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Abstract

The SS-HORSE approach to analysis of resonant states is generalized to
the case of charged particle scattering utilizing analytical properties of partial
scattering amplitudes and applied to the study of resonant states in the 5Li
nucleus and non-resonant s-wave proton-α scattering within the no-core shell
model using the JISP16 and Daejeon16 NN interactions.
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1 Introduction

There is considerable progress in developing ab initio methods for studying nuclear
structure [1] based on a rapid development of supercomputer facilities and recent
advances in the utilization of high-performance computing systems. In particular,
modern ab initio approaches, such as the Green’s Function Monte Carlo (GFMC) [2],
the Hyperspherical expansion [1], the No-Core Shell Model (NCSM) [3], the Coupled-
Cluster Theory [4,5], and the Nuclear Lattice Effective Field Theory [6,7] are able to
reproduce properties of atomic nuclei with mass up to A = 16 and selected heavier
nuclear systems around closed shells.

Within NCSM as well as within other shell model approaches, the calculation of
nuclear ground states and other bound states starts conventionally from estimating
the ~Ω dependence of the energy Eν(~Ω) of the bound state ν in some model space.
The minimum of Eν(~Ω) is correlated with the energy of the state ν. The convergence
of calculations and accuracy of the energy prediction is estimated by comparing with
the results obtained in neighboring model spaces. To improve the accuracy of theoret-
ical predictions, various extrapolation techniques have been suggested recently [8–19]
which make it possible to estimate the binding energies in the complete infinite shell-
model basis space. The studies of extrapolations to the infinite model spaces reveal
general trends of convergence patterns of shell model calculations.
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An extension of the ab initio methods to the studies of the continuum spectrum and
nuclear reactions is one of the mainstreams of modern nuclear theory. A remarkable
success in developing the ab initio reaction theory was achieved in few-body physics
where exact Faddeev and Faddeev–Yakubovsky equations [20] or the AGS method [21]
are nowadays routinely used for calculating various few-body reactions.

The most important breakthrough in developing ab initio theory of nuclear re-
actions in systems with total number of nucleons A > 4 was achieved by combin-
ing NCSM and Resonating Group Method (RGM); the resulting approach is con-
ventionally referred to as NCSM/RGM or No-Core Shell Model with Continuum
(NCSMC) [3,22–24]. It is also worth noting the Lorentz integral transform approach
to nuclear reactions with electromagnetic probes [1,25] and the GFMC calculations of
elastic nα scattering [26]. Nuclear resonance can be also studied within the No-core
Gamow Shell Model (NCGSM) [27].

Both NCGSM and NCSM/RGM complicate essentially the shell model calcula-
tions. A conventional belief is that the energies of shell model states in the con-
tinuum should be associated with the resonance energies. It was shown however in
Refs. [28, 29] that the energies of shell model states may appear well above the en-
ergies of resonant states, especially for broad resonances. Moreover, the analysis of
Refs. [28, 29] clearly demonstrated that the shell model should also generate some
states in a non-resonant nuclear continuum. In Refs. [30–34] we suggested an SS-
HORSE approach which provides an interpretation of the shell model states in the
continuum and makes it possible to deduce resonance energies and width or low-energy
non-resonant phase shifts directly from shell-model results without introducing addi-
tional Berggren basis states as in NCGSM or additional RGM calculations as in the
NCSM/RGM approach.

The SS-HORSE approach is based on a simple analysis of the ~Ω and basis-space
dependencies of the results of standard variational shell-model calculations. We have
successfully applied it to extracting resonance energies and widths in nα scattering
as well as non-resonant nα elastic scattering phase shifts [30, 31] from the NCSM
calculations of 5He and 4He nuclei with JISP16 NN interaction [35]. To describe
democratic decays [36, 37] of few-nucleon systems, we developed a hyperspherical
extension of the SS-HORSE method [38, 39]. An application of this extended SS-
HORSE approach to the study of the four-neutron system (tetraneutron) [38–40] make
it possible to obtain for the first time a low-energy tetraneutron resonance consistent
with a recent experiment [41] with soft realistic NN interactions like JISP16 [35],
Daejeon16 [42] and SRG-evolved chiral effective field theory (χEFT) NN interactions.
On the other hand, the unperturbed χEFT Idaho N3LO interaction [43] does not
support a tetraneutron resonance narrow enough to be detected experimentally but
instead provides a low-lying virtual tetraneutron state [40]. This result provides a
possible explanation why the tetraneutron resonance has not been obtained before in
numerous theoretical studies with various NN interactions with a repulsive core.

