Double Interpenetrating Networks: Microphase Separation in Collapsed and Swollen States

Alexander Chertovich

Alexei Gavrilov, Vladimir Rudyak, Pavel Kos and Elena Kozhunova

Lomonosov Moscow State University

What is Double Interpenetrating Network?

Typical method of synthesizing:

New class of polymer objects, which is not single molecule, but cannot be divided

Computer simulation in soft matter and polymer science

DPD (Dissipative Particle Dynamics)

Groot R.D. and Warren P.B. J. Chem. Phys. 107 (1997) 4423

$$\mathbf{F}_{ij} = \mathbf{F}_{ij}^{Cons} + \mathbf{F}_{ij}^{Diss} + \mathbf{F}_{ij}^{Random}$$

Coarse-graining methodology allow to consider statistical physics (including conformational entropy) for very complex polymer system

Comparison of IPN and diblock copolymer

Classical microphase separation

Key Parameters

- f volume fraction of each block (composition)
- N degree of polymerization (size)
- interaction parameter (compatibility)

Is it possible to obtain microphase separation for topologic, not covalent entanglements?

IPN rubber

Influence of subnetworks compatibility (Flory-Huggins χ parameter)

In contrast with diblock copolymers, no microphase separation with long range order is possible!

IPN rubber: influence of mesh size

IPN topological entanglements are "sliding" and do not correspond directly to mesh size, so no special size is preferable during fluctuations.

Influence of subnetworks number on IPN rubber elastisity

The more subnetworks the more strong and nonlinear stress-deformation

This is the effect of smaller fraction of elastic-active subchains

Partly segregated subnetworks have special fraction of very deformed subchains

Selective solvent in IPN gel can control its toughness and elasticity!

IPN Microgel in selective solvent

Experimental example: PNIPA + PAA = pH + Temperature sensitivity Poster 4_303 by Elena Kozhunova

Set of topological entanglements prevents the collapse of blue network into a single core

IPN Microgel in a selective solvent

This is size-dependent effect, work only for large mesh size or small gel size

IPN Microgel as small molecules container

Hydrophilic core – hydrophobic shell Microgel

IPN Microgel

Hydrophobic corehydrophilic shellMicrogel

- No aggregation
- No guest molecules leakage

- hydrophilic
- hydrophobic
- solvent
- vapor

IPN microgel could be used as universal container for many different guest molecules

Acknowledgements: Alexey Gavrilov, Vladimir Rudyak, Pavel Kos

Chair of Polymer and Crystal physics @ MSU Physics Department

Also: Elena Kozhunova, Nikolay Brilliantov, Elena Kramarenko, + Russian Science Foundation, Project No. 17-73-20167