblock copolymers. The copolymers which con-
tained large amount of blocks with very high polydispersity
index (3-6.5) revealed a bicontinuous-like morphology that in

a)Author to whom correspondence should be addressed. Electronic mail:
govorun@polly.phys.msu.ru.

the authors’ opinion inhibits the development of crazes in the
sample under strain. Li et al.4 used chain shuttling chemistry
to synthesize polydisperse olefin block copolymers. Domain
spacing of the observed lamellar morphologies was five times
larger than that in equivalent monodisperse block copolymers.
It should be noted that despite their promising properties,
there are not so many works on experimental investigation of
random multiblock copolymers, mainly due to the difficulties
associated with the experimental characterization of such
systems.

The theoretical investigation of the phase behavior of
multiblock copolymers began from the work of de Gennes,23 in
which the stability of an AB copolymer melt was studied for
regular and polydisperse multiblock copolymers. After that,
the order-disorder transition for different types of polydisperse
multiblock copolymers including correlated random copoly-
mers (with the Markovian unit sequences along their chains)
was thoroughly investigated using the weak segregation the-
ory.24–32 The common conclusion is that the structure period
increases with increasing polydispersity.

Computer simulations including, in particular, the dissipa-
tive particle dynamics (DPD) methods prove to be an excellent
tool for studying phase behavior of both linear copolymers33–36

and copolymers with more complex architectures.37 In our pre-
vious works,5–7 we studied phase behavior of a melt of random
copolymers and showed that they can undergo a transition
to a lamellar state, the period of which shows only a weak
dependence on the incompatibility parameter.

The design of copolymer sequences according to geomet-
rical criteria was proposed for polymer globules with a modi-
fied surface layer (so-called protein-like copolymers). The
resulting solvable polymer globules with mostly polar surfaces
were studied by means of computer simulations, theory, and
experiments.38–43 In the case of small amount of polar units
at the surface, using mean-field theory, it was found that the
macromolecules with designed protein-like sequences form

0021-9606/2015/142(20)/204903/8/$30.00 142, 204903-1 © 2015 AIP Publishing LLC
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FIG. 1. A schematic representation of the sequence modification procedure
(a) and a simulation box after the modification (b).

more stable globules than those with regular sequences.41

Although the lowest free energy was provided by another
sequence type (copolymer chain consisting of one long and
many short hydrophobic blocks separated by polar units), its
value is very close to that of the protein-like copolymers.
Similar idea of sequence design can find other applications,
in particular, for preparing multiblock copolymers capable of
microphase separation, which is investigated in this study.

In the present paper, a special type of random multi-
block copolymers, which are neither characterized by the
Markovian unit sequence nor obtained by a procedure of
the premade blocks coupling, is considered. We imaginarily
introduce a periodic lamellar structure in a homopolymer
melt and assign A or B type to monomer units according
to the layer type they are located in (Fig. 1(a)). Homopol-
ymers thus become multiblock copolymers with AB mono-
mer unit sequences corresponding to their “parent” confor-
mations in the melt. Assuming that macromolecules have
random conformations in a homopolymer melt (the Flory
theorem), the probability distribution of block sizes is calcu-
lated using the approaches of statistical physics of macromol-
ecules. If one introduces repulsion between A and B mono-
mers, a microphase separated state can be expected in equi-
librium. We check this hypothesis using DPD computer simu-
lations by analyzing the evolution of such “pattern-modified”
random multiblock copolymers (Fig. 1(b)) of 50:50 composi-
tion from the “parent” lamellar and preliminary homogenized
states.

II. THE MODEL AND METHODOLOGY

A. Analytical model

Let us consider a layer VL of the thickness L in a polymer
melt and suppose that all monomer units in the layer VL have
a type A, whereas the monomer units in neighbor layers have
a type B (see Fig. 1(a)). Conformations of polymer chains in a
melt can be described as ideal Gaussian coils (the Flory theo-
rem); therefore, each A-block can be considered as a random
walk trajectory terminated at the each of two layer boundary
planes. We assume that all macromolecules are very long,
i.e., for any macromolecule Na2 >> L2, where N is the number
of monomer units (statistical segments) in a chain, each unit
has a size a; it means that the probability to find a chain end
inside a layer is negligible.