In this contribution, we discuss an extension of the SS-HORSE method to the
case of charged particle scattering. The SS-HORSE technique provides the S-matrix
or scattering phase shifts in some energy interval above the threshold where the
shell model calculations generate eigenstates with various ~Ω values and various basis
truncations. Next we parametrize the S-matrix to obtain it in a wider energy interval
and to locate its poles associated with resonances. We have shown [30, 31] that this
parametrization should provide a correct description of low-energy phase shifts. The
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phase shift parametrization utilized in Refs. [30–32] was derived from the symmetry
properties of the S-matrix. However, due to the long-range Coulomb interaction in
the case of charged particle scattering, the analytical properties of the S-matrix be-
come much more complicated and cannot be used for its low-energy parametrization.
In Ref. [33] we suggested a version of the SS-HORSE approach which utilizes the
phase shift parametrization based on analytical properties of the partial scattering
amplitude. In the case of charged particle scattering, instead of the partial scattering
amplitude one can use the so-called renormalized Coulomb-nuclear amplitude [44,45]
which has similar analytical properties. This opens a route to the generalization of
the SS-HORSE method to the case of the charged particle scattering proposed in
Ref. [34] where we have verified this approach using a model problem of scattering
of particles interacting by the Coulomb and a short-range potential. To calculate the
Coulomb-nuclear phase shifts, we make use of the version of the HORSE formalism
suggested in Ref. [46] and utilized later in our studies of Refs. [28, 29].

In this contribution we present the results of SS-HORSE calculations of proton-α
resonant and non-resonant scattering phase shifts based on the ab initio NCSM re-
sults for 5Li and 4He nuclei obtained with the JISP16 [35] and a newer Daejeon16 [42]
NN interaction derived from a χEFT inter-nucleon potential and better fitted to the
description of light nuclei than JISP16. We search for the S-matrix poles to evaluate
the energies and widths of resonant states in 5Li nucleus. The NCSM-SS-HORSE cal-
culations of the 5He resonant states have been performed with the JISP16 interaction
in Refs. [30,31]. We present here also the results of the NCSM-SS-HORSE 5He reso-
nant state calculations with the Daejeon16 to complete the studies of the nucleon-α
resonances with the realistic JISP16 and Daejeon16 NN potentials. The previous
ab initio analyses of nucleon-α resonances with various modern realistic inter-nucleon
interactions were performed in Ref. [26] within the GFMC and in Refs. [22, 47–49]
within the NCSM/RGM.

2 SS-HORSE method for channels

with neutral and charged particles

2.1 General formulae

The SS-HORSE approach relies on the J-matrix formalism in quantum scattering
theory.

Originally, the J-matrix formalism was developed in atomic physics [50] [4]; there-
fore, the so-called Laguerre basis was naturally used within this approach. A gen-
eralization of this formalism utilizing either the Laguerre or the harmonic oscilla-
tor bases was suggested in Ref. [51]. Later the harmonic-oscillator version of the
J-matrix method was independently rediscovered by Kiev (G. F. Filippov and col-
laborators) [52] and Moscow (Yu. F. Smirnov and collaborators) [53] groups. The
J-matrix with oscillator basis is sometimes also referred to as an Algebraic Version
of RGM [52] or as a Harmonic Oscillator Representation of Scattering Equations
(HORSE) [46]. We use here a generalization of the HORSE formalism to the case of
charged particle scattering proposed in Ref. [46].

Within the HORSE approach, the basis function space is split into internal and
external regions. In the internal region which includes the basis states with oscillator
quanta N ≤ N, the Hamiltonian completely accounts for the kinetic and potential
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energies. The internal region can be naturally associated with the shell model basis
space. In the external region, the Hamiltonian accounts for the relative kinetic energy
of the colliding particles (and for their internal Hamiltonians if needed) only and its
matrix takes a form of an infinite tridiagonal matrix of the kinetic-energy operator
(plus the sum of eigenenergies of the colliding particles at the diagonal if they have an
internal structure). The external region clearly represents the scattering channel un-
der consideration. If the eigenenergies Eν , ν = 0, 1, ... and the respective eigenvectors
of the Hamiltonian matrix in the internal region are known, one can easily calculate
the S-matrix, phase shifts and other parameters characterizing the scattering process
(see, e. g., Refs. [46, 51, 54, 55]).

An interesting feature peculiar to the J-matrix method was highlighted as far back
as 1974 [50]. The point is that, at the energies coinciding with the eigenvalues Eν of
the Hamiltonian matrix in the internal region, the matching condition of the J-matrix
method becomes substantially simpler while the accuracy of the S-matrix and phase
shift description at these energies is much better than at the energies far enough from
the eigenvalues Eν [34, 56, 57]. Taking an advantage of this feature, H. Yamani [57]
was able to construct an analytic continuation to the complex energy plane within
the R-matrix method and to obtain accurate estimates for the energies and widths of
resonant states.

The Single-State HORSE (SS-HORSE) method suggested in Refs. [30–32] also
benefits from the improved accuracy of the HORSE approach at the eigenstates of
the Hamiltonian matrix truncated to the internal region of the whole basis space.
In the case of scattering of uncharged particles interacting by a short-range poten-
tial, the phase shifts δl(Eν) in the partial wave with the orbital momentum l at the
eigenenergies Eν of the internal Hamiltonian matrix are given by [30–32]

tan δl(Eν) = −SN+2,l(Eν)

CN+2,l(Eν)
. (1)

Here SN,l(E) and CN,l(E) are respectively regular and irregular solutions of the free
Hamiltonian at energy E in the oscillator representation which analytical expressions
can be found in Refs. [46, 51, 54, 55]. Varying the oscillator basis spacing ~Ω and the
truncation boundary N of the internal oscillator basis subspace, we obtain a variation
of some eigenenergy Eν of the truncated Hamiltonian matrix in some energy interval
and obtain the phase shifts δl(E) in that energy interval by means of Eq. (1). Next
we parametrize the phase shifts δl(E) as discussed in the next subsection to have the
phase shifts and the S-matrix in a wider energy interval which makes it possible to
locate the S-matrix poles.

