Physico-chemical properties of Chernobyl lava and their destruction products

Andrey A. Shiryaeva, Irina E. Vlasova, Boris E. Burakov, Boris I. Ogorodnikov, Vasily O. Yapaskurt, Alexey A. Averin, Alexey V. Pakhnevich, Yan V. Zubavichus

1. Introduction

The accident at the 4th Unit of Chernobyl Nuclear Power Plant (ChNPP) on 26 April 1986 led to destruction of the reactor core and release of an enormous amount of solid and gaseous radioactive products to the environment due to explosion and subsequent fire. Independent approaches based on 137Cs and 90Sr fractionation and structural peculiarities of dispersed fuel and corium particles showed that transient (few seconds or less) temperatures immediately prior to the explosion event reached at least 2200–2600 °C leading to reactions between the UO2 fuel and zircaloy cladding (Burakov et al., 1997a; Kashparov et al., 1996; Kashparov et al., 1997). The explosion epicenter was presumably localized in a relatively small volume of the reactor core (Abagyan et al., 1991; Adamov et al., 1988; Kashparov et al., 1997). Though the estimates vary, the amount of fuel dispersed to dust (both inside and outside the reactor building) and expelled from the reactor shaft is estimated as ~4–6% from the total amount of 190 metric tons of uranium (Arutyunyan et al., 2010; Information …, 1986; Lebedev et al., 1992).

In the RBMK reactors the reactor basement plate is a cylinder 14.5 m in diameter and 2 m in height, filled with serpentineite with bottom and top steel lids interconnected by stiffening ribs and water tubes. During the explosion a 100–110° sector of the basement plate was pushed approx. 4 m down, merging the reactor shaft with a former sub-reactor room 305/2 (e.g., Arutyunyan et al., 2010). The amount of nuclear fuel in the room 305/2 is estimated at 65–80 tons of UO2 (Borovoi et al., 1998). Before and shortly after the explosion the fuel reacted with zircaloy and later with construction materials (sand, concrete, serpentineite, steel), leading to the

© 2016 Elsevier Ltd. All rights reserved.
formation of so-called lava-like fuel-containing materials (LCFM) or Chernobyl “lava” (Burakov et al., 1994, 1997a,b; Ushakov et al., 1997). Several days after the accident considerable fraction of the initial lava pool spread into other rooms of the reactor building (Burakov et al., 1997a), forming vertical and horizontal flows which solidified into a highly radioactive glassy material with inclusions of high-uranium zircon crystals (Zr1-xUxSiO4, particles of molten stainless steel, uranium oxide dendrites and grains, and particles of Zr-U-O phases (solid solutions in the system of UO2-ZrO2). Several varieties of the lava are known (e.g., Anderson et al., 1993; Borovoi et al., 1990, 1991a, 1991b; Burakov et al., 1994, 1997a,b; Pazukhin, 1994; Pazukhin et al., 2006; Savonenkov et al., 1991; Trotabas et al., 1993): 1) brown lava; 2) black lava, and 3) much less abundant and less studied polychromatic lava. On the lower levels of the reactor building the flow of brown lava entered water in the bubbler tank forming pumice-like material (Burakov et al., 1991a; Trotabas et al., 1993). Controversy still exists about the total amount of uranium in all “lava” streams in comparison with initial fuel inventory. Estimates vary from 9–13% (Kiselev and Checherov, 2001) to >80% (Arutyunyan et al., 2010) of total amount of the ChNPP fuel; the rest is believed to remain in inaccessible premises.

2. Samples and methods

All samples described in the paper were collected inside the confinement building “Shelter” of ChNPP.

2.1. Bulk lava samples

Bulk lava samples were manually detached under harsh conditions in 1990 by Mr Vladimir Zirlin of the V.G. Khlopin Radium Institute (St. Petersburg, Russia) from two different types of lava. Small samples described in the current paper represent pieces of much larger specimens (several tens cm³): the fragments of black lava (Sample I, approx. 3 x 1.5 x 1.5 mm in size, Fig. 1A, B, and Sample II ca. 4.5 x 2 x 2 mm in size, Fig. 1C, D) were collected from the lava stream “Elephant foot”, level +/-6 m (Borovoi et al., 1991a; Burakov et al., 1997a); and the fragment of brown lava (Sample III, 3 x 2 mm, Fig. 1E, F) was collected from the steam-discharge corridor at level +6 m (Borovoi et al., 1991b; Pazukhin et al., 2003). The fragments were mounted in 1991 into acrylic resin and manually polished in a glove box. For the polishing SiC powder with grain sizes (decreasing during the process) 28/14, 10/5 and 3/1 µm were used; final polishing was performed on dense paper with diamond paste (1/10). After the polishing the samples were stored at laboratory till 2015. This process provided mirror-like finish with virtual absence of a damaged layer as confirmed by successful EBSD analyses of steel droplets (see below). Despite pronounced radiation damage of the resin at the contact with the lava after 24 years of storage, the surface of LFCM remains mirror-like.

2.2. Aerosol particles

Aerosol particles were collected in 2010–2014 at the distance of 20–30 cm from the lava heap in room 012/7 (level 0.0 m, the first floor of the Bubbler tank (Borovoi et al., 1991a)) using a pack of three Petryanov filters with different particulate retention sizes mounted on the nose of the air blower H1810 RadeCo operating for 2 h at a pump rate 100 dm³/min. Daily variations of the air temperature in this room are negligible, annual variations are within 4°C (+9°C in winter and +13°C in summer). Chemical and radio-nuclide (e.g., 137Cs/241Am) composition of the particles collected is consistent with composition of the heap (Pazukhin et al., 2003; Ogorodnikov et al., 2013).

2.3. Spontaneously detached individual sub-millimeter particles

These chips were collected in 2013–2014 on the planar cuvette placed for 6 months on the floor 0.50 m in front of a lava heap in room 012/7 (see chapter 2.2). These particles are of particular interest, since their detachment from the lava accumulation appears to be spontaneous. The particular lava agglomeration is mechanically heterogeneous: the internal part is highly porous (pumice-like or granulated, see Fig. 1G, H) since it was formed when hot brown lava stream entered in contact with water in the Bubbler tank, whereas the outer shell is glassy due to rapid quenching (Borovoi et al., 1991a; Pazukhin et al., 2003). The glassy shell was partly broken by researchers. The exact origin of the studied particles – the heaps’ shell or interior or even destruction of eventual pieces of pumice observed in this room – is unclear.