Let us introduce a coordinate system {x,y ,z}, where the
axis x is perpendicular to the layer confined between the planes
x = 0 and x = L. Let PA(k) be the probability distribution for
an A-block consisting of k monomer units. This distribution
is determined by the chain conformation: the type of mono-
mer units changes at the planes x = 0 and x = L when mov-
ing along a polymer chain. The chain conformations can be
described by a diffusion-type equation for the Green function
GA (r, k |r0) of an A-block consisting of k statistical segments
of length a with the beginning at the point r0 = (x0, y0, z0) and
the end at the point r = (x, y, z) in the layer,44,45

∂

∂ k
GA(r, k |r0) = a2

6
∆GA(r, k |r0), r,r0 ∈ VL, (1)

∆ is the Laplacian with respect to r. The initial condition is

GA(r,0|r0) = δ(r − r0) (2)

and the boundary conditions are

GA(r, k |r0)|x=0 = GA(r, k |r0)|x=L = 0. (3)

The zero boundary conditions determine the termination of an
A-block when it touches the planes x = 0 and x = L, which
corresponds to the problem of first return in statistics and
has been previously used for the calculation of the block-size
distribution of protein-like copolymers.40

The solution of Eq. (1) with the conditions (2) and (3) can
be represented as the product

GA (r, k |r0) = GA (x, k |x0)G0 (y, k |y0)G0 (z, k |z0) , (4)

where the Green function GA (x, k |x0) is equal to

GA (x, k |x0) = 2
L


n=1

exp
(
−n2π2a2

6L2 k
)

sin
nπx0

L
sin

nπx
L

, (5)

and the Green functions G0 (y, k |y0) and G0 (z, k |z0) describe
completely free random walks along the axes y and z,
G0 (y, k |y0) =


3

2πka2 exp
(
− 3

2ka2 (y − y0)2
)
.44,45

In a homogeneous melt, the integral

VL

dr GA (r, k |r0)
gives the number of chain trajectories consisting of k steps that
begin at the point r0 and stay within the lamella, in proportion
to the total number of trajectories for a free chain. The fraction
of trajectories composed of from k to k + ∆k steps, PA(k)·∆k,
is determined by a decrement of that integral. Therefore, the
probability distribution PA(k) can be calculated directly from
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the Green function using the integration over the lamella or as
an integral probability flux through the boundary surface,40,46

PA(k) = − ∂

∂k


VL

dr GA (r, k |r0)

= −a2

6

(
∂GA (x, k |x0)

∂x

�����x=L
− ∂GA (x, k |x0)

∂x

�����x=0

)
, (6)

where the normalization condition for the one-dimensional
Green functions G0 (

∞
−∞

dy G0 (y, k |y0) = 1) is taken into ac-

count. From expressions (5) and (6), the probability distribu-
tion PA(k) can be written as follows:

PA (k) = 2π
3L̃2


n=1,3,5, ...

n exp
(
−n2π2

6L̃2
k
)

sin
nπ x̃0

L̃
, (7)

where L̃ = L/a, x̃0 = x0/a are the dimensionless layer thick-
ness and initial coordinate, respectively. The block size distri-
bution PA(k) also obeys the normalization condition,

∞
0

dk PA (k) = 1. (8)

The asymptotic forms of block size distribution (7) can be
written for two different regimes,

PA(k) �



k−3/2, 1 << k << (L/a)2( a
L

)3
exp

(
−π

2a2

6L2 k
)
, k >> (L/a)2 . (9)

The first regime describes not very long polymer loops that
begin and end at one of the boundary planes and do not touch
the other plane; the corresponding dependence PA(k) ∼ k−3/2

is the asymptotic form of the solution of the probabilistic “first
return” problem for the probability for a random walk to start
at the plane and to return to it for the first time after k steps.46

The second regime describes very long random trajectories of
a polymer chain which avoids the boundary surfaces. These
regimes are separated by a certain value of an A-block size kL

corresponding to the characteristic number of monomer units
in a Gaussian chain of the spatial size L:L2 ≈ kLa2.

Let us study the statistical properties of these sequences in
more detail. The number average size of an A-block is equal
to

k̄ =

∞
0

dk kPA(k) = 24L̃2

π3


n=1,3,5, ...