In the case of scattering in the channels with two charged particles, we, following
the ideas of Ref. [46], formally cut the Coulomb interaction at the distance r = b. As
shown in Ref. [34], an optimal value of the Coulomb cutoff distance b is the so-called
natural channel radius b0 [46],

b = b0 ≡ rclN+2,l = 2r0
√
N/2 + 7/4 , (2)

i. e., b is equivalent to the classical turning point rcl
N+2,l of the first oscillator func-

tion RN+2,l(r) in the external region of the basis space. The parameter r0 =
√
~/(µΩ)

entering Eq. (2) is the oscillator radius and µ is the reduced mass in the channel under
consideration. With this choice of the Coulomb cutoff distance b, the elements of the
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Hamiltonian matrix in the internal region are insensitive to the cut of the Coulomb
interaction. Therefore the shell model Hamiltonian matrix elements in the internal
region can be calculated without any modification of the Coulomb interaction be-
tween the nucleons. The scattering phase shifts δauxl of the auxiliary Hamiltonian
with the cutted Coulomb interaction can be calculated using the standard HORSE
or SS-HORSE technique, e. g., with the help of Eq. (1). To deduce an expression for
the Coulomb-nuclear phase shifts δl, one should match at the distance b the plane-
wave asymptotics of the auxiliary Hamiltonian wave functions with Coulomb-distorted
wave function asymptotics. As a result, we get the following SS-HORSE expression
for the Coulomb-nuclear phase shifts δl(Eν) at the eigenenergies Eν of the internal
Hamiltonian matrix [34]:

tan δl
(
Eν

)
= − SN+2,l

(
Eν

)
Wb(nl, Fl) + CN+2,l(Eν)Wb(jl, Fl)

SN+2,l

(
Eν

)
Wb(nl, Gl) + CN+2,l

(
Eν

)
Wb(jl, Gl)

. (3)

Here jl ≡ jl(kr) and nl ≡ nl(kr) are respectively the spherical Bessel and Neumann
functions [58] while Fl ≡ Fl(η, kr) and Gl ≡ Gl(η, kr) are respectively the regular and
irregular Coulomb functions [58]; k is the relative motion momentum; η = Z1Z2e

2µ/k
is the Sommerfeld parameter; the quasi-Wronskian

Wb(φ, χ) =

(
dφ

dr
χ − φ

dχ

dr

)∣∣∣∣
r=b

. (4)

As in the case of neutral particle scattering, we obtain the Coulomb-nuclear phase
shifts δl(E) in some energy interval by varying the internal region boundary N and
the oscillator basis spacing ~Ω and next parametrize the phase shifts to have them in
a wider energy interval. However the phase shift parametrization is more complicated
for channels with charged colliding particles as discussed below.

An important scaling property of variational calculations with the harmonic os-
cillator basis was revealed in Refs. [9,10]: the converging variational eigenenergies Eν

depend on ~Ω and N not independently but only through a scaling variable

s =
~Ω

N + 7/2
. (5)

This scaling property was initially proposed in Refs. [9, 10] for the bound states. We
have extended the scaling to the case of variational calculations with the harmonic
oscillator basis of the unbound states [30, 31] within the SS-HORSE approach. The
SS-HORSE extension to the case of charged particle scattering discussed here can be
used to demonstrate that the long-range Coulomb interaction does not destroy the
scaling property of the unbound states (see Ref. [34] for details).

2.2 Phase shift parametrization

The total partial-wave amplitude for scattering in the case of Coulomb and short-range
interactions has the form of the sum of the purely Coulomb, fC

l (k), and Coulomb-
nuclear, fNC

l (k), amplitudes [59],

fl(k) = fC
l (k) + fNC

l (k), (6)
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which, in turn, are related to the purely Coulomb, σl = arg Γ(1+l+iη), and Coulomb-
nuclear phase shifts, δl, as

fC
l (k) =

exp (2iσl) − 1

2ik
, (7)

fNC
l (k) = exp (2iσl)

exp (2iδl) − 1

2ik
. (8)

Analytic properties of the Coulomb-nuclear amplitude fNC
l (k) in the complex

momentum plane differ from the analytic properties of the scattering amplitude for
neutral particles. However, the renormalized Coulomb-nuclear amplitude [44, 45],

f̃l(E) =
exp (2iδl) − 1

2ik
· exp (2πη) − 1

2πη
clη, (9)

where

clη =

l∏

n=1

(1 + η2/n2)−1 (l > 0), c0η = 1, (10)

is identical in analytic properties on the real momentum axis with the scattering
amplitude for neutral particles. In particular, the renormalized amplitude can be
expressed [44, 45]

f̃l =
k2l

K̃l(E) − 2ηk2l+1H(η)(clη)−1
(11)

in terms of the Coulomb-modified effective-range function [44, 45]