2.4. Experimental details

Several analytical methods revealing different chemical and structural features of the samples were employed. Note that spectroscopic data for the "lava" were not available before. Quantitative SEM-EDX analyses of the polished samples (described in chapter 2.1) was performed using JEOL JSM-6480LV equipped by Oxford X-Max® 50 spectrometer and Oxford Nordlys Max2 EBSD detector. Analytical conditions were as following: 30 nm carbon coating, accelerating voltage – 20 kV, electron beam current – 10 nA, working distance – 10 mm. Quantification of detected elements was achieved using the following reference materials: albite, FeS2, Ca3Si3O9, TiO2, Cr2O3, Mn, Zr, UO2, and Di-117733, Hbl-143965, H yp-746, Kfs-143966, Hyp-746 from (Corrections, 1980). XPP-correction was applied. The data are given in mass% to facilitate comparison with literature data, which were mostly obtained using Emission analysis. Semi-quantitative SEM-EDX investigation of loose unpolished aerosol and sub-mm particles (described in chapters 2.2 and 2.3) study was performed using JEOL JSM-6380 LA with JED 2300 analyser. Raman spectra in quasi-backscattering geometry were acquired with Senterra (Bruker) spectrometer with an Olympus BX-51 microscope with long working distance objectives. Excitation wavelengths of 532 and 785 nm were employed. The laser power was kept sufficiently low to prevent sample modification; the spot size was 2–5 µm depending on magnification used. IR reflectance spectra were acquired using SpectrumOne FTIR spectrometer with Autolmage microscope (Perkin Elmer). To assess homogeneity mapping of the whole sample with a 100 µm aperture was performed. In addition, spectra of representative points and of selected inclusions were acquired with up to 256 scans with spectral resolution of 4 cm⁻¹. X-ray microtomography (X-ray micro-CT) of aerosol filters and of
detached particles (chapters 2.2. and 2.3) was performed using SkyScan 1172 device. Depending on the sample size and task (aerosol filter or dense glass particle) the tube operating conditions were 29 or 49 kV, beam current 100 μA; image pixel size was between 1.02 and 11.44 μm. Rotation step was 0.25 deg., frame averaging was 8, random movement was 10, rotation was 180°. The slices were generated using NRecon version 1.6.41. Extended X-Ray Absorption Fine Structure (EXAFS) spectra of U and Zr for the Sample I were acquired at Synchrotron center at Kurchatov Institute (Moscow) in fluorescence mode (Chernyshov et al., 2009).

3. Results

3.1. The bulk samples: texture and chemical composition

SEM images of samples are shown in Fig. 1 and EDX composition data are presented in Tables 1 and 2. The samples consist of glassy matrix with abundant inclusions and numerous gas bubbles of very different size. In some cases the bubbles are in contact with inclusions, but in general they are independent from each other.

Remarkably, the sample of brown lava consists of two chemically distinct parts clearly observable in BSE mode (Figs. 1F and 2A). The main difference between them is the number density of

Fig. 1. Optical and SEM images of Chernobyl lava samples. A–D – black lava (Samples I and II); E, F – brown lava (Sample III); G, H – granulated brown lava from room 012/7 (see text). A, C, E, G, H – optical photographs; B, D, F – BSE mode. Note significant radiation damage in surrounding acrylic resin.
The glass matrix of the darker inclusion-rich part is poorer in U (2.2 vs. 3.6 wt% UO₂ in the brighter glass) and Zr (3.2 wt% vs. 4.5 wt% ZrO₂) with slightly higher content of MgO and Al₂O₃. The transition between the two parts is smooth. It appears that the darker part also contains brighter domains and numerous signs of rapid glass crystallization (pyroxene dendrites, see below). Detailed examination of the images (Fig. 2A) shows that the brighter part is rather patchy and contains many diffuse darkers spots. The darker domains are often isometric with orientation roughly parallel to the contact of the dark and bright parts. Presumably, these domains represent boundary layers surrounding precipitates. Their elongation reflects gradual glass solidification during slow motion of the cooling lava flow.

The most obvious explanation of the heterogeneity studied sample lies in high viscosity of the lava flows. Most studied lava flows possess layered structure, though the bulk composition of various layers is fairly constant (Pazukhin et al., 2002a). The layered structure is explained by the fact that the sampling localities are relatively distant (up to 50 m) from their common source (presumably room 305/2) and high viscosity of the flow easily leads to stratification due to arrival of several portions of the lava. Variations in the number density of the inclusions and related differences in chemical composition of the glassy matrix are likely related to variations in the quench rates. Presumably, the darker part was quenched at a much higher rate than the grayish part leading to formation of numerous urania dendrites. Flow patterns formed during solidification are clearly seen in some of the samples, see Fig. 2B.

It is interesting to note that chemical composition of both studied types of the lava (black and brown) remains fairly constant in direction from bulk to surface or to a bubble (apparent minor variations in total sum of the elements are within measurement error). This indicates that diffusion of volatile elements such as Na was not very significant on the last stages of the lava flow motion when the temperature approached glass transition temperatures (approx. 800–850 °C (Gonchar and Zhidkov, 2002)).
3.2. Structure of the glassy matrix

Unpolarised Raman spectra recorded with excitation wavelength of 532 nm for several spots on both types of the lava samples show features typical for metaluminous glass (Fig. 3A) (Mysen and Toplis, 2007). The ratio of principal Qn units is Q2 > Q3 > Q1, which suggests that Q2 are the principal depolymerised structural units in the lava (McMillan, 1984). Depolymerised nature of the glassy matrix is supported by Infra-red reflectance spectra, see Fig. 3B. The main reflectance peak is observed at 1084–1088 cm⁻¹, which is markedly lower than in vitreous silica (1150 cm⁻¹) due to decreased Si-O-Si bond angle following from network modification by cations (Sweet and White, 1969). Intensity of low-frequency part of Raman spectra is comparable to the high-frequency region (800–1200 cm⁻¹), with the most prominent bands at 340, 460, 480 and a shoulder at 580 cm⁻¹. This region is difficult to interpret unambiguously in glasses of complex chemical composition. A weak peak at 800–805 cm⁻¹ might correspond to a very small amount of Fe³⁺-O bonds, being in line with generally highly reducing state of the lava. However, this peak was also observed in Fe-free metaluminous glasses (Mysen and Toplis, 2007) and in our case assignment of this peak to iron seems to be less relevant.

