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Abstract. In this paper using a mathematical model of the so-called “space-dynamic” approach 
we investigate the problem of development and temporal dynamics of different urban 
population groups. For simplicity we consider an interaction of only two population groups 
inside a single urban area with axial symmetry. This problem can be described qualitatively by 
a system of two non-stationary nonlinear differential equations of the diffusion type with 
boundary conditions of the third type. The results of numerical simulations show that with a 
suitable choice of the diffusion coefficients and interaction functions between different 
population groups we can receive different scenarios of population dynamics: from complete 
displacement of one population group by another (originally more “aggressive”) to the 
“peaceful” situation of co-existence of them together. 
 
Keywords: mathematical modeling, the urban population, the non-linear differential equations 
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1. Introduction 
In recent years models of spatial economy have been widely used for describing different urban 
processes. 
Processes of urbanization along with urban consolidation have been observed for a long time in both 
developed and developing countries, but modern cities are more and more characterized by 
decentralization tendencies. At present we can frequently observe heterogeneous rather than 
homogeneous urban formations. 
The examples of urban formations of both established and still establishing forms may be such 
metropolises as Tokyo, New York, Mexico City, Moscow, Shanghai, Singapore etc. 
It is well known that distribution of different population groups according to living areas represents 
quite complicated function of spatial variables and time period. 
The given work presents computerized results which were obtained by means of “soft” mathematical 
model ([1]; Arnold) of interaction of two groups of urban population with non-linear spatial diffusion 
taken into account. 
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2. Mathematical model 
The described mathematical model presents only two groups of urban population according to their 
social and economic indicators. 
For example, urban population may be classified by their income level (the “rich” and the “poor”), 
according to their level of education (“more educated” and “less educated”) and by a number of other 
factors. 
In a number of economically and socially developed countries coexistence of population groups 
belonging to different social layers brings about serious social problems. Therefore, at present such 
processes are intensively studied from different viewpoints including mathematical models within 
spatial economy. 
Interaction of similar population groups within a single urban agglomeration may be described at 
qualitative level using non-standard equations in partial derivatives of the diffusion type. 
For simplicity and visibility the given work considers only two groups of population characterized by 
density of distribution ( , , )u u x y t=  and ( , , )v v x y t=  in point ( , )x y  of the fixed dimensional area D  
at a given period of time t . 
The system of non-linear differential equations describing time dynamics of these population groups 
looks formal as: 
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where elliptical differential operator of the second order [ ] ( )s sL Kw w=Ñ× Ñ , 1,2s = , describes 
spatial diffusion of density functions of u  and v  population groups. In general, coefficients of 
diffusion sK  may have non-linear dependence on the unknown functions u  and v . 

Functions ( , )sF u v , 1,2s = , describe “interaction” of different population groups living in the same 
area. Quite realistic seems the following type of these functions: 
1 1 1 1 1

2 2 2 2 2
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In this work we consider the simple area as a two dimensional area D , though this is not a necessary 
restriction, but it leads to a better understanding of the processes under study, namely rectangle 

{ }1 2( , ) : (0 ) (0 )D x y x l y l= £ £ ´ £ £  on the plane of variables ( , )x y . At the boundary DG = ¶  are 
given heterogeneous boundary conditions (boundary conditions of the 3rd type): 

( , , )s s s
wh p w x y t
n
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+ =
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, 1,2s = ,       (3) 

where .
n
¶
¶

 shows a derivative along the single outer normal at the points of boundary G . 

It is necessary to add original conditions (the initial Cauchy conditions for equations (1) and boundary 
conditions (3)) and, as a result, we have the following boundary value problem consisting of two non-
linear differential diffusion (parabolic) equations: 
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This system of equations (4) was solved numerically by finite difference scheme [2; Samarskii] using 
the well-known Peaceman & Rachford method (or Alternating direction implicit (ADI) method) [3; 
Peaceman & Rachford]. The program code was realized in the MatLab development environment. 
While conducting computational experiments both the initial conditions (functions) 0 ( , )u x y  and 

0 ( , )v x y  and the parameters for diffusion coefficients ( , )sK u v  as well as functions of the so called 

interaction ( , )sF u v , 1,2s = , were varied. 
 