K̃l(E) = k2l+1(clη)−1

{
2πη

exp (2πη) − 1
[cot δl(k) − i] + 2ηH(η)

}
, (12)

where

H(η) = Ψ(iη) + (2iη)−1 − ln (iη), (13)

Ψ(z) is the logarithmic derivative of the Γ function (digamma or Ψ function) [58].
In the absence of Coulomb interaction (η = 0), the Coulomb-modified effective-range
function transforms into the standard effective-range function for neutral particle
scattering,

K̃l(E) = Kl(E) = k2l+1 cot δl, (14)

while the renormalized amplitude becomes the conventional neutral particle scattering
amplitude,

fl(E) =
k2l

Kl(E) − ik2l+1
. (15)

Due to their nice analytic properties, the renormalized Coulomb-nuclear ampli-
tude, f̃l(E), and the neutral particle scattering amplitude, fl(E), can be used to
parametrize respectively the Coulomb-nuclear and neutral particle scattering phase
shifts ensuring their correct low-energy behavior. In Refs. [33, 34], we introduced an
auxiliary complex-valued function imbedding resonant pole parameters in the am-
plitude parametrization. These resonant pole parameters play a role of additional
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fitting parameters in the phase-shift parametrization. Here we prefer to parametrize
the Coulomb-modified effective-range function (12) or the standard effective-range
function for neutral particle scattering (14) thus reducing the number of fit parame-
ters. The resonant parameters are obtained by a numerical location of the amplitude
pole as discussed below.

The Coulomb-modified effective-range function K̃l(E) as well as the effective-range
function for neutral particle scattering Kl(E) is real on the real axis of momentum k,
is regular in the vicinity of zero, and admits an expansion in even powers of k, or,
equivalently, in power series of the relative motion energy E = ~2k2/2µ [44, 45],

K̃l(E) = w0 + w1E + w2E
2 + ... (16)

The expansion coefficients w0 and w1 are related to the so-called scattering length al
and effective range rl [59]:

w0 = − 1

al
, w1 =

rlµ

~2
. (17)

We use the expansion coefficients w0, w1 and w2 as fit parameters for the phase
shift parametrization. Such a parametrization works well in the case of nucleon-α
scattering but may fail in other problems. Note, as seen from Eq. (12) or Eq. (14),
the energies at which the phase shift takes the values of 0, ±π, ±2π, ..., are the singular
points of the effective-range function. In the case of possible presence of such singular
points in the range of energies of interest for a particular problem, one should use a
more elaborate parametrization of the effective-range function, e. g., in the form of
the Padé approximant.

2.3 Fitting process

In the case of neutral particle scattering, we combine Eqs. (1), (14) and (16) to obtain

w0 + w1E + w2E
2 = k2l+1 CN+2,l(E)

SN+2,l(E)
. (18)

In the case of charged particle scattering, we derive a more complicated equation with
the help of Eq. (3) and (12):

w0 + w1E + w2E
2 = k2l+1(clη)−1

×
{
− 2πη

exp (2πη) − 1

[
SN+2,l(E)Wb(nl, Gl) + CN+2,l(E)Wb(jl, Gl)

SN+2,l(E)Wb(nl, Fl) + CN+2,l(E)Wb(jl, Fl)
+ i

]
+ 2ηH(η)

}
.

(19)

Let E
(i)
ν , i = 1, 2, ..., D, be a set of the lowest (ν = 0) or some other particular

eigenvalues (ν > 0) of the Hamiltonian matrix truncated to the internal region of
the basis space obtained with a set of parameters (N(i), ~Ω(i)), i = 1, 2, ..., D. We
find energies E(i) as solutions of Eq. (18) or Eq. (19) with some trial set of the
effective-range function expansion coefficients w0, w1, w2 for each combination of
parameters (N(i), ~Ω(i)) [note, the oscillator basis parameter ~Ω enters definitions of
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functions SN,l(E) and CN,l(E)]. The optimal set of the fit parameters w0, w1, w2

parametrizing the phase shifts is obtained by minimizing the functional

Ξ =

√√√√ 1

D

D∑

i=1

(
E

(i)
ν − E(i)

)2
. (20)

With the optimal set of the fit parameters w0, w1, w2 we can use Eq. (18) or
Eq. (19) to obtain the ~Ω dependences of the eigenenergies Eν(~Ω) in any basis
space N. Therefore Eqs. (18) and (19) provide extrapolation of the variational results
for unbound states to larger basis spaces.