Importantly, the lava matrix is anhydrous as suggested both by IR mapping and numerous Raman spectra recorded both with 532 and 785 nm excitations. The OH-groups are encountered only in inclusions-rich zones (see Fig. 3B and below). This is not surprising since experimental modeling of the lava formation (Krasnorutskyy et al., 2010, 2012) showed that minimal temperature of their synthesis cannot be less than 1450 °C. Based on concentrations of ¹²⁵Sb on the walls of room 304/3 adjacent to the inferred lava source it was suggested that temperature of the lava was at least 1500 °C (Borovoi et al., 1999). Limited wettability of the lava (contact angles for water 60–68° (Zhdkov et al., 2000)) also does not favor incorporation of noticeable amounts of moisture.

Speciation of uranium and zirconium in black lava Sample I was assessed by X-ray Absorption spectroscopy (XAFS). The beam ~0.5 × 0.2 mm in size was aimed at center of the specimen, but exact position cannot be indicated. XAFS spectrum of U at LIII-edge (Fig. 4A, B) shows absence of “uranyl” shoulder, indicating that uranium is present as U(IV). Fourier transform of the spectrum is typical for U-containing glasses (e.g., Stefanovsky et al., 2009). The second coordination sphere (U-U scattering path) due to UO₂⁺ is weakly pronounced, indicating small fraction of uranium in precipitates or highly disordered crystalline lattice of urania inclusions. The latter explanation is in odds with Raman scattering from large (>10 µm) UO₂ inclusions and with results of powder and single crystal X-ray diffraction which indicates high crystalline quality of the urania inclusions (see below). As discussed in (Vlasova et al., 2015) apparent discrepancy of XAFS/SEM and autoradiography might be explained by fortuitous selection of the volume sampled by XAFS or by differences in crystalline perfection (and stoichiometry?) of small and large UO₂ inclusions. Note that investigation of powdered sample of LFCM from steam-discharge corridor and of the pumice-like material using X-ray photoelectron spectroscopy (presence of U-containing inclusions can not be excluded) also showed dominance of reduced forms of uranium — U³⁺ and U⁴⁺ (Teterin et al., 1994).

XAFS spectra of Zr K-edge show that the Zr environment in the Sample I differs from that in crystalline and metamict zircon (Fig. 4C, D) but is similar to Zr dissolved in silicate glass (Farges and Rossano, 2000). In silicate glasses 6-coordinated Zr promotes polymerization of the silicate network by forming Zr-Si-O bonds.

Fig. 2. BSE images. A – Brown lava (sample III), anisotropy of dark inclusions and heterogeneity of the darker part are observed. B – black lava (Sample II), flow pattern is visible.

Fig. 3. Representative raman (A) and IR reflectance spectra (B) of the glassy matrix and of region surrounding zircon inclusion. Inset in A shows decomposition of part of the Raman spectrum into contributions from Q²⁰ units (see text). Vertical line in B shows the reflectance peak position in pure vitreous SiO₂ (1150 cm⁻¹). Note break of the abscissa on B.
3.3. Inclusions

In line with previous studies of Chernobyl lava (e.g., Anderson et al., 1993; Burakov et al., 1997a; Trotabas et al., 1993), we have observed inclusions of several phases: 1) UO$_2$ with Zr admixture, 2) ZrO$_2$ with U admixture and Zr-U-O phases with variable Zr/U ratio, 3) high-uranium zircon (“chernobylite”), (Zr$_{1-x}$U$_x$)$_4$SiO$_4$. 4) silicate (pyroxene) dendrites due to devitrification of the glassy matrix. Whereas phases of zirconia-urania solid solutions are known to occur during interaction between zircalloy and UO$_2$ in experiments as well as under conditions of severe nuclear accident at Three-Mile Island NPP in 1979 (Hofmann et al., 1989; Bottomley and Coquerelle, 1989; Brown et al., 1989), formation of high-uranium fully crystalline zircon is a unique feature of the Chernobyl accident.

3.3.1. Urania

Inclusions of urania are represented by dendrites, rounded inclusions and by relatively large pieces (up to ~50–70 μm). In most cases the urania contains a Zr admixture, indicating formation in overheated fuel rods (e.g., Burakov et al., 1997a). Notable exception is the largest piece of UO$_2$ in our specimen of brown lava, most of which is Zr-free: only few subgrains in contact with (Zr$_{1-x}$U$_x$)$_4$SiO$_4$ crystal (Fig. 5A) contain small admixture of Zr. Such heterogeneity of Zr distribution qualitatively resembles some of ChNPP hot particles (Anderson et al., 1992a; Burakov et al., 1994, 1997a,b). This inclusion likely represents fragment of an undissolved fuel pellet. Note that undestroyed pieces of fuel rods and core fragments were observed in brown lava samples from room 304/3, immediately adjacent to the proposed common lava “birth place” – room 305/2. At least some of these undissolved fuel pieces are characterized by low burn-up degree and corresponding lower heat generation (Borovoi et al., 1998).

Raman spectra of all studied urania inclusions – dendrites, rounded blobs and even inclusions in zircon crystals are similar (Fig. 5B). The spectra are dominated by strong asymmetric peak at 1165 cm$^{-1}$ with a shoulder at ~1150 cm$^{-1}$ due to crystal electric field transition. According to (Manara and Renker, 2003) the presence of this peak indicates only small deviations of UO$_{2.1x}$ from ideal stoichiometry (x < 0.7). Peak at 452 cm$^{-1}$ is due to U-O stretch in UO$_2$, the band at 590 cm$^{-1}$ probably corresponds to damaged urania (Graves, 1990).

