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ABSTRACT

Channel mismatch—i.e., swapped left and right views—can

cause major visual discomfort when viewing stereoscopic

content, but detecting it automatically remains a challenge.

We present a novel method for detecting channel mismatch

that significantly outperforms a prior approach when analyz-

ing a dataset of 1,000 video clips. Moreover, this method en-

abled detection of 65 scenes exhibiting channel mismatch in

105 real S3D movies. Perceived discomfort can vary greatly

between different scenes with channel mismatch depending

on a number of factors. We conducted a study involving 59

participants to compute subjective discomfort scores for 56

scenes with channel mismatch. In this paper, we propose a

model to predict these scores on the basis of scene character-

istics.

Index Terms— Stereoscopic video, quality assessment,

channel mismatch, discomfort prediction.

1. INTRODUCTION

The transition from 2D to stereoscopic 3D (S3D) introduces

a variety of new challenges to content creators. Geometrical

inconsistencies between stereoscopic views, as well as inter-

view mismatches in color, luminance and sharpness can easily

arise during S3D capture, and many of these issues demon-

strably affect the perceptual quality [13]. Insufficiently accu-

rate depth maps and poor edge processing can lead to annoy-

ing artifacts as a result of 2D-to-3D conversion [3].

Channel mismatch is a somewhat less common issue, but

if present, it can lead to viewer discomfort. The left and right

views can be accidentally swapped at virtually any stage of

the postproduction process. Moreover, pinpointing the prob-

lem by simply watching the results in S3D can be very diffi-

cult. The level of viewer discomfort caused by channel mis-

match depends on a variety of factors, including the scene’s

brightness, depth budget and motion characteristics. In some

cases, only certain objects in a scene can be overlaid with the

”eyes the wrong way around” as a result of S3D compositing

errors (Figure 1).
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(b) Disparity map
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Fig. 1. Example of a partial channel mismatch involving

only certain objects in a scene (the waves in the top-left and

bottom-right regions of the frame). The scene is from The

Chronicles of Narnia: The Voyage of the Dawn Treader (cour-

tesy of Fox 2000 Pictures).

This paper presents a novel method for automatic

channel-mismatch detection and visual-discomfort predic-

tion. More precisely, our main contributions are the follow-

ing:

• A channel-mismatch detection method that, as we

show, outperforms a prior approach [1] (Section 3);

• A dataset containing 56 scenes with channel mismatch

that we found in 105 real S3D movies using our pro-

posed detection approach (Section 4.1);

• Results of a study involving 59 participants that evalu-

ated the discomfort they experienced for each of the 56
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(a) Source left view

(b) Raw half-occlusion

mask ML
occ

(c) Half-occlusion confidence

map CL
occ

Fig. 2. Example of a confidence map that we use to suppress

half-occlusion detection errors when applying the binocular

half-occlusion criterion.

detected scenes with channel mismatch (Section 4.2);

• A model that aims to predict visual discomfort caused

by channel mismatch on the basis of certain scene char-

acteristics (Section 4.3).

2. RELATED WORK

Several recent studies have considered the problem of pre-

dicting visual discomfort caused by specific S3D artifacts.

In [13], Khaustova et al. investigated how viewer annoy-

ance depends on various technical parameters such as vertical

disparity, rotation and field-of-view mismatches between the

views, and color and luminance mismatches. They identified

perceptual-acceptability thresholds for each of these parame-

ters. The resulting objective metrics showed high correlation

with the subjective ranks, but the authors obtained these re-

sults using a small dataset comprising three synthetic stereo-

scopic images. Chen et al. [5] proposed several objective

metrics for luminance mismatch and evaluated their correla-

tion with the results of a subjective experiment. They used

a more diverse dataset of 30 natural stereoscopic images. In

[9], the researchers investigated visual discomfort caused by

temporal asynchrony.

Some researchers have proposed general methods for

measuring stereoscopic-video quality that try to maximize

correlation with the mean opinion score (MOS). Most of

them, however, focus on transmission-related issues. Silva

et al. [16] proposed a no-reference metric that takes into

account overall disparity distribution, a blockiness measure

and the motion characteristics of the scene. Han et al. in

[10, 11] present metrics that predict perceived S3D-video

quality solely on the basis of transmission parameters such

as network packet-loss rate, bit rate and frame rate. The au-

Fig. 3. Illustration of the binocular half-occlusion criterion.