2.4 Resonance energy Er and width Γ

We obtain resonance energies Er and widths Γ by a numerical location of the S-matrix
poles which coincide with the poles of scattering amplitude. If the amplitude has a
resonant pole at a complex energy E = Ep, the resonance energy Er and its width Γ
are related to the real and imaginary part of Ep [59]:

Ep = Er − i
Γ

2
. (21)

It follows from Eqs. (11) and (15) that locating the pole of the scattering amplitude
is equivalent to solving in the complex energy plane the equation

F(E) ≡ K̃l(E) − 2ηk2l+1H(η)(clη)−1 = 0 (22)

in the case of charged particle scattering or the equation

F(E) ≡ Kl(E) − ik2l+1 = 0 (23)

in the case of neutral particles. We can use the parametrization of functions K̃l(E)
or Kl(E) in Eqs. (22) and (23). To solve these equations, we calculate the integral

Υ =
1

2πi

∮

C

F ′(E)

F(E)
dE (24)

along some closed contour C in the complex energy plane, where F ′(E) = dF
dE . The

contourC should surround the area where we expect to have the pole of the amplitude.
According to the theory of functions of a complex variable [60], the value of Υ is equal
to the number of zeroes of the function F(E) in the area surrounded by the contour C.
If needed, we modify the contour C to obtain

Υ = 1. (25)

The position of the pole in the energy plane is calculated as

Ep =
1

2πi

∮

C

E
F ′(E)

F(E)
dE. (26)

A numerical realization of the algorithm based on Eqs. (24)–(26) provides fast and
stable locating of the poles of scattering amplitude.
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3 Elastic scattering of nucleons by α particle
in the NCSM-SS-HORSE approach

We present here an application of our SS-HORSE technique to nucleon-α scattering
phase shifts and resonance parameters based on ab initio many-body calculations of
5He and 5Li nuclei within the NCSM with the realistic JISP16 and Daejeon16 NN in-
teractions. The NCSM calculations are performed using the code MFDn [61,62] with
basis spaces including all many-body oscillator states with excitation quanta Nmax

ranging from 2 up to 18 for both parities and with ~Ω values ranging from 10
to 40 MeV in steps of 2.5 MeV.

Note, for the NCSM-SS-HORSE analysis we need the 5He and 5Li energies relative
respectively to the n + α and p + α thresholds. Therefore from each of the 5He or
5Li NCSM odd (even) parity eigenenergies we subtract the 4He ground state energy
obtained by the NCSM with the same ~Ω and the same Nmax (with Nmax − 1) ex-
citation quanta, and in what follows these subtracted energies are referred to as the
NCSM eigenenergies Eν . Only these 5He and 5Li NCSM eigenenergies relative to the
respective threshold are discussed below.

We note here that the NCSM utilizes the truncation based on the many-body os-
cillator quanta Nmax while the SS-HORSE requires the oscillator quanta truncation
of the interaction describing the relative motion of nucleon and α particle. A justifica-
tion of using Nmax for the SS-HORSE analysis is obvious if the α particle is described
by the simplest four-nucleon oscillator function with excitation quanta Nα

max = 0.
Physically it is clear that the use of Nmax within the SS-HORSE should work well
also in a more general case when the α particle is presented by the wave function
with Nα

max > 0 due to the dominant role of the zero-quanta component in the α
particle wave function. Instead of attempting to justify algebraically the use of Nmax

within the SS-HORSE, we suggested in Ref. [30, 31] an a posteriori justification: we
demonstrated in Ref. [30,31] that we obtained nα phase shift parametrizations consis-
tent with the NCSM results obtained with very different Nmax and ~Ω values; more,
we were able to predict the NCSM results with large Nmax using the phase shift
parametrizations based on the NCSM calculations with much smaller model spaces.
It was clearly impossible if the use of Nmax truncation for the SS-HORSE analysis did
not work properly. We perform the same a posteriori analysis of our results in this
study of nucleon-α scattering to ensure the justification of our approach though do not
present and discuss it below. Generally the fact that the phase shifts calculated using
Eq. (1) or (3) at the NCSM eigenenergies obtained with different Nmax truncations
form a single curve as a function of energy serves as a confirmation of the consistency
of the whole NCSM-SS-HORSE approach and of the use of the NCSM Nmax for the
SS-HORSE phase shift calculation in particular. The ranges of Nmax and ~Ω values
where this consistency is achieved differ for different NN interactions and different
angular momenta and parities. Such a consistency which can be also interpreted as a
convergence of the phase shift calculations is seen in the figures below to be achieved
in all calculations at least at largest basis spaces in some range of ~Ω values.

3.1 Phase shifts of resonant pα scattering

The top left panel of Fig. 1 presents the results of the NCSM calculations of the
5Li 3

2

−
ground state energies E

(i)
0 relative to the p + α threshold. The respective
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Figure 1: pα scattering in the 3
2

−
state with JISP16 NN interaction. Top left: the

lowest 5Li 3
2

−
eigenenergies E

(i)
0 relative to the p+α threshold obtained by the NCSM

with various Nmax (symbols) as functions of ~Ω. The shaded area shows the energy
values selected for the SS-HORSE analysis. Solid curves are solutions of Eq. (19) for

energies E with parameters w0, w1 and w2 obtained by the fit. Top right: the 3
2

−
pα

phase shifts obtained directly for all calculated 5Li eigenstates E
(i)
0 using Eq. (3). Bot-

tom left: Coulomb-modified effective range function K̃l(E) calculated using Eq. (16)
with parameters w0, w1 and w2 obtained by the fit (solid curve) and calculated using

the r.h.s. of Eq. (19) at the selected eigenenergies E
(i)
0 (symbols). Bottom right: the

fit of the 3
2

−
pα phase shifts (solid curve) and the phase shifts obtained directly from

the selected 5Li eigenstates E
(i)
0 using Eq. (3) (symbols). Experimental data at the

right panels (stars) are taken from Ref. [63].

phase shifts calculated using Eq. (3) for all 5Li eigenstates E
(i)
0 are shown in the top

right panel of Fig. 1.