3.3.2. Zirconia and Zr-U-O phase

Other important and abundant phases are uranium-bearing zirconia and Zr-U-O (Fig. 6). The mean composition of the studied Zr-U-O grains is approx. 60 mass% Zr and 16 mass % U (Table 2). This phase most likely serves as a substrate/precursor for growth of U-rich zircon (e.g. Burakov et al., 1997a; see below). Its structure is still not known in detail, but XRD investigation of individual inclusions extracted from lava fragments by partial dissolution in HF shows presence of amorphous fraction and crystalline zirconia-like monoclinic and tetragonal phases (Burakov, 2013a).

Electron-backscatter diffraction (EBSD) and Raman spectra of the Zr-U-O inclusions confirm presence of tetragonal ZrO$_2$ phase (Fig. 6 B, C). Raman spectra of different Zr-U-O grains reveal mixture of two series of bands with variable relative intensity. Besides peaks of monoclinic ZrO$_2$ (171, 184, 374 cm$^{-1}$) present in all of the studied Zr-U-O grains, five peaks at 140, 254, 469, 603 and 623 cm$^{-1}$ due to the Raman-active modes of tetragonal ZrO$_2$ phase (Kim et al., 1993; Kim and Hamaguchi, 1997) are also observed. Therefore, three independent methods – X-ray and electron diffraction and Raman spectroscopy show that the Zr-U-O inclusions in the brown lava contain zirconia of two different crystalline structures: monoclinic and tetragonal. The presence of the tetragonal phase is explained by extensive doping of zirconia by uranium, since it has been demonstrated (Voronov et al., 1958; Wolten, 1958) that an admixture of UO$_2$ may stabilize high-temperature ZrO$_2$ modifications. The Zr-U-O phase most likely represents altered eutectic melt formed before the explosion as a result of UO$_2$-zircaloy interaction at high temperature (Burakov et al., 1997a). It is important to mention that the high-temperature zirconia modifications may spontaneously
that UO₂ concentration in the analyses spots are ~4, 6, 4 wt%, and 11.0 wt%, which is in line with previous results (e.g. Burakov et al., 1997a; Geisler et al., 2005; Trotabas et al., 1993). Such concentrations of uranium exceed what has been measured in synthetic samples obtained so far and are extremely rare for natural meteorite zircon (e.g. Shalaeva et al., 2015; Zamyatin et al., 2013., and refs. therein). Detailed Raman investigation (Geisler et al., 2005) has shown that uranium in “chernobylite” does form solid solution. Fig. 7B shows Raman spectra of zoned “chernobylite” crystal (black lava Sample I) acquired in central, intermediate and peripheral zones and X-ray map of U distribution as revealed by EDX analysis (Fig. 7A, inset). Using data from (Geisler et al., 2005) we estimate that UO₂ concentration in the analyses spots are ~4, 6, 4 wt%, correspondingly; these values correlate with the EDX results (with allowance to limited positioning precision). In every point zircon remains crystalline with no signs of amorphisation. Remarkably, both IR reflection (Fig. 3B) and Raman (Fig. 7B) spectra from this crystal show presence of OH-groups.

Some zircon crystals observed in this work possess perfect morphology, the others are still (partly) attached to parent Zr-U-O phase (see below) and many demonstrate cracks filled with surrounding glass and features of skeletal morphology (Fig. 7A, C, D). These morphological peculiarities probably indicate very uneven growth process with large variations in supersaturation. The majority of the crystals show pronounced growth zoning with variations in U-content. Most likely, the “chernobylite” inclusions have crystallized in a common source of the lava, some of them trapped grains of UO₂ and then were transported to other premises of the reactor building, eventually mechanically detached from the substrate. Many of the crystals contain UO₂ and (Zr₁₋₉Uₓ)O₂ inclusions. In several cases it is clear that external zones of zircon grew when the UO₂ dendrites were already precipitated, as it follows from relative position of the inclusion and growth layers (Fig. 7C, D). The glass matrix composition of the black lava in the nearest zone around zircon crystals is slightly depleted in Zr and U content (Table 1). This might imply growth of (at least) the outer zones of the crystals during cooling of the lava flow.

An important and still unresolved question is temperature of “chernobylite” formation. Several approaches developed in mineralogy could be used to resolve this question and are based on investigation of morphology of zircon and trace elements composition. A peculiar feature of many (Zr₁₋₉Uₓ)SiO₄ crystals is dipyramidal morphology, observed both in polished sections and on whole grains after partial dissolution of the lava fragments in acid (Anderson et al., 1993). Zircon morphology depends on several factors and direct application of classic mineralogical morphodrom (Pupin, 1980) would suggest very low temperatures of crystallization (550–600 °C), contradicting previous estimates of
“chernobylite” formation temperature. However, in-depth work by (Benisek and Finger, 1993) showed that high concentrations of uranium in growth medium strongly promote bipyramidal (i.e. \{101\}) morphology. Note also that artificial Pu- and Np-doped zircon crystals (Burakov et al., 2010) mostly possess the bipyramidal morphology, supporting the importance of the impurities for zircon shape.

Temperature of zircon decomposition into ZrO$_2$+SiO$_2$ depends on grains size, impurities and other parameters and is close to 1670 °C (Butterman and Foster, 1967; Kaiser et al., 2008); this temperature limits maximal temperature of “chernobylite” formation. The lowest formation temperature is more difficult to constrain. As discussed above, the temperature of the lavas at their source should be at least 1450–1500 °C. The stainless steel droplets ($T_{\text{melting}} \approx 1450–1500$ °C) are never trapped as real inclusions (i.e. as inclusions intersecting zircon growth zones), but are present in cavities and decorate surfaces of zircon crystals (Figs. 3 and 4 from Anderson et al. (1993), Fig. 7). Although inclusions entrapment is governed by many factors (e.g., wettability), the presence of the steel in the voids may indicate that these zircon crystals grew (or at least continued to grow) when steel has already solidified. Note that the lava flows in the steam-discharge corridor (i.e. several tens of meters from the lava source) were unable to melt steel tubes. This is not surprising, since above the glass transition temperatures (800–850 °C (Gonchar and Zhidkov, 2002)) viscous flow remains possible. Fig. 7F shows that before the lava solidification some of zircon crystals were already fully grown, since one can see traces of crystal rotation. Application of Ti in zircon thermometry (Pöhl et al., 2013) suggests that “chernobylite” could grow around 1250 °C. However Ti concentration in the lava is lower than in geological samples used for calibration of this thermometer and, keeping in mind significant variations of Ti concentration in...
“chernobylite” (Pöml et al., 2013) it is likely that this thermometer is not fully applicable to the lava. Significant deviations of the lava composition from geological materials, especially high enrichment in U and Zr, also makes impossible application zircon saturation thermometry (Hanchar and Watson, 2003).