3. Computer simulation results 
Suppose that the relations between two groups of population, chosen by us, may be both “friendly” 
and “neutral” or even “unfriendly”. A similar approach was proposed earlier in [4; Zhang]. 
In Zhang model numerical coefficients are 1 2a a a= = , 1 2b b b= =  and 1 2c c c= = , the summand of the 
form ( )u a bu cv- - serves to describe the reaction of the population to existing economic conditions of 
living within urban environment. 
It is possible to interpret coefficient a  as physical capacity of urban space at a point 1 2( , )x x . When 
parameter a  is constant, physical capacity is homogeneous in space. If we suppose that value 
( )bu cv+  is a quantitative measure of space occupied by both groups, the value ( )a bu cv- -  may be 
considered as excessive space for physical capacity. 
When this value at some point exceeds zero, the living place becomes more attractive for population. 
It is evident when it equals zero and notion 1( )d uv-  and diffusion effects are negligibly small, 
population migration stops. Notion 1( )d uv-  serves to measure interaction of groups. 
Coefficient 1d  may be both positive and negative (or zero). If it is positive, population “group 1” does 
not feel like living with population “group 2”. If 1 0d = , there are no prejudices between groups. If 
coefficient 1d  is negative high density of “group 2” attracts population of “group 1”. 
In the given model boundary conditions (3) are homogeneous and look the following way: 
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As initial distribution density for both interacting population groups let’s take “symmetrical” 
functions, so that the whole urban area was partially occupied by this or that population group (Fig. 1). 
It may be shown how urban structure for different parameters of the modeled system will change. For 
example, when relations between two groups of the population are of “aggressive” character and 
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diffusion coefficients depend on the opposite functions, i.e. 1( , )K u v v=  and, accordingly 2 ( , )K u v u= , 
the obtained calculation results (Fig. 2, a-d) show that both population groups equally fill the given 
area, but due to “hostility” one group (the more “aggressive” one) dislodges the other one as a result, 
and, therefore, the urban structure of the population becomes practically homogeneous. 

 

Figure 1. Initial density of distribution for functions u  and v . 
 

If coefficients 1 0d <  and 2 0d = , diffusion coefficients 1K  and 2K  depend only on function u , one 
can see the following picture of spatial-time diffusion of the population (Fig. 3, a-f). 

 

Figure 2. Effect of “geographical” diffusion of the population under “hostile” relations between population 

groups. 



5

1234567890

ICMSQUARE IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 936 (2017) 012023  doi :10.1088/1742-6596/936/1/012023

 
This example can be classified according to educational level when less educated people tend to live in 
areas with more educated population. It can also be said that areas with more favourable facilities are 
preferable for life which defines evident population migration from one area to another. 

 

Figure 3. Redistribution of population with neutral or friendly relations ( 1 2,K u K u= = ). 

 
As an example, suppose that interaction between population groups can be classified as purely 
competitive. Diffusion coefficients in equations are considered to have sedate dependence. Under such 
supposition one population group dominates over the other, dislodging it outside the city borders (Fig. 
4, a-f). 

 

Figure 4. Redistribution of population under competitive relations ( 1 2, ,kK u K u ks s= = < ). 

4. Conclusions 
The present work considers the mathematical model aimed at describing the mechanism of interaction 
between different population groups leaving in the same urban area. 
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This problem is formulated in terms of non-linear differential equations of the diffusion type. It is no use 
applying the so-called “hard” model in such kind of mathematical simulation. At present we can speak 
only about “soft” mathematical modeling. 
The term “soft” mathematical model implies only the parameters and factors that are essential or 
available. Having a confirmed and verified mathematical model one can proceed to solve purely applied 
problems. 
In his time (to be more exactly in 1997) an outstanding Russian mathematician, a member of the Russian 
Academy of Sciences Vladimir I. Arnold noted that “… success comes not so much with application of 
ready-made recipes (“hard” models), but rather with mathematical approach to the problems of the real 
world phenomena” [1; Arnold]. 
 