For the SS-HORSE analysis we should select a set of consistent (converged) NCSM

eigenstates E
(i)
0 which form a single curve of the phase shifts δl

(
E

(i)
0

)
vs energy as dis-

cussed in detail in Refs. [30–34]. Alternatively one can use for the eigenstate selection

the graph of E
(i)
0 vs the scaling parameter s or the graph of the Coulomb-modified

effective range function points K̃l

(
E

(i)
0

)
vs energy where the converged eigenstates

should also form a single curve. Our selection of the eigenstates E
(i)
0 is illustrated

by the shaded area in the top left panel of Fig. 1 while the method of the eigenstate
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selection is seen from comparing the top right and bottom right panels in the same

figure: the symbols in the top panel depict the phase shifts δ1
(
E

(i)
0

)
corresponding

to all eigenstates E
(i)
0 while those in the bottom panel correspond to the selected

eigenstates only. More details regarding the eigenstate selection can be found in
Refs. [30, 31] and we are not discussing the method of eigenstate selection in this
paper in what follows.

A good quality of reproducing the Coulomb-modified effective range function

points K̃l

(
E

(i)
0

)
by the fit is illustrated by the bottom left panel in Fig. 1. We note

the the quality of description by the fit of the functions K̃l(E) and Kl(E) in cases of
other states and interactions is approximately the same and we shall not present the
graphs of these functions in what follows. A numerical estimate of the fit quality in

our approach is the rms deviation Ξ of the eigenenergies E
(i)
0 presented in Table 1. It

is seen that in all cases Ξ is of the order of few tens of keV.

The bottom right panel in Fig. 1 demonstrates a good quality of the fit of the phase

shift points δ1
(
E

(i)
0

)
. The fitted phase shifts are seen from this panel to be in a good

correspondence with the results of the phase shift analysis of the experimental data
of Ref. [63]. However the theoretical phase shift behavior indicates that the resonance
has a slightly higher energy and a larger width than observed experimentally.

The results of the calculations of the same phase shifts with the Daejeon16 NN
interaction are presented in Fig. 2. It is seen that in this case we reproduce the exper-
imental phase shifts in the resonance region even better than with JISP16. However
we can select for the SS-HORSE analysis much less NCSM results than in the case of
JISP16: only the NCSM states obtained with Daejeon16 with Nmax ≥ 12 are forming

the same curve on the δ1
(
E

(i)
0

)
vs energy plot while in the JISP16 case we utilize for

the SS-HORSE analysis the results with Nmax ≥ 4. In other words, surprisingly, the
convergence of continuum state calculations with the Daejeon16 NN interaction is
much worse than with JISP16 while the Daejeon16 results in a much faster conver-
gence of NCSM calculations for bound states of light nuclei [42]. The same trends in
comparing convergence of Daejeon16 and JISP16 continuum calculations are seen in
all the rest results presented here.
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Figure 2: pα scattering in the 3
2

−
state with Daejeon16 NN interaction. Dashed

curve in the right panel presents phase shifts obtained with JISP16 for comparison.
See Fig. 1 for other details.
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Figure 3: pα scattering in the 1
2

−
state with JISP16 (top panels) and Daejeon16

(bottom panels) NN interactions. Dashed curve in the bottom right panel presents
phase shifts obtained with JISP16 for comparison. See Fig. 1 for other details.

The results of calculations of the pα scattering in the 1
2

−
state with JISP16

and Daejeon16 are presented in Fig. 3. Both interactions are reproducing well the
experimental data in the resonance region while the JISP16 phase shifts are closer to
the experiment at higher energies.

3.2 Phase shifts of resonant nα scattering

We have studied the nα scattering within the NCSM-SS-HORSE approach with the
JISP16 NN interaction in Refs. [30,31]. We present for completeness the resonant nα
phase shifts obtained with Daejeon16 in Fig. 4 in comparison with those from JISP16.

As in the case of the pα scattering, the narrower 3
2

−
resonance is better described

by the Daejeon16 than by the JISP16 interaction while the description of the wider
1
2

−
resonance region is nearly the same by both interaction but the 1

2

−
phase shift

behavior at energies above the resonant is reproduced better by JISP16. We note
again a faster convergence of the JISP16 calculations of nα scattering phase shifts as
compared with those with Daejeon16.
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Figure 4: nα scattering in the 3
2

−
(top panels) and 1

2

−
(bottom panels) states with

the Daejeon16 NN interaction. Dashed curves in the right panels present phase shifts
obtained with JISP16 [30] for comparison. Experimental data (stars) are taken from
Ref. [64]. See Fig. 1 for other details.