Our examination of “chernobylite” inclusions shows that in all likelihood they grew at the expense of the Zr-U-O phase consumed to different extent (Fig. 5 in Anderson et al. (1993), Fig. 8). As noted above, the Zr-U-O phase contains both high- and low-temperature modifications of ZrO₂, but admixture of uranium may noticeably change the phase diagram. Comprehensive studies (Buttermann and Foster, 1967; Curtis and Sowman, 1953; Kaiser et al., 2008) showed that zircon forms from ZrO₂ and SiO₂ at temperatures between 1300 and 1600 °C and the rate of the synthesis increases rapidly between 1425 and 1535 °C. Similar increase of zircon nucleation rate around 1200 °C (Gokhale et al., 1969) was attributed to so-called Hedvall effect, namely, increased nucleation rate related to phase or polymorphic transformation in the substrate. Rearrangement of ZrO₂ and SiO₂ complexes in zircon and displacive phase transition known to occur between 830 and 1150 °C (Mursic et al., 1992) could be responsible for changes in kinetics and rates of zircon formation in the lava. Since variations in uranium concentration in ZrO₂ influence the stability of its polymorphs, the “chernobylite” nucleation and growth probably occurred in relatively wide temperature range. Note presence of sub-micron inclusions in the growth center of one zircon crystal (Fig. 7E). Though their size prevents reliable chemical analysis, high contrast in BSE mode might suggest that these inclusions may chemically differ from zircon and be a uranium-rich phase. High-uranium zircon (chernobylite) was synthesized in few experiments only (Burakov et al., 2010; Journeau, 2006; possibly also Krasnolutsky et al., 2012) and at present it is difficult to unambiguously assess kinetics and timescales of their formation.

3.3.4. Silicate dendrites

In the piece of the Sample III, mostly in the dark part, at least two generations of compositionally different silicate dendrites and sceptre crystals are observed (Fig. 9) (see also Trotabas et al., 1993)). Though there is no obvious spatial correlation of these exsolutions with other types of inclusions, they appear to be more abundant around contacts of the darker and brighter zones. Analysis of the dendrites chemistry is strongly influenced by surrounding glass matrix, but semi-quantitative estimation of a more abundant population (larger dendrites) gives a pyroxene with composition (Ca₀.₉₆Fe₀.₀₂Cr₀.₀₂Zr₀.₀₂Al₂₀₆Mg₁₈O₃₀Si₁₈O₃₇.₉₅. Note that presence of a diopside (a pyroxene variety) in the lava was inferred from early XRD analysis (Borovoy et al., 1990). Dendrite formation is common in conditions of strong supercooling, during, for example, rapid quenching. Unfortunately, it is difficult to determine unambiguously the formation mechanism of the dendrites formation in the Sample III at the current stage. Phase diagram of iron-free pyroxene (e.g., Gasparik, 2014) suggests that formation of such dendrites in the absence of olivine ((Mg, Fe)₂SiO₄) implies that temperature of the melt exceeded 1550 °C and that the lava was quenched rapidly to avoid the olivine precipitation between 1400 and 1550 °C. These values are in agreement with other estimates of the lava temperatures. Devitrification processes often lead to formation of dendrites; at least some of urania inclusions in the lava were formed by this mechanism. Finally, dendrites may also form during prolonged reheating of a solidified material, which, in our case, can be caused by interaction of “old” and “new” lava portions. This scenario, however, looks the least plausible.

3.4. Aerosol particles

For general review of the aerosol behavior in the “Shelter” see (Ogorodnikov et al., 2008); modern data on aerosol behavior in the “Shelter” rooms relevant to the current study are described in Ogorodnikov et al. (2015). One of the most important results of these on-going studies is marked difference in amount of radioactive aerosols generated by different lava accumulations: whereas radioactivity of aerosols at higher levels of the “Shelter” collected at the major vent (so-called “Bypass”) is very low, radioactive particles are fairly abundant at the lower levels. Chemical and radionuclide composition of the particles collected with an air blower on the Petryanov filters, on the 1st floor of the Bubbler Tank (level 0.0 m), is consistent with origin from the lava accumulation described in Pazukhin et al. (2003). Dissolution of the filter in acetone or slow oxidation in air leaves numerous particles with variable morphology and composition. Quartz and various aluminosilicates are the main minerals (see also Borodin and Bryk, 2001; Kuzmina, 1997). Shapes of the glassy fragments indicate dispersion mechanism of their formation, but in many cases it is difficult to establish firmly their origin due to general abundance of concrete dust inside the “Shelter”.

The major fraction (~90%) of total activity of the filter pack (for results of nuclear spectroscopy and digital autoradiography see (Vlasova et al., 2015)) is retained on the frontal filter FPA-70-0.12, trapping particles ≥ 1 μm. Some radioactive solid particles were able to penetrate two frontal filters and are retained by the last one (AFA RSP-20). The ¹³⁷Cs/²⁴¹Am ratio of the filter pack is lower

Fig. 8. Interaction between zircon and Zr-U-O phases. A — Zircon crystals overgrowing the Zr-U-O phase (SE mode). Bright spots — UO₂ precipitates; light gray — Zr-U-O phase; dark gray — U-rich zircon. B — Zonal zircon (BSE mode); the internal irregular zone reflects shape of consumed Zr-U-O nuclei. Small bright circles scattered in the matrix — steel droplets.
(12–19, see also (Ogorodnikov et al., 2013)) than that in “average” ChNPP fuel, indicating that the lava has lost part of volatile Cs. Parts of the filters containing “hot” spots on radiographic images were examined using X-ray tomography (Fig. 10D) which showed that in most cases the radioactivity is due to dense solid particles electrostatically attached to the filter threads (see also (Bogatov et al., 1990; Borodin and Bryk, 2001)). The weaker “hot” spots are at least partly associated with so-called condensation particles, formed by adsorption of Cs radioactive isotopes (and other nuclides) on dust and droplets (Bogatov et al., 1990; Kuzmina and Tokarevskii, 1997).