1
n3 sin

nπ x̃0

L̃
, (10)

and the weight average size is

k̄w =
1
k̄

∞
0

dk k2PA(k) = 288L̃4

π5k̄


n=1,3,5, ...

1
n5 sin

nπ x̃0

L̃
.

(11)

For a large enough lamella thickness (x̃0/L̃ = x0/L << 1), the
summation over n in formulas (10) and (11) can be approxi-
mated by the integration in the limits from n = 1 to ∞. Then,
the number average size depends linearly on the layer thick-
ness,

k̄ ≈ 24
π2 x̃0L̃, x̃0/L̃ << 1, (12)

and weight average block size (11) is approximately propor-
tional to the square of the layer thickness,

k̄w ≈
96
k̄π4

x̃0L̃3 ≈ 4
π2 L̃2, x̃0/L̃ << 1. (13)

The asymptotic value of the polydispersity index (PDI) can be
estimated from expressions (12) and (13),

k̄w

k̄
≈ 1

6x̃0
L̃ ≈ π2

144x̃2
0

k̄ . (14)

Thus, our pattern-modified multiblock copolymers are charac-
terized by a very broad block-size distribution, with the poly-
dispersity index being comparable with the number average
block size k̄ (or the lamellar thickness L̃).

To analyze the scaling behavior of probability distribution
(7), it is convenient to compare it to the well-known most
probable distribution (the Flory distribution characterizing the
step-growth polymerization in homogeneous systems) PFl(k)
with the same number average block size k̄,

PFl(k) = 1
k̄ − 1

(
1 − 1

k̄

)k
, k = 1,2, . . . . (15)

The dependence of ln PFl on k is linear: lnPFl = const
+ ln(1 − 1/k̄)k. The coefficient characterizing the line slope
at L/a >> 1, k̄ >> 1, x0 = a/2 is approximately equal to 1/k̄
≈ π2/(12L̃). The “tail” of the probability distribution PA(k)
at k → ∞ is described by exponential asymptotic form (9)
corresponding also to the linear dependence of lnPA on k:
lnPA ≈ const − π2k/(6L̃2). From these dependences, one can
conclude that the probability distribution PA(k) decays slower
at k → ∞ than the Flory distribution PFl(k).

In order to compare the analytical probability distribution
PA(k) with the block-size distribution obtained in simulations,
the following discrete probability distribution:

P̃A(k) =
k

k−1

dk ′PA(k ′)

=
4
π


n=1,3, ...

1
n

sin
nπ x̃0

L̃

(
exp

(
−n2π2

6L̃2
(k − 1)

)

− exp
(
−n2π2

6L̃2
k
))

, (16)

k = 1,2,. . . , was introduced; P̃A(k) is normalized to unity:
∞
k=1

P̃A(k) =
∞
0

dk PA (k) = 1. The position of the beginning

of an A-block should be taken near the border surface. In
numerical calculations, the value of x0 = a/2 is used.

The probability distributions P̃A(k) given by Eq. (16) are
plotted in Figure 2 for a set of different lamellar thicknesses
L̃. Deviations from the asymptotic dependence P̃A(k) ∼ 1/k3/2

arise at large enough k starting from the smallest L̃, as given by
the characteristic value kL = L̃2 demarcating two asymptotic
regimes (9).

B. The simulation technique

DPD is a version of the coarse-grained molecular dy-
namics adapted to polymers and mapped onto the classical
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FIG. 2. The probability distributions of A-block sizes P̃A(k) given by Eq.
(16) for different lamellar thicknesses are plotted (solid lines); x0= a/2. The
asymptotic dependence P̃A(k)∼ 1/k3/2 for loops at relatively small k is
shown by the dashed line.

lattice Flory–Huggins theory.47–50 This method has been exten-
sively used to simulate different polymer systems at a meso-
scale level, especially polymer melts and other systems with
high polymer concentration. Soft interaction potentials permit
to take a much larger integration time step, as compared with
the classical molecular dynamics, and thus to study various
systems on rather long time scales. Moreover, such a potential
does not prohibit self-intersections of bonds (i.e., the chains
are “phantom”), which greatly decreases the simulation time
necessary to reach an equilibrium.