For any given point (i, j) inside the half-occlusion region, we

determine whether the point is located on the left or right side

of the foreground by using RGB histograms for the regions

l(i, j) and r(i, j) (we assume the half-occlusion region has

the same color distribution as the background).

thors of [2] present a full-reference metric, having evaluated a

large variety of measures, that takes into account 2D-picture

quality, binocular rivalry and depth-map degradation. They

used linear regression to maximize the correlation with the

MOS. An optimal feature combination achieved a Spearman

correlation coefficient of 0.92 on a dataset containing S3D se-

quences degraded by blocking and downsampling.

Very few studies, however, specifically address the prob-

lems of detecting channel mismatch and evaluating the vi-

sual discomfort it introduces. M. Knee in [14] proposed

a simple algorithm based on the fact that objects near the

center or bottom of the screen are typically closer to the

viewer than objects near the top or sides of the screen. J.

Lee et al. [15] performed single-image segmentation into the

foreground and background regions and compared average

disparity values between them to detect channel mismatch.

They evaluated their proposed approach using nine stereo se-

quences and showed it to be superior to subjective judgment

by human subjects, who often have trouble distinguishing be-

tween correct stereoscopic images and ones with swapped left

and right views. The algorithm presented in [1] uses the loca-

tion of half-occlusion areas (i.e., areas that are visible only in

one view of the stereopair), as well as certain characteristics

of the disparity-value distribution, to detect swapped stereo-

scopic views. The authors validated their proposed algorithm

using a dataset containing 780 random frames from 13 S3D

movies. J. Bouchard et al. [4] also used an approach based

on half-occlusion areas; they computed the centroids of both

the left and right half-occlusion maps and compared their hor-

izontal coordinates to detect channel mismatch. The authors

used a dataset of 52 video clips to evaluate the performance

of their approach. Moreover, they conducted a study with 10

human subjects and collected depth-quality scores for all 52

video clips, half of which they showed with swapped left and

right views. The authors demonstrated that channel mismatch

can be correctly predicted only 76% of the time when using

these subjective depth-quality scores—another confirmation



Fig. 4. Illustration of the motion-occlusion criterion. By extrapolating a background-motion vector vbgt−1 from the previous

frame for each occluded point pt we obtain the position of the occluding point qt+1 in the next frame. When projected back to

the original frame, pt and qt form the occluded/occluding point pair.

that recognizing channel mismatch is often challenging for

humans.

3. PROPOSED CHANNEL-MISMATCH DETECTION

METHOD

We observe that consistently detecting channel mismatch us-

ing only one or two criteria is often difficult, so we employ a

weighted combination of five different criteria:

PCM = wpPp + wcPc + wdPd + woPo + wmPm, (1)

where Pp, Pc, Pd, Po and Pm are terms based on perspective,

convexity, disparity-distribution, binocular half-occlusion and

motion-occlusion criteria, respectively. We constructed each

term so that positive values indicate the presence of channel

mismatch, whereas negative values indicate the absence of

channel mismatch. The final decision of whether a particular

frame exhibits this problem depends on simple thresholding

of PCM .

Each criterion uses disparity maps and optical-flow fields

computed by a fast local block-matching approach [17]. To

filter out unreliable matches, we additionally compute the

confidence values C(i, j) on the basis of the LRC criterion

[6], as well as local RGB variance (uniform areas are assigned

a lower matching confidence). The LRC is formally defined

as |DL(i, j) +DR(i, j +DL(i, j))|, where DL and DR are

left- and right-view disparity maps respectively. High LRC

values indicate inconsistencies between left- and right-view

matching results, which we assign lower confidence.

Perspective criterion: We make the simple observation

that regions at the top of the frame often have higher disparity

values (i.e., they are farther from the viewer) than regions at

the bottom of the frame. Formally, we define the perspective-

criterion term as follows:

Pp =
H−1
∑

i=1

min(c(i+ 1), c(i))(d(i+ 1)− d(i)). (2)

W and H denote the input image width and height, re-

spectively, and d(i) =
∑W

j=1 C(i, j)D(i, j)/
∑W

j=1 C(i, j)
is a weighted average of the disparity values D(i, j)

along the ith image row. The disparity-map confidence

values C(i, j) serve here as weights. Also, c(i) =
∑W

j=1 C(i, j)2/
∑W

j=1 C(i, j) is a confidence value for the ith
row.