Track radiography and examination in BSE mode of the etched filters reveals spots with α-emitting nuclides. As expected, they are dominated by aggregates of U-rich particles (Fig. 10). In most cases the grains are isometric with sizes 200–400 nm and often form aggregates reaching 10–15 μm. These particles originate either from the lava accumulation or from pumice pieces possibly remaining in the room 012/7. Our results corroborate studies of ChNPP aerosols performed in mid-90ies where sub-micron U-rich particles contain abundant U-rich inclusions with variable U/Zr ratio (Kuzmina and Tokarevskii, 1997). Occasionally, uranium particles up to approx. 10 μm are also observed (Fig. 10C). Absence of Zr and their morphology suggests that they most likely represent dispersed fuel dust.

3.5. Sub-mm individual particles from spontaneous lava decomposition

The radioactive particles were located in the collection filter using Imaging Plate. For results of nuclear spectroscopy and autoradiography see Vlasova et al. (2015). Individual particles reach 150 × 200 μm, most of them resembles chips of porous glass (pumice-like), see Fig. 11. Similar samples were obtained 11 years after the accident by taking smears from the lava in steam-discharge corridor (Kuzmina and Tokarevskii, 1997). The glass particles contain abundant U-rich inclusions with variable U/Zr ratio. Single-crystal X-ray diffraction indicates that the inclusions are represented by several intergrown single crystallites of UO2⁺ₓ (x~0.25). This confirms earlier results that whereas uranium dendrites in the lava bulk are very close to ideal stoichiometry (see above), in aerosols uranium is often more oxidized (e.g., Bogatov et al., 1990). Closer examination of the SEM images suggests dendrite-like shape of these inclusions, which is confirmed by X-ray tomography. Several Zr-containing particles with absent or very small α-radioactivity (Fig. 11E) were found. These particles may represent pieces of outer parts of zircaloy cladding which have not reacted with UO2.

Clusters of needle-like secondary crystals possibly represented by Na-uranyl-sulphates are frequently present on surfaces of the former bubbles. These mineral phases are weakly bound to the glass chips (Fig. 11C) and are presumably closely related to water-soluble uranium-containing secondary phases described in Anderson et al. (1992b); Burakov et al. (1997b). SEM-EDX data on composition of different kinds of individual particles (pumice-like chips, non radioactive Zr-containing particles and secondary Na-U-S-O crystals) are presented in Table 3. Note that surface roughness of the particles makes the EDX analysis only semi-quantitative. Traces of aluminosilicates, P, Cl are present in spectra of the secondary uranyl minerals. The Zr impurity was observed only when the crystals reside on surfaces of the pumice-like fragments.

4. Discussion

Extensive efforts of numerous scientists provided detailed description of the process of explosion at Chernobyl NPP, its radiological and ecological consequences and gave a unique possibility to examine from material science point of view substances produced during interaction of hot nuclear fuel with concrete. The initial stages of the Chernobyl accident involving interaction of the fuel with zircaloy are broadly similar to Three-Mile (TMI) and Fukushima accidents and dedicated experiments. Temperatures of initiation of various steps of fuel-zircaloy reactions at ChNPP could be lower than in out-of-pile experiments due to non-negligible burn-up degree of ChNPP fuel (up to 13 GWd/tU (Arutyunyan et al., 2010),) (Bottomley et al., 1999).

Experiments and calculations simulating interaction of molten corium with concrete are invariably limited to relatively small masses of “corium” (tens of kilograms), whereas the Chernobyl accident has involved orders of magnitude larger masses with hugely bigger thermal inertia. Therefore, kinetics and timescales of the processes could have been very different and investigations of the products of the accident are extremely important. For example, investigation of drill cores from the lava and underlying concrete (Pazukhin, 2008; Dikyi et al., 2007) revealed significant actinides fractionation and showed importance of fluid metasomatism for the concrete alteration, the factors which are barely possible to address in laboratory-scale experiments. Important difference between the situation at ChNPP and experiments aimed at development of corium catcher (e.g., Gusarov et al., 2005; Journeau, 2006) is the composition of concrete: the catcher usually contains lots of Fe compounds, virtually absent in the Chernobyl concrete.

Very important difference between the Chernobyl and TMI accidents is the absence of corium-concrete interaction in the latter, leading to very different behavior of UO2, zircaloy, ZrO2 and other compounds (Strain et al., 1989; Akers and McCardell, 1989; Hobbins et al., 1989). However, the accident at Fukushima NPP appears to be more relevant, since according to some models corium has interacted with the concrete (Tanabe, 2012) and with mineral wool from thermal insulation (Satou Y., in preparation). Indeed, U-containing glassy silicate hot particles with high concentration of Cs in external layers were collected in affected areas (Abe et al., 2014; Adachi et al., 2013). Presumably, material similar to the Chernobyl lava have also formed during the Fukushima accident, but is still not properly located.
Though international efforts to create a new, safer “Shelter” over the ChNPP are on advanced stage, the problem of handling thousands of tons of radioactive substances remains unsolved. Moreover, monitoring showed that 137Cs activity in aerosols remained rather constant (with correction for decay) from July 1986 till 2005 (Ogorodnikov et al., 2006); α-contaminated dust is continuously produced by lava accumulations in room 304/3 of the “Shelter” (Badovskii et al., 2014). These facts clearly raise radiological concerns. Though qualitatively most of our findings corroborate earlier works, application of complementary experimental methods to aged (30 years old) lava-like fuel containing masses provided some interesting details, useful for assessment of their long-term behavior.

Natural lavas from Mt.Cameroon volcano in Africa may be used as a reference, although distant, to assess long-term stability of the Chernobyl lava. Basaltic lava flows from Mt.Cameroon are broadly similar to Chernobyl lava in silica content. The Cameroon volcano is unique in a sense that situated almost on equator and, being 4700 m high, it provides an opportunity to study alteration rate of silicate lavas in very broad range of humidity and temperature variations. It was shown (Chauvel et al., 2005) that even in unfavourable conditions, i.e. in the lower part of the mountain with very high precipitation rate, the thickness of the alteration crust does not exceed 10 cm in 100 years. However, tephra or pumice are altered at much higher rates (Dahlgren et al., 1999), presumably due to much higher surface area.