Macromolecules are represented in terms of the bead-
and-spring model, with particles (monomer units) interacting
by a bond stretching force (only for connected beads) fb, a
conservative force (repulsion) fc, a dissipative force (friction)
fd, and a random force (heat generator) fr,

fi =

j,i

(
fb
ij + fc

ij + fd
ij + fr

ij

)
. (17)

The summation is performed over all other particles in the
sphere of the cut-off radius rc surrounding the ith particle.
We assume that all particles have the same mass mi = m and
below use the dimensionless parameters setting rc, m, and kBT
(kB is the Boltzmann constant and T is the thermodynamic
temperature) equal to unity.

The spring force acts on the ith monomer unit from the
neighbor ones in the same macromolecule,

fb
ij = −Krij, rij = ri − r j, (18)

where K is a spring constant (bond stiffness); in our simula-
tions, we set K = 4. The soft core repulsion force is equal to

fc
ij =




aαβ

�
1 − rij

�
rij/rij, rij ≤ 1

0, rij ≥ 1
, (19)

where aαβ is the interaction parameter if the particle i has the
type α and the particle j has the type β. More information
regarding the DPD method can be found elsewhere.5,50 The
dissipative and random forces are used as they are proposed in
Ref. 43 with the noise parameter σ = 3. A modified velocity-

Verlet algorithm51 with the time step ∆t = 0.04 is used for the
integration of the equations of motion.

In our simulations, we used aαα = 25. In this case, the
interaction parameters aαβ and a more common Flory-Huggins
parameter χ are linearly related to each other,51

aαβ = χ/0.306 + 25, α , β. (20)

The behavior of macromolecules in a melt was modeled
using a box of the size 70 × 70 × 30 units at the reduced
mean number density ρ = 3 (441 000 particles). The initial
conformation (for 1722 homopolymer chains consisting of
N = 256 monomer units) was generated as random walks with
the spatial step of unit length and homogeneously distributed
over the box taking into account the periodic boundary condi-
tions. The resulting system was equilibrated during 200 000
time steps to ensure that the macromolecules have equilib-
rium conformations. After the equilibration, a monomer type
modification was performed: a periodic lamellar-like pattern
was introduced so that the monomer units with the coordinate
x ∈ [il, il + L], il = 0, 1, . . . , nl, got the type A and other
monomer units got the type B (see Fig. 1(b)). We use L = 5
and nl = 6 in the results presented below; therefore, the period
of the structure obtained this way was equal to 10. It should be
noted that due to the choice of the parameters aαα and K , the
statistical segment length in the equilibrated systems was very
close to unity; therefore, in our simulations, L = L̃.

Structure formation was monitored by snapshot obser-
vations of the spatial distribution of A and B units and by
calculating the static structure factor S(q),

S(q) = 1
np ⟨����� np

i=1

exp(iqri)
�����

2⟩, (21)

where np is the total number of particles in the simulation
box and averaging is performed over a large number of spatial
directions and over a sequence of independent system confor-
mations. By analyzing the q-dependence of the structure factor,
one can detect a long-range (presence of satellite peaks) or
short-range ordering and estimate the characteristic size of
domains (by the main peak position) and its dispersion (by the
half-height width).

The behavior of the pattern-modified system was studied
starting from two completely different initial states: directly
from the lamellar-like state (Fig. 1(b)) and from a completely
disordered state. In order to obtain a disordered state, a long
relaxation after the modification was additionally performed
at χ = 0. The systems were relaxed at χ = 2.4 and their static
structure factors were monitored in the course of the simula-
tions. After 70 million time steps, the structure factor became
time-constant thus indicating that the systems had reached
some kind of equilibrium with very similar resulting structures
(curved lamellae with nearly equal periods) in the both cases.

III. RESULTS AND DISCUSSIONS

The theoretically derived probability distribution P̃A(k)
for L̃ = 5 is plotted in Figure 3 in comparison with the direct
computer realization of the proposed patterned modification
and with the Flory block-size distribution. The theory and
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FIG. 3. Theoretically derived probability distribution of A-block sizes P̃A(k)
for L̃ = 5 (black line), most probable (Flory) distribution PFl(k) (green line)
calculated at the same number average block size k̄ ≈ 7.3, and block fraction
in the direct computer simulation for L̃ = 5, N = 256 (magenta line). The inset
shows the simulation results for wider lamellae (L̃ = 15 and N = 1000) and
line with the slope −a2π2/(6L2) characterizing the asymptotic behavior of
P̃A(k) at large k .

simulation results are close for short blocks, whereas the simu-
lation curve is somewhat higher than the theoretical one at large
k that can be related to a more broad theoretical distribution
(with infinitely long blocks possible), whereas both distribu-
tions are normalized to unity.