3.3 3

2

−

and 1

2

−

resonances in 5Li and 5He nuclei

The results for energies and widths of the 3
2

−
and 1

2

−
resonances in 5Li and 5He nuclei

with respect to the nucleon + α threshold obtained by the numerical location of the
scattering amplitude poles as described in Subsection 2.4, are presented in Table 1.
For comparison, we present in Table 1 also the results for the 5Li resonances obtained
with χEFT NN and NNN interactions in the ab initio NCSM/RGM approach in
Ref. [49]. We note that the energy of the resonance was calculated in Ref. [49] as

a position of the maximum of the derivative dδl(E)
dE while the resonance width was

evaluated as Γ = 2/(dδl/dE)|E=Er
. The phase shift δl(E) may have a contribution

from a non-resonant background which can result in some shift of the resonance
energy Er and in a modification of its width Γ in such calculations as compared with
a more theoretically substantiated method relating the resonance parameters to the
S-matrix and/or scattering amplitude pole. The differences in energy and width from
these different type calculations may be large for wide resonances.

We note that all ab initio calculations of resonance parameters in 5Li and 5He
nuclei provide a good description of the experimental data of Ref. [65]. The differ-

ence in 3
2

−
resonance energies in both nuclei obtained with different interactions is

less than 300 keV, and the experimental resonance energies are within the respective
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Table 1: Energies Er and widths Γ of resonant states 3
2

−
and 1

2

−
in 5Li and 5He

obtained in the NCSM-SS-HORSE approach with JISP16 and Daejeon16 NN inter-
actions. Ξ presents the rms deviation of energies obtained in the fit. The NCSM/RGM
results obtained with χEFT NN and NNN interactions are from Ref. [49] and the
experimental results are from Ref. [65].

Er Γ Ξ Er Γ Ξ ∆
(MeV) (MeV) (keV) (MeV) (MeV) (keV) (MeV)

5Li, 3/2− 5Li, 1/2−

Experiment 1.69 1.23 3.18 6.60 1.49
JISP16 1.80 1.79 45 3.57 6.09 65 1.77

Daejeon16 1.52 1.05 24 3.21 5.63 50 1.70
χEFT NN +NNN 1.77 1.70 3.11 7.90 1.34

5He, 3/2− 5He, 1/2−

Experiment 0.80 0.65 2.07 5.57 1.27
JISP16 0.94 1.02 40 2.63 5.31 62 1.69

Daejeon16 0.68 0.52 22 2.45 5.07 48 1.77

intervals of predictions obtained with different interactions. The theoretical predic-

tions for the 3
2

−
resonance widths also embrace the experimental values. However the

spread of theoretical predictions for the 3
2

−
resonance width is about 750 keV in the

case of 5Li and about 500 keV in the case of 5He that are large numbers as compared
with the width value.

In the case of the wider 1
2

−
resonances in 5Li and 5He nuclei, the spreads of pre-

dictions for 5Li also embrace the respective experimental energy and width values
while our predictions for the 5He resonance energy are slightly above and for the
width are slightly below the experiment. However the spreads of the theoretical pre-

dictions for both energy and width of the 1
2

−
resonances in 5Li and 5He do not exceed

approximately 450 keV with an exception of the NCSM/RGM χEFT NN +NNN

prediction for the 1
2

− 5Li resonance width. Even the 2.3 MeV difference between our

Daejeon16 and χEFT NN +NNN prediction of Ref. [49] for the 1
2

− 5Li resonance
width is much smaller than the experimental width. Therefore we can say that the

relative accuracy of the ab initio predictions for the 1
2

−
resonances in 5Li and 5He

nuclei is much better than that for the 3
2

−
resonances.

The difference ∆ =
(
E

1/2−

r − E
3/2−

r

)
between the energies of the 1

2

−
and 3

2

−

resonances in 5He and 5Li nuclei can be associated with the spin-orbit splitting of
respectively neutrons and protons in the p shell. The ∆ values are presented in Table 1.
The χEFT NN +NNN interaction slightly underestimates the proton spin-orbit
splitting while JISP16 and Daejeon16 overestimate both proton and neutron spin-
orbit splittings. It is interesting to note that the differences between our predictions
with JISP16 and Daejeon16 for the resonance energies are of the order of 300 keV
while the differences in ∆ values are only about 75 keV. It is more important to note
that the charge-independent JISP16 and Daejeon16 NN interactions support nearly
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the same p-shell spin-orbit splittings for protons and neutrons while the experimental
spin-orbit splitting for protons exceeds that for neutrons by approximately 200 keV.

3.4 Non-resonant pα scattering

We have used the NCSM-SS-HORSE approach in Ref. [30–32] for calculations of res-
onant as well as non-resonant nα scattering. The non-resonant phase shifts can be
also calculated within the current extension of the NCSM-SS-HORSE to the case of
channels with charged colliding particles. Contrary to the phase shifts parametriza-
tions based on the S-matrix analytic properties utilized on Ref. [30–32], we use the
same Coulomb-modified effective-range function parametrization of Eq. (16) for both
resonant and non-resonant scattering.