From the point of view of nuclear waste forms Chernobyl lava represents aluminosilicate glass-ceramics with abundant inclusions and pores. There is no doubt that destruction of the lava is an on-going process manifested in cracking of some of the lava flows and spontaneous destruction of individual lava samples in laboratory (Burakov, 2013b); aerosol formation by dispergation, detachment of larger particles and formation of secondary phases. However, the scale of the degradation phenomena is highly debatable. Several obvious mechanisms are important for the degradation: 1) self-irradiation; 2) thermomechanical cracking; 3) leaching by water and interaction with atmospheric gases/vapours. Below we will consider these mechanisms based on literature data and our own results.

4.1. Influence of self-irradiation

The Chernobyl lava contain between 4 and 10 wt% of irradiated slightly enriched (2% of 235U, (Arutyunyan et al., 2010),) nuclear fuel. The principal α-emitters are 235U, Pu and Am isotopes. Fission products such as 137Cs and 90Sr determine β- and γ-contributions. Self-irradiation of a glass may lead to phase separation and defects formation, influencing leaching and mechanical stability. Dedicated experiments on radioactive dust generation by the lava in laboratory conditions (Baryakhtar et al., 2002) were interpreted as submicron dust formation due to sputtering of glass matrix by self-irradiation. Investigations of various types of nuclear glasses (e.g., Prokin et al., 1988; Weber et al., 1997) has shown that significant effects on glass performance are observed at cumulated doses exceeding -10^{18} α-decays/g and/or -10^{19} Gy. In case of Chernobyl lava in assumption of homogeneous distribution of α-emitters (for β- and γ-sources the homogeneity approximation always holds) such dose will be accumulated in -10^4 years, which allowed to conclude (Pazukhin et al., 2002b) that self-irradiation is not a severe problem for this material. Our XAFS investigation of U local environment (this work) and spatial distribution of α-emitters and other radionuclides (Vlasova et al., 2015) favor hypothesis of even distribution of the activity on micron-scale level.

Despite pronounced radiation damage of acrylic resin holder during more than 20 years of storage, the studied samples preserved extremely smooth surface and sharp edges. The notable exception to this statement are the cracks surrounding some of the lava flows and spontaneous destruction of individual lava samples in laboratory (Burakov, 2013b); aerosol formation by dispergation, detachment of larger particles and formation of secondary phases. However, the scale of the degradation phenomena is highly debatable. Several obvious mechanisms are important for the degradation: 1) self-irradiation; 2) thermomechanical cracking; 3) leaching by water and interaction with atmospheric gases/vapours. Below we will consider these mechanisms based on literature data and our own results.

Fig. 10. Aerosol particles from filters. A, B – BSE and SE images of agglomeration of small particles with uranium. C – UO_2 particle. D – image from X-ray tomography reconstruction of the aerosol filter with two hot particles (bright spots, confirmed by autoradiography). Field of view length -2 mm.
Fig. 11. SEM and X-ray images of spontaneously detached lava particles. A – general view of one of the particles; B – zoomed part of the A (marked by a rectangle) with visible secondary U-containing minerals and UO₂⁺ dendrites protruding from the particle’s bulk. C – a particle with detached secondary minerals (indicated by an arrow). D – zoomed view of secondary alteration minerals. E – X-ray tomography reconstruction of the particle A, volume with higher density corresponding to UO₂⁺ dendrites is highlighted. F – BSE image of Zr non-radioactive particle.

<table>
<thead>
<tr>
<th>Element</th>
<th>Pumice-like fragments</th>
<th>Secondary U-containing crystals</th>
<th>Zr particles (4)</th>
<th>Bulk composition of pumice samples, BB-1</th>
<th>Bulk composition of slag samples, BB-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>2.3 ± 0.8</td>
<td>30.2 ± 6.2</td>
<td>1.4 ± 0.2</td>
<td>1.5 ± 0.5</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>5.7 ± 0.5</td>
<td>4.6 ± 0.4</td>
<td>6.2 ± 2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>4.6 ± 0.3</td>
<td>2.8 ± 0.4</td>
<td>3.4 ± 1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>30.5 ± 0.8</td>
<td>36.6 ± 0.5</td>
<td>32.3 ± 2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>13.1 ± 4.7</td>
<td>2.4 ± 1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>1.7 ± 0.2</td>
<td>4.5 ± 0.6</td>
<td></td>
<td>4.0 ± 1.1</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>5.2 ± 0.6</td>
<td>4.0 ± 0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.3 ± 0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.4 ± 0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.7 ± 0.3</td>
<td></td>
<td></td>
<td>0.8 ± 0.2</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>2.9 ± 0.3</td>
<td>60.2 ± 8.9</td>
<td></td>
<td>4.5 ± 1.4</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>2.7 ± 0.5</td>
<td>7.2 ± 5.1</td>
<td></td>
<td>8.3 ± 1</td>
<td>8.3 ± 0.2</td>
</tr>
<tr>
<td>O</td>
<td>43.6 ± 0.5</td>
<td>39.8 ± 2.5</td>
<td></td>
<td>25.2 ± 3.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Glass matrix (22)</th>
<th>Secondary U-containing crystals (9)</th>
<th>Bulk composition of pumice samples, BB-1</th>
<th>Bulk composition of slag samples, BB-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>2.3 ± 0.8</td>
<td>30.2 ± 6.2</td>
<td>1.4 ± 0.2</td>
<td>1.5 ± 0.5</td>
</tr>
<tr>
<td>Mg</td>
<td>5.7 ± 0.5</td>
<td>4.6 ± 0.4</td>
<td>6.2 ± 2.2</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>4.6 ± 0.3</td>
<td>2.8 ± 0.4</td>
<td>3.4 ± 1.4</td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>30.5 ± 0.8</td>
<td>36.6 ± 0.5</td>
<td>32.3 ± 2.3</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>13.1 ± 4.7</td>
<td>2.4 ± 1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>1.7 ± 0.2</td>
<td>4.5 ± 0.6</td>
<td></td>
<td>4.0 ± 1.1</td>
</tr>
<tr>
<td>Ca</td>
<td>5.2 ± 0.6</td>
<td>4.0 ± 0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.3 ± 0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.4 ± 0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.7 ± 0.3</td>
<td></td>
<td></td>
<td>0.8 ± 0.2</td>
</tr>
<tr>
<td>Zr</td>
<td>2.9 ± 0.3</td>
<td>60.2 ± 8.9</td>
<td></td>
<td>4.5 ± 1.4</td>
</tr>
<tr>
<td>U</td>
<td>2.7 ± 0.5</td>
<td>7.2 ± 5.1</td>
<td></td>
<td>8.3 ± 1</td>
</tr>
<tr>
<td>O</td>
<td>43.6 ± 0.5</td>
<td>39.8 ± 2.5</td>
<td></td>
<td>25.2 ± 3.0</td>
</tr>
</tbody>
</table>