It can be seen that the pattern-modified copolymer con-
tains a considerable amount of very short and some very long
blocks, while the fraction of blocks of the average size k̄ is
less than that for copolymers with the Flory distribution given
by Eq. (15). The Flory block-size distribution (the green line)
decreases exponentially at all k values, whereas the prob-
ability distribution for the pattern-modified copolymers de-
creases exponentially only at large enough k (k >> kL = L̃2

in Eq. (9)). The inset shows the simulation results for polymer
chains of length 1000 for wider lamellae (L̃ = 15) and corre-
sponding asymptotic line.

The dependence of the polydispersity index of the pattern-
modified multiblock copolymers on the layer thickness L̃ is
plotted in Fig. 4 (top). It is well described by linear asymptotic
dependence (14) and shows that the block-size distribution
of pattern-modified copolymers is very broad, especially in
comparison with the most probable distribution. The weight
average A-block size and polydispersity index for Flory distri-
bution (15) are, respectively, equal to

k̄w(Fl) = k̄
(
2 − 1

k̄

)
and

k̄w(Fl)

k̄
= 2 − 1

k̄
. (22)

Another important characteristic of the polymer chain
conformations in a block copolymer melt with the proposed
domain structure is the bridge/loop ratio, where bridges are the
blocks connecting the neighbor domains of the same type, and
loops are the blocks with the ends located at the same domain
boundary (see Fig. 1(a)). Using formulas (1), (4), and (6), the
contribution of bridges PA(br)(k) and loops PA(loop)(k) to the to-
tal probability distribution PA(k) = PA(br)(k) + PA(loop)(k) can
be written as

FIG. 4. The dependences of (top) the polydispersity index and (bottom)
bridge/loop ratio on the lamellar thickness L̃. The dashed line shows asymp-
totic dependence (14) and green line gives the result for the most probable
(Flory) distribution. The bridge/loop ratio is calculated using formulas (23)
and (24).

PA(br) (k) = −a2

6
∂GA (x, k |x0)

∂x

�����x=L
= − π2

3L̃2

∞
n=1

(−1)nn sin
nπ x̃0

L̃
exp

(
−n2π2k

6L̃2

)
,

PA(loop) (k) = a2

6
∂GA (x, k |x0)

∂x

�����x=0

=
π2

3L̃2

∞
n=1

n sin
nπ x̃0

L̃
exp

(
−n2π2k

6L̃2

)
,

(23)

where it is assumed that the beginning of a block (k = 0) is
located at the plane x = 0. The ratio of the fraction of bridges
to the fraction of loops α(k) can be calculated as follows:

α(k) = P̃A(br) (k)/P̃A(loop)(k), (24)

where P̃A(br)(k) =
k

k−1
dk ′PA(br)(k ′) and P̃A(loop)(k) =

k
k−1

dk ′

PA(loop)(k ′), k = 1, 2, . . . .
The dependence α (k) for the layer thicknesses L̃ = 5 and

50 is presented in Figure 4. Practically, all short blocks are
loops, whereas the blocks of size exceeding the characteristic
value kL = L̃2 can form a loop or a bridge with the probability
1/2. The fraction of bridges among all blocks was calculated

using the formula pbr =
∞
k=1

P̃A (k) α(k)
α(k)+1 . It was obtained that
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pbr ≈ 0.1 for L̃ = 5, pbr ≈ 0.05 for L̃ = 10, and pbr ≈ 0.01 for
L̃ = 50.

Note that the total fraction of bridges formed by blocks of
the pattern-modified copolymers is considerably smaller than
that formed by middle blocks of the monodisperse triblock
(or multiblock) copolymers, which was found earlier theoreti-
cally52,53 and in computer simulations54 to be approximately
equal to 0.4 in bulk. The smaller values of that fraction for
the pattern-modified copolymers can be explained by a great
deal of short blocks in the probability distribution P̃A (k), all
of which prefer to be loops.