The results of calculations of the non-resonant pα scattering phase shifts in the 1
2

+

state with JISP16 and Daejeon16 NN interactions are presented in Fig. 5. It is seen
that JISP16 provides a faster convergence of the phase shifts in this case too. The
results obtained with JISP16 and Daejeon16 are close to each other and reproduce
well the experimental phase shifts of Ref. [63].
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Figure 5: Non-resonant pα scattering in the 1
2

+
state with JISP16 (top panels) and

Daejeon16 (bottom panels) NN interactions. Dashed curve in the bottom right panel
presents phase shifts obtained with JISP16 for comparison. See Fig. 1 for other details.
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4 Summary

We present here an extension of the ab initio NCSM-SS-HORSE approach to the case
of channels with charged colliding particles where the relative motion wave function
asymptotics is distorted by the Coulomb interaction. The extended approach is ap-
plied to the study of pα scattering and resonances in 5Li nucleus with realistic JISP16
and Daejeon16 NN interaction. The analysis of the nα scattering and resonances in
5He nucleus with JISP16 NN interaction has been performed by us in Ref. [30–32];
we complete this analysis here by the corresponding calculations with Daejeon16.

We demonstrate that the extended NCSM-SS-HORSE approach works with ap-
proximately the same accuracy and convergence rate as its non-extended version
applicable to the channels with neutral particles. Surprisingly, we obtain that the
JISP16 interaction provides a faster convergence of the nα and pα phase shifts than
the Daejeon16 while the convergence of bound states in light nuclei within NCSM is
much faster with Daejeon16 than with JISP16 [42].

Both JISP16 and Daejeon16 provide a good description of the 3
2

−
and 1

2

−
reso-

nances in 5Li and 5He nuclei as well as of the 1
2

+
non-resonant nα and pα phase shifts.

However the spin-orbit splitting of nucleons in the p shell is overestimated by these in-
teractions; more, these charge-independent NN interactions provide nearly the same
result for the spin-orbit splitting of neutrons and protons while experimentally the
spin-orbit splittings for neutrons and protons differ by approximately 200 keV.
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[49] G. Hupin, S. Quaglioni and P. Navrátil, Phys. Rev. C 90, 061601(R) (2014).

[50] E. J. Heller and H. A. Yamani, Phys. Rev. A 9, 1201 (1974).

[51] H. A. Yamani and L. J. Fishman, J. Math. Phys, 16, 410 (1975).

[52] G. F. Filippov and I. P. Okhrimenko, Yad. Fiz. 32, 932 (1980) [Sov. J. Nucl.
Phys. 32, 480 (1980)]; G. F. Filippov, Yad. Fiz. 33, 928 (1981) [Sov. J. Nucl.
Phys. 33, 488 (1981)].

[53] Yu. F. Smirnov and Yu. I. Nechaev, Kinam 4, 445 (1982); Yu. I. Nechaev and
Yu. F. Smirnov, Yad. Fiz. 35, 1385 (1982) [Sov. J. Nucl. Phys. 35, 808 (1982)].

[54] A. M. Shirokov, Yu. F. Smirnov and S. A. Zaytsev, in Modern problems in quan-
tum theory, eds. V. I. Savrin and O. A. Khrustalev. Moscow State University,
Moscow, 1998, p. 184.

[55] S. A. Zaytsev, Yu. F. Smirnov and A. M. Shirokov, Teor. Mat. Fiz. 117, 227
(1998) [Theor. Math. Phys. 117, 1291 (1998)].

[56] H. A. Yamani and M. S. Abdelmonem, J. Phys. A 26, L1183 (1993).

[57] H. A. Yamani, Eur. J. Phys. 34, 1025 (2013).

[58] M. Abramowitz and I. A. Stegun (eds.), Handbook on mathematical func-
tions. Dover, New York, 1972; NIST digital library of mathematical functions,
http://dlmf.nist.gov/.

[59] R. G. Newton, Scattering theory of waves and particles, 2nd. ed. Springer-Verlag,
New York, 1982.

[60] A. G. Sveshnikov and A. N. Tikhonov, The theory of functions of a complex
variable, 2nd. ed. Mir Publishers, Moscow, 1978.

[61] P. Maris, M. Sosonkina, J. P. Vary, E. G. Ng and C. Yang, Proc. Comput. Sci.
1, 97 (2010).

[62] H. M. Aktulga, C. Yang, E. G. Ng, P. Maris and J. P. Vary, Concurrency Com-
putat.: Pract. Exper. 26, 2631 (2014).

[63] D. C. Dodder, G. M. Hale, N. Jarmie, J. H. Jett, P. W. Keaton, Jr., R. A. Nisley
and K. Witte, Phys. Rev. C 15, 518 (1977).



204 A. I. Mazur et al.

[64] R. A. Arndt, D. D. Long and L. D. Roper, Nucl. Phys. A 209, 429 (1973).
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