Convexity criterion: The foreground often appears as a

convex region surrounded by the background, which should

have higher disparity values for correct stereopairs. If this as-

sumption holds, then for each pair of points with the same

disparity value, all points on the line between them should

have same or lower disparity. In practice, however, the fore-

ground is seldom strictly convex, so we assess the degree of

its convexity as a sum of horizontal and vertical terms:

Pc =
H
∑

i=1

∑

j1,j2∈
[1,W ],
j1<j2

w(i, j1, i, j2)
∑

l:j1<l<j2

D(i, l)−
D(i, j1) +D(i, j2)

2

+

W
∑

j=1

∑

i1,i2∈
[1,H],
i1<i2

w(i1, j, i2, j)
∑

l:i1<l<i2

D(l, j)−
D(i1, j) +D(i2, j)

2
.

(3)

Here, w(i1, j1, i2, j2) is a weighting function defined for each

point pair with coordinates (i1, j1) and (i2, j2). It gives high

weights to pairs of points with similar high-confidence dis-

parity values that are located far from each other in spatial

coordinates. Formally,

w(i1, j1, i2, j2) =
1

1 + (D(i1, j1)−D(i2, j2))2

×
√

(i2 − i1)2 + (j2 − j1)2 min(C(i1, j1), C(i2, j2)).
(4)

Such weights are motivated by the observation that long se-

quences of foreground disparity values surrounded by identi-

cal background disparity values are the strongest indicators of

foreground convexity.

Disparity-distribution criterion: This criterion is based

on the well-known stereoscopic principle that two-thirds of

the effective disparity range should be in the positive disparity



Fig. 5. For each occluded/occluding point pair (p, q), we

compare the average disparity in triangular regions ap,q(p)
and ap,q(q) to detect channel mismatch. We select the orien-

tation of these regions so they face in opposite directions. All

possible orientations are quantized to a set of eight directions.

space (behind the screen plane). Thus, we simply assume that

most of the frame has positive rather than negative disparity

values. A precise formulation of this criterion appears in [1].

Binocular half-occlusion criterion: In correct stere-

opairs, half-occlusion regions reside on the left side of fore-

ground objects in the left view and on the right side in the

right view. This fact enables detection of channel mismatch

in scenes with sufficiently wide half-occlusion areas. To do

so, we construct masks of the half-occlusion areas ML
occ and

MR
occ for the left and right views, respectively, using the OCC

method [7]. Errors in half-occlusion detection, however, can

hinder the criterion’s performance. We construct the half-

occlusion confidence maps CL
occ and CR

occ that aim to filter

out such errors. First, we apply a local weighted averaging to

both the left- and right-view disparity maps DL and DR us-

ing disparity confidence values as weights. Then, horizontal

derivatives of the resulting smoothed disparity maps D̂L and

D̂R serve as half-occlusion confidence values:

CL
occ(i, j) = max(−D̂L

x (i, j), 0),

CR
occ(i, j) = max(D̂R

x (i, j), 0)
(5)

Figure 2 shows an example of such a half-occlusion confi-

dence map. Next, for each point in the half-occlusion region,

we must determine whether it resides on the left or right side

of the foreground object and then compute the final score by

weighted voting among all points in the left- and right-view

half-occlusion areas:

Po =
∑

(i,j):ML
occ(i,j)=1

CL
occ(i, j)(H

L
l(i,j)[I

L(i, j)]−HL
r(i,j)[I

L(i, j)])

+
∑

(i,j):MR
occ(i,j)=1

CR
occ(i, j)(H

R
r(i,j)[I

R(i, j)]−HR
l(i,j)[I

R(i, j)]),

(6)

where HL
l(i,j) is a 16×16×16 RGB histogram computed in

the region l(i, j) of the left-view image IL. Also, l(i, j) and

r(i, j) denote triangular regions to the left and right sides of

Movie Title Release

Year

Detected

Scenes

Total

Duration

(sec)

Fraction

of Film

Dura-

tion

The Child’s Eye 2010 15 57.456 0.99%

The Nutcracker in 3D 2010 9 28.946 0.45%

3D Sex and Zen: Extreme

Ecstasy

2011 9 23.108 0.34%

Spy Kids 3D: Game Over 2003 5 10.302 0.20%

Hugo 2011 2 10.261 0.14%

Sharks 3D 2004 1 8.926 0.29%

Saw 3D 2010 3 6.674 0.12%

The Last Airbender 2010 2 6.590 0.11%

Dark Country 2009 4 5.756 0.11%

Creature from the Black

Lagoon

1954 2 5.422 0.11%

Ghost Rider: Spirit of

Vengeance

2012 1 4.630 0.08%

Stalingrad 2013 1 4.296 0.05%

Avatar 2009 1 3.336 0.03%

Spy Kids: All the Time in

the World in 4D

2011 1 2.962 0.06%

Harry Potter and the

Deathly Hallows: Part 2

2011 1 2.878 0.04%

The Chronicles of Narnia:

The Voyage of the Dawn

Treader

2010 1 2.586 0.04%

Conan the Barbarian 2011 1 1.168 0.02%

Step Up 3D 2010 1 0.876 0.01%

Clash of the Titans 2010 1 0.709 0.01%

Drive Angry 2010 1 0.668 0.01%

Bait 2012 1 0.584 0.01%

A Very Harold & Kumar 3D

Christmas

2011 1 0.501 0.01%

The Three Musketeers 2011 1 0.500 0.01%

Table 1. Overall statistics of detected scenes exhibiting chan-

nel mismatch.

the half-occlusion area section that contains the current point

(i, j) (see Figure 3). This criterion relies on the assumption

that the color distribution in the half-occlusion region is more

similar to that of the background than the foreground.

Motion occlusion criterion: When enough motion is

present in a scene, we can also recover the relative depth

ordering from occlusions in the optical-flow field. Here

we compute occlusions using the OCC-Ince-Conrad method

[12]. We denote the occlusion-region masks in the current

frame t as M
t→(t+1)
occ and M

t→(t−1)
occ , where the former marks

regions that are occluded by the foreground in the next frame

and the latter marks regions occluded in the previous frame.

For each occluded point pt in M
t→(t+1)
occ (M

t→(t−1)
occ ), we find

an occluding point qt+1 (qt−1) in the next (previous) frame

under the motion-constancy assumption (see Figure 4). By

projecting the occluding point back to the original frame t,



1

1,5

2

2,5

3

3,5

4

4,5

5

5,5
1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

Scene # 

Fig. 6. Results of channel-mismatch discomfort evaluation

for 62 scenes, 6 of which are control scenes with correctly

ordered channels (marked with asterisks). Each value is an

average of scores reported by 49 people.

we construct the set Ot of all occluded/occluding point pairs

in the current frame. The criterion is based on the assumption

that occluding points should have lower disparity values than

the corresponding occluded points:

Pm =
∑

(p,q)∈Ot

(D(ap,q(p))−D(ap,q(q)))Ct(p)Cp,q, (7)

where D(ap,q(p)) denotes a weighted average of disparity

values in the region ap,q(p). Similarly to previous criteria,

we use the disparity confidence values as weights. ap,q(p)
and ap,q(q) are triangular regions near the points p and q;

their orientation depends on the relative position of the oc-

cluded/occluding point pair (see Figure 5). Ct(p) is a confi-

dence value of the extrapolated optical-flow vector used when

locating the occluding point q. Cp,q is an aggregated disparity

confidence value for the pair (p, q); i.e.,

Cp,q = min

(

∑

(i,j)∈ap,q(p)

C(i, j)2

∑

(i,j)∈ap,q(p)

C(i, j)
,

∑

(i,j)∈ap,q(q)

C(i, j)2

∑

(i,j)∈ap,q(q)

C(i, j)

)

. (8)

4. PROPOSED DISCOMFORT-PREDICTION

METHOD

To account for the fact that perceived discomfort can vary

greatly between different scenes with channel mismatch, we

conduct a subjective study and propose a method for predict-

ing discomfort owing to channel mismatch. Previous subjec-

tive studies [15, 4] have mostly focused on the human ability

to recognize stereoscopic content with swapped views when it

appears alongside normal stereo with correctly ordered views.

We, however, aim to determine which factors contribute the

most to channel-mismatch noticeability. We also aim to con-

struct a predictive model that can be used to compute the

amount of discomfort that any particular scene with channel

mismatch can cause.
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Fig. 7. ROC curves for the proposed channel-mismatch detec-

tion method and the method described in [1]. The test set con-

sisted of 1,000 S3D video clips, half of which had swapped

views.