Assuming that the bridge/loop ratio is the important char-
acteristic responsible for the film mechanical durability, we
can say that smaller lamellar periods correspond to a greater
bridge fraction thus providing better overall material prop-
erties for polydisperse multiblocks. This conclusion is not valid
for diblock copolymers which cannot form bridges. However,
even the middle blocks of triblock copolymers influence the
low-frequency viscoelastic response55 and stress-strain depen-
dences56 due to the formation of bridges.

Finally, let us consider the applicability of the presented
analytical approach to patterned polymer films with layers of
different types perpendicular to the substrate. For a polymer
film of constant density confined between planes z = 0 and
z = D, the Green function of an A-block GA (r, k |r0) satisfies
diffusion-type Eq. (1) with boundary conditions (3) and ∂GA

∂z

= 0 at z = 0 and z = D if the thickness of polymer film D >>
a. In that case, same expression (7) for the probability distri-
bution of A-block sizes can be derived using definition (6)
and taking into account all boundary conditions. Therefore,
all discussed features of block-size distributions are expected
to be valid for pattern-modified multiblock copolymers in not
very thin polymer films as well.

In order to test the theoretical findings and investigate
the phase behavior of our pattern-modified copolymers, we
performed dissipative particle dynamics simulations.

Figure 5 (top) presents the system which was relaxed
directly after the sequence modification: it transformed to
lamellae with rough boundaries and larger period than it was
set initially. A special feature of the structure is the presence
of a considerable amount of A-monomer units in the B-
lamellae and B-monomer units in the A-lamellae. The period
of the structure D can be found through the analysis of the
structure factor dependence on wave vector (22): the main peak
corresponds to D = 1/0.0585 ≈ 17.1. The total interface area
decreased by around 25% (we used ParaView software57 to
visualize the structures and calculate the interfacial areas) as
compared with the initial value.

We can conclude that after the relaxation, the structure
period increased from 10 to 17.1 demonstrating that the inter-
action between monomer units leads to a considerable stretch-
ing of blocks. The mean square of the end-to-end distance of
blocks of pattern-modified copolymers (L̃ = 5) for the system
immediately after preparation (upper solid curve) and for the
system after relaxation (lower solid curve) is plotted vs. the
block size in Fig. 6. The straight dashed line represents the
dependence ⟨R2

A⟩ = ka2 for blocks of size k in a homogeneous
melt. The end-to-end distance of short blocks (loops) is almost
unchanged, whereas the long blocks (k > 20), which can be

FIG. 5. The structure factor S(q) for the final melt state after (top) the
sequence modification and subsequent relaxation and (bottom) relaxation
directly from a disordered state. The insets give the snapshots of the corre-
sponding 3D structures.

bridges, are noticeably stretched. The mean square of the end-
to-end distance of long blocks after the relaxation is about 1.2
times greater than before.

The fractions of long loops and bridges (k >> kL) in the
system immediately after preparation are equal to 0.5 that
correspond to the bridge/loop ratio α = 1 (see Fig. 4). With an
increase in the structure period, the bridge fraction is expected
to decrease, as confirmed, for example, by the computer simu-
lations for monodisperse triblocks.54 Assuming that the end-to-
end distance increases mainly due to bridges rather than loops,
we can estimate that for bridges, ⟨R2

A⟩br increases more than 1.4
times.

Besides, the increase of the lamella thickness is related to
the penetration of short A- and B-blocks into the domains of
another type that lowers the surface tension, the concentration
of A or B monomer units in an “alien” phase being of 5%-
7%. Therefore, both the chain stretching and penetration of A
monomer units into B-domains (and vise versa) are responsible
for the increase in the structure period.

Figure 5 (bottom) shows the structure factor for the final
state of the system, which was relaxed from a disordered
state. The structure is again lamellar with the presence of a
considerable amount of short blocks in the domains of another
type; however, the structure factor has a quite broad main peak
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FIG. 6. The mean square of the end-to-end distance RA of blocks of pattern-
modified copolymers (L̃ = 5) for the system immediately after preparation
(upper solid curve) and for the system after relaxation (lower solid curve).
The straight dashed line represents the dependence ⟨R2

A⟩= ka2 for blocks of
size k in a homogeneous melt.

which can be described by the correlated large-scale bending
of the lamellae, which is clearly seen from the inset. The period
of the structure calculated from the position of the main peak
was between 18.5 and 16.4, which is in agreement with that
found for the first initial state (17.1).