* - Semi-quantititative standardless SEM-EDX data.

Table 3 (mass %) of individual U-containing particles that spontaneously detached from the lava flow from the Room 012/7; level 0.0 m. Number of measurements is in brackets. Literature data from Pazukhin (1994) are in italic.
obvious (Fig. 12), especially after leaching in hot water.

4.2. Mechanical degradation due to thermal stresses

Despite significant thermal inertia of the “Shelter” temperature variations may reach several tens degrees (depending on location in the building). Thermal cycling of the lava in laboratory (Gonchar and Zhidkov, 2001) demonstrated remarkable stability of the bulk material even in presence of the solid inclusions. Presumably, the only type of lava potentially prone to mechanical destruction is pumice-like and granulated material on the lower levels of the “Shelter” (both floors of the Bubbler). Note that lava accumulations on these levels contain 9 ± 3.5 tons of fuel (Arutuyunyan et al., 2010). Indirect support of significantly lower aerosol-generating ability of these accumulations in comparison with bulk lava at upper levels comes from markedly lower radioactivity of aerosol filters from the latter locality (Khomutinin et al., 2012; Ogorodnikov et al., 2013).

4.3. Effect of water and chemical alteration

According to spectroscopic measurements reported here, the lava matrix is anhydrous. This is an important result, since water significantly influences properties of silicate glasses. Spatially-resolved study showed that OH-groups are detected only in relation to solid inclusions and/or possibly, in accompanying micro-cracks. Note that we have not observed H-O-H deformation band which would have indicate presence of molecular water in eventual pores. Experiments on leaching of radionuclides from the lava performed soon after the accident (Rogozin et al., 1991) and more recently (Krinitsyn et al., 1998) demonstrated that the leaching rate is comparable to nuclear glasses in relevant liquids.

However, interaction of the lava with water and atmospheric gases and vapors is not limited to simple leaching. Indeed as early as in 1990 formation of secondary uranium minerals was observed on surfaces of lava flows inside the “Shelter” (Anderson et al., 1992b; Burakov et al., 1997b). This process continues at present as shown in this paper (see paragraph 3.5). There is some indirect evidence that formation of chemically unstable uranyl minerals is possible even for lava sample stored under laboratory conditions (Burakov, 2013b).

In our view, the long-term stability of Chernobyl lava is determined by combination of the factors mentioned above. For the intrinsically fragile pumice-like and granular materials form the lower levels of the “Shelter” (thermo)mechanical degradation is likely prevailing. For the bulk material on the upper layers combination of moisture and self-radiation seem to be more important. As mentioned above, moisture and self-irradiation may lead to significant volume expansion of ZrO2 inclusions, leading to micro-cracking. Note that in most cases dispersed particles described here and by other researchers show signs of brittle fracturing. Formation of secondary uranium-rich mineralization on surfaces of the lava is another manifestation of water-induced degradation.

5. Conclusions

For the first time matrices of Chernobyl “lava” samples were studied by complementary methods such as vibrational spectroscopy (IR and Raman), X-ray Absorption Spectroscopy and tomography, electron microscopy and back-scattering electron diffraction. We have studied bulk samples stored in laboratory from 1991, aerosols and dispersed pieces of the lava collected in 2010–2014. It is shown that the matrix can be described as depolymerised met-aluminous silicate glass. The glass matrix is essentially anhydrous, but OH-groups are observed in zircon inclusions. Local devitrification of the glass matrix of the brown lava manifested in formation of pyroxene-like dendrites is observed. It is shown that the main fractions of U and Zr in the black lava reside in highly disordered atomic environment, i.e. in the glass matrix.

Raman spectroscopy shows that many of urania inclusions are characterized by very small deviations from the ideal UO2 stoichiometry, Raman spectra of the Zr-U-O phase confirm that some of zirconia inclusions contain tetragonal ZrO2, most likely stabilized by uranium admixture. Transformation of the tetragonal to monoclinic zirconia modifications caused, for example, by moisture, provide an important, previously unrecognized mechanism of the lava destruction. Cracking is also observed around large inclusions of UO2.

Investigation of aerosols and of spontaneously detached lava particles showed that at least some lava accumulations in the “Shelter” building continue to degrade with formation of radioactive particles in the size range from <1 to 250 μm. The pumice-like and granulated lava at the lowest levels of the building appear to be the most susceptible to thermomechanical destruction. Interaction of the lava with water or water vapor leads to formation of secondary water-soluble uranium-containing phases.

The principal factors affecting stability of the lava matrix are radiation damage from U-bearing inclusions (containing Am, Np and Pu as well) complemented by detrimental effect of water/moisture. For mechanically weak pieces of the lava, such as pumice, thermomechanical stresses play an important role. The degradation rate and related radiological danger remain uncertain.

Fig. 12. BSE images of Lanthaneborosilicate glass doped with 0.5 wt% PuO2 and subjected to 40 days of static leaching in 90 °C water after two years of storage at RT. Extensive cracking around precipitates of excess PuO2 dendrites is clearly observed. A — general view; B — zoomed view of PuO2 inclusion. Haloes around plutonia precipitates are due to clusters of radiation defects, revealed by the leaching.