5. Appendix 
To confirm the accuracy of the difference schemes and the convergence rate of the numerical solutions 
we made the corresponding analysis using precise analytical solutions of non-linear differential 
equations of the diffusion type. 
The similar analysis was made on the example of the system of non-linear equations of “reaction-
diffusion” type [5; Polyanin & Zaitsev]: 

( ) ( ),

( ) ( ),

n
n

n
n

u a ux u f bu cw g bu cw
t x x x
w a wx w f bu cw h bu cw
t x x x

ì¶ ¶ ¶æ ö= + - + -ç ÷ï ¶ ¶ ¶ï è ø
í
¶ ¶ ¶æ öï = + - + -ç ÷ï ¶ ¶ ¶è øî

     (A.1) 

where parameter 1n =  defines problem with the axial symmetry and parameter 2n =  defines problem 
with the central symmetry. 
In literature function u  it is customary to call ‘activator’ and the second function w , which leads to 
slowing down the described diffusion process, is called ‘inhibitor’. 
The system of equations (A.1) has precise solution of the type: 
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where functions ( )tf f=  and ( )ty y=  are determined by the system of standard differential 
equations: 
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and function ( , )x tq q=  satisfies the linear partial derivatives equation: 

n
n

a x
t x x x
q q¶ ¶ ¶æ ö= ç ÷¶ ¶ ¶è ø

.        (A.2) 

Let’s multiply the first equation of system (A.1) by ‘b ’ and add it to the second one, multiplied by 
‘ c- ’. Then we get the following equation: 

( ) ( ) ( )n
n

a x f b g ch
t x x x
z z z z z z¶ ¶ ¶æ ö= + + -ç ÷¶ ¶ ¶è ø

,     (A.3) 

where bu cwz = - . 
This equation may be obtained by transforming the first equation of the initial system of the type: 

( ) ( )n
n

u a ux u f g
t x x x

z z¶ ¶ ¶æ ö= + +ç ÷¶ ¶ ¶è ø
.       (A.4) 
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Equation (A.3) may be transformed by division method. If solution ( , )x tz z=  of the equation (A.3) is 
given, function ( , )u u x t=  may be defined by solving linear equation (A.4) and function ( , )w w x t=  
according to formula ( )w bu cz= - . 
Let`s note two more important solutions of equation (A.3): 
§ in general case, equation (A.2) implies stationary solution ( )xz z= , while the corresponding 

precise solution of equation (A.4) has the form 0 ( ) ( )n t
nu u x e u xb= +å ; 

§ if the condition 1 0( ) ( ) ( )f b g c h k kz z z z z× + × - × = × +  takes place, the equation (A.2) is linear 

and takes the form 1 0
n

n

a x k k
t x x x
z z z¶ ¶ ¶æ ö= + +ç ÷¶ ¶ ¶è ø

 or is transformed to the linear equation (A.2) by 

the change of variables 1 1
0 1

k te k kz z -= - . 
Of particular, interest is the stationary case, when system (A.1) is brought to the system of non-linear 
elliptic equations: 

( ) ( ),
( ) ( ),
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D = - + -ì
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       (A.5) 

where 
2 2

2 2
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 is Laplace operator. 

Precise solution of system (A.5) may be given as: 
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with function ( )xf f=  and ( )xy y=  are defined from the system of usual differential equations: 
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where function ( , )x yq q=  satisfies Schrödinger linear differential equation of special type: 
2 2

2 2 ( ) ( , )F x x y
x y
q q q¶ ¶
+ =

¶ ¶
 

with function ( ) ( )F x f bu cw= - . 
It can be solved by method of separation of variables. If we multiply the first equation of system (A.4) 
by ‘ b ’ and add the second equation, multiplied by ‘ c- ’, we get the following equation: 
2 2

2 2 ( ) ( ) ( )f b g c h
x y
z z z z z z¶ ¶
+ = × + × - ×

¶ ¶
,      (A.6) 

where bu cwz = - . 
This equation may be transformed by means of the first equation of the initial system (A.1). As a result 
we obtain the equation: 
2 2

2 2 ( ) ( )u u u f g
x y

z z¶ ¶
+ = +

¶ ¶
.        (A.7) 

Equation (A.7) can be resolved consistently by separation technique. Existence of exact solutions for 
such kinetic functions as ( ) ( ) ( ) ( )F f b g c hz z z z z= × + × - ×  can be found in [5]. 
In conclusion with respect to this equation we mention two important special cases: 
§ in the first case, equation (A.7) gives solution of the running wave ( )zz z= , where 1 2z  k x k y= +  

and 1 2,k k  – arbitrary constants; 
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§ in the second case, if condition 1 0( ) ( ) ( )f b g c h с сz z z z z× + × - × = × +  is fulfilled, equation (A.6) 
is a well-known Helmholtz linear differential equation. 

Thus, for a wide class of non-linear differential systems of the form (A.1), exact solutions can be 
found, and so the study of which makes it possible to investigate the general properties of such 
systems. 
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