Therefore, we can conclude that a stable non-ideal lamellar
structure with the period sufficiently larger than that introduced
by the modification is the equilibrium morphology of the melt
of copolymers with sequences prepared by lamellar patterned
modification.

Besides, an attempt was made to find the equilibrium
morphology of the pattern-modified copolymers prepared with
the modification period L̃ = 15. As was done previously for
L̃ = 5, the evolution was studied starting from two different
initial states (lamellar-like and homogeneous); an increase of
the period was observed for the first system and the forma-
tion of A- and B-domains for the second one. However, the
accessible simulation time was not sufficient to achieve the
equilibrium state of those systems.

IV. CONCLUSION

Random multiblock AB copolymers with a broad block-
size distribution and special sequence statistics are studied in
this paper. The copolymers are prepared by a modification
of the homopolymer chains in a melt according to a geomet-
rical criterion: the monomer units’ types are simultaneously
changed so that the resulting structure is alternating equal-
width layers of A and B types (pattern-modified copolymers).
The statistical characteristics of the monomer sequences in
such copolymers are studied including the probability distri-
butions of block sizes, number and weight average block sizes,
polydispersity index, and bridge/loop ratio. Asymptotic forms
(9) of the block size distributions are similar to those of protein-
like copolymers where hydrophobic units are located in the
globule core and polar units in a surface spherical layer.40

Besides, they are similar to the block-size distributions of

FIG. 7. Comparison of block-size distributions for sequences prepared by
the patterned modification (this work) for L̃ = 5, protein-like modification,
and copolymerized during phase separation (see Refs. 40 and 59, and sup-
plementary material58). The parameters of the protein-like modification and
step-growth polymerization are chosen to provide the similar spatial scales as
for the pattern-modified multiblock copolymers.

copolymers prepared by copolymerization during phase sepa-
ration (Fig. 7); an example of such a process is presented in
the supplementary material58 and Ref. 59. We claim that the
described power-law scaling in the block-size distribution for
sufficiently short blocks is a general feature of any multiblock
copolymer system, in which the phase separation governs the
formation of copolymer sequences.

The probability distribution of block sizes in the ob-
tained pattern-modified multiblock copolymers is very broad.
Comparing it with the most probable (Flory) distribution
(characterizing the step-growth polymerization in a homoge-
neous system) with the same number average block size, we
can conclude that the pattern-modified copolymer sequences
contain more short blocks, less blocks of the average size, and
more very long blocks. The polydispersity index of pattern-
modified copolymers is proportional to the lamella width. We
estimate the bridge/loop ratio and found that the total fraction
of bridges decreased considerably with the lamella width. The
equilibrium state of the pattern-modified multiblock copoly-
mers with 50:50 composition was studied by direct DPD com-
puter simulations. Lamellae with rough boundaries formed in
the melt with the structure period 1.7 times larger than the
initial pattern size. A noticeable amount of short blocks was
located in the domains of other type. It is worth noting that
despite the obtained lamellar structures are far from perfect,
they are formed by multiblock copolymers with a very broad
block size distribution (PDI ∼ 3.5 in the presented simulation).

We suppose that such sequences may occur during interfa-
cial polymerization and its modifications,60 which are actively
used nowadays for different applications.61,62 However, there
are not so many experimental data about the details of block-
mass distributions in those cases. The copolymers with such
block-size distributions could be suitable for pattern repro-
duction in the case when an ideal domain structure is not
important. Due to the presence of very long blocks, such copol-
ymers are somewhat similar to mixtures of homopolymers and
block copolymers, which nowadays are considered as good
candidates for reproducing various (even irregular) substrate
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patterns.63,64 The other attractive feature of multiblock copol-
ymers is greater toughness of the materials made on their
basis compared to, for example, diblock copolymers.3 Blocks
connecting neighboring domains of the same type (bridges)
provide strong mechanical connection of those domains, which
is important for the mechanical durability of the material.
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