4.1. Dataset

The effectiveness and low computational complexity of our

proposed channel-mismatch detection approach has enabled

us to conduct a large-scale analysis of 105 full-length S3D

movies available as Blu-ray 3D discs (the present work eval-

uated these Blu-ray releases). We found a total of 65 scenes

exhibiting manually confirmed channel mismatch in 23 dif-

ferent movies, for a total run time of 189 seconds. Table 1

presents more-detailed results of the analysis. Of these 65

scenes, we then used 56 (we excluded some scenes that were

highly similar to others in the group) in a subjective study to

evaluate perceived discomfort, and we also used them as a

training set for the proposed discomfort-prediction model.

4.2. Evaluating perceived discomfort

For the study, we composed a video sequence containing all

56 selected scenes with channel mismatch. Moreover, each

scene in the sequence was preceded and succeeded by scenes

with the correct channel order to better simulate real view-

ing conditions and to provide an additional reference point

for viewers. We repeated each of these three-scene fragments

three times before giving the subjects time to rest and fill out

the questionnaire. We asked them to rank each scene on a

scale of 1 (imperceptible) to 5 (severe discomfort). The in-

clusion of several additional scenes with no channel mismatch

ensured that the subjects ranked scenes correctly. We showed

half of the subjects the sequence in reverse order to suppress

the possible influence of a given scene on the subjective mark

for the subsequent one. A total of 59 subjects participated

in the study, but we excluded the results of 10 subjects who

demonstrated maximal deviation from the statistical average

or who gave high marks to the control scenes containing no

channel mismatch. Figure 6 presents our results. As we ex-
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Fig. 8. Relative importance of different scene features when

predicting channel-mismatch discomfort.

pected, the detected scenes differ greatly in perceived discom-

fort. Dark and “flat” scenes are virtually indistinguishable

from scenes containing no channel mismatch (for instance,

scene #31, from The Three Musketeers), whereas channel

mismatch in some scenes (scene #53, from Sharks 3D) are

unanimously considered to be very annoying.

4.3. Discomfort prediction

We used the results of our study to train a predictive model

for channel-mismatch discomfort scores, employing the fol-

lowing scene features:

• Variance of disparity values;

• Average brightness;

• Motion intensity (average motion-vector length);

• Scene length;

• Values of terms Pp, Pc, Pd, Po and Pm correspond-

ing to the respective channel-mismatch detection crite-

ria (see Section 3).

We tried a number of different regression methods, in-

cluding linear, polynomial and random-forest-based methods.

The best results, however, came from gradient boosting [8], so

we used it to predict the channel-mismatch discomfort scores

on the basis of the scene features listed above (we assessed

the performance by using leave-one-out cross-validation).

5. EXPERIMENTAL EVALUATION

5.1. Channel-mismatch detection performance

We evaluated the performance of our proposed channel-

mismatch detection approach using a dataset containing 1,000

randomly selected video clips with manually validated chan-

nel order from five recent S3D movies. Each video clip is 30

frames in length. To obtain a dataset with ground-truth val-

ues, we simply swapped the left and right views in 500 of the

clips. We used another similarly constructed data set of 1,000

video clips to select the weights in Eq. 1. We performed a

simple grid search while optimizing for the AUC score on the

training set.

Our proposed approach significantly outperformed the

method described in [1] on our test set (see Figure 7). Also,

that alternative method uses a computationally expensive

optical-flow algorithm, which leads to a relatively low com-

putation speed (∼138 seconds per 960×540 video clip). Our

method, on the other hand, takes only ∼15 seconds on aver-

age to process the same video clip.

5.2. Discomfort-prediction performance

To evaluate the discomfort-prediction performance on a rel-

atively small dataset comprising 56 scenes, we use leave-

one-out cross-validation with a quadratic loss function.

Gradient-tree-boosting regression with optimal hyperparam-

eters achieves a cross-validation error of 0.43 (i.e., the mean-

squared prediction error is 0.43 when predicting discomfort

on a scale from 1 to 5). We also analyzed the relative impor-

tance of scene features (Figure 8).

6. CONCLUSION

In this paper, we proposed a novel channel-mismatch detec-

tion method based on a combination of five different criteria.

It achieves an AUC score of 0.987 when tested on a dataset

containing 1,000 S3D video clips, half which have swapped

views; the method described in [1] garners a lower AUC score

of 0.837 on the same dataset. Using our method, we de-

tected 65 scenes exhibiting channel mismatch in 105 real S3D

movies.

In addition, we conducted a study involving 59 human

subjects to evaluate the perceived discomfort of the detected

scenes on a scale of 1 to 5. We proposed a model to predict

these scores on the basis of a scene’s characteristics, achiev-

ing a cross-validation mean-squared error of 0.43.
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