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Background

T-functions

Loosely speaking, a T-function on k-bit words is a map of k-bit words into
k-bit words such that each i-th bit of image depends only on low-order bits
0, ..., i of the pre-image. Formally, a (univariate) T-function f is a mapping

. . . ;χ2;χ1;χ0
f
7→ . . . , ψ2(χ0, χ1, χ2);ψ1(χ0, χ1);ψ0(χ0)

where χi ∈ {0, 1}, and each ψi(χ0, . . . , χi) is a Boolean function in Boolean
variables χ0, . . . , χi.
As any bit word may be regarded as a base-2 expansion of a non-negative
integer, T-functions may be considered as maps from integers to integers.

The determinative property of T-functions (which might be used to state an
equivalent definition of a T-function) is compatibility with all congruences
modulo powers of 2: Given a (univariate) T-function f , if a ≡ b (mod 2s)
then f(a) ≡ f(b) (mod 2s). Vice versa, every compatible map is a T-
function.
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Background

T-functions in cryptography

Important examples of T -functions are basic machine instructions: integer
arithmetic operations (addition, multiplication,. . . ); bitwise logical opera-
tions (∨, ⊕, ∧, ¬); some of their compositions (masking, shifts towards
high order bits, reduction modulo 2k). A composition of T-functions is a
T-function (for instance, any polynomial with integer coefficients is a T-
function).
That is why T-functions were found to be useful tools to design fast crypto-
graphic primitives and ciphers based on usage of both arithmetic (addition,
multiplication) and logical operations. Various methods are known to con-
struct transitive T-functions (the ones that produce sequences of the longest
possible period, 2k). Transitive T-functions have been considered as a can-
didate to replace LFSRs in keystream generators of stream ciphers. since
sequences produced by T-function-based keystream generators are proved
to have a number of good cryptographic properties, such as high linear and
2-adic complexity, uniform distribution of subwords, etc.
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Background

Coordinate sequences

Given a transitive T-function f , we consider a k-bit word sequence x0, x1, . . .
produced by f with respect to the recurrence law

xi = f(xi−1) = f
i(x0) = f(. . . (f(︸ ︷︷ ︸

i

x0) . . .), i = 0, 1, 2, . . . ,

(by the definition, f0(x0) = x0), and denote by δn(xi) the n-th bit of the
word xi, n = 0, 1, . . . , k − 1.

The n-th coordinate sequence is the bit sequence

δn(x0), δn(x1), δn(x2) . . .
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Background

Known results

Molland and Helleseth (2005) discovered that for the transitive T-function
f(x) = x + (x2 ∨ C) suggested by Klimov and Shamir (2003), adjacent
coordinate sequences satisfy linear relation of the form

δn(xi+2n−1) ≡ δn(xi) + δn−1(xi) + zi (mod 2), for all i = 0, 1, 2, . . . ,

where the length of the period of the sequence zi is only 4 (and not 2
n

as in a general case, for an arbitrary transitive T-function); Jin-Song Wang
and Wen-Feng Qi (2008) obtained similar result for a transitive polynomial
function f(x) = c0 + c1x + c2x

2 + ∙ ∙ ∙ + cmx
m with integer coefficients

c0, c1, . . . ∈ Z = {0,±1,±2, . . .}.
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Background

Our contribution

Firstly, we prove that the linear relation

δn(xi+2n−1) ≡ δn(xi) + δn−1(xi) + zi (mod 2); i = 0, 1, 2, . . .

holds for a much wider class of T-functions than polynomials over Z
and Klimov-Shamir functions f(x) = x + (x2 ∨ C), C ∈ Z. This
wider class contains exponential T-functions (such as f(x) = 3x+3x),
fractional T-functions (such as f(x) = 1+x+ 4

1+2x) and many other T-
functions that might be extremely complex compositions of numerical
and logical operators.

The length of the period of the binary sequence zi in the relation depends
on the function f and is not necessarily 4 any longer. However, the length
is still short and does not depend on the order n of coordinate sequence.
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Background

Our contribution

Secondly, for a slightly narrower class of T-functions than the previous
one, we prove that a quadratic relation holds for any three consecutive
coordinate sequences. Earlier a relation of this sort was known only for
Klimov-Shamir T-function.

Both linear and quadratic relations we discuss may be used to construct at-
tacks against some T-function-based stream ciphers, and moreover, against
stream ciphers based on multiword T-functions (such as TSC) as well as the
ones that T-function-based counter-dependent generators (such as ABC).
We obtain our results by using techniques of non-Archimedean dynamics;
that is, we expand T-functions onto the whole space Z2 of 2-adic integers
and study corresponding dynamical systems.
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Non-Archimedean theory of T-functions: basics

2-adic integers

From the definition, any T-function is well-defined on the set Z2 of all
infinite binary sequences . . . δ2(x)δ1(x)δ0(x) = x, where δj(x) ∈ {0, 1},
j = 0, 1, 2, . . ..
Arithmetic operations (addition and multiplication) with these sequences
could be defined via standard “school-textbook” algorithms of addition and
multiplication of natural numbers represented by base-2 expansions.The ring
Z2 is commutative with respect to the so defined addition and multiplication,
and is called the ring of 2-adic integers
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Non-Archimedean theory of T-functions: basics

2-adic metric

The ring Z2 is a metric space: A distance (=metric) d(a, b) between a, b ∈
Z2 is 2−l, where l =(the length of the longest common prefix of a and b).
Absolute value of a ∈ Z2 is a distance from a to 0: |a|2 = d(a, 0); so
d(a, b) = |a − b|2. The metric d is non-Archimedean; that is, satisfies the
strong triangle inequality: for all a, b, c ∈ Z2

|a− b|2 ≤ max{|a− c|2, |c− b|2},

Formally, the ring Z2 could be defined as a completion of the ring Z with
respect to this non-Archimedean metric.
Now, we represent every 2-adic integer x = . . . δ2(x)δ1(x)δ0(x) (where
δi(x) ∈ {0, 1}, i = 0, 1, 2, . . .) as the series x =

∑∞
i=0 δi(x)∙2

i; (where δi(x) ∈
{0, 1}, i = 0, 1, 2, . . .). The series are called canonic 2-adic expansion of the
2-adic integer x; the series converges to x with respect to the 2-adic metric.
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Non-Archimedean theory of T-functions: basics

T-functions are 2-adic maps

T -functions may be viewed as mappings from 2-adic integers to 2-adic in-
tegers: e.g., for a univariate T -function f

χ0+χ1 ∙2+χ2 ∙2
2+∙ ∙ ∙

f
7→ ψ0(χ0)+ψ1(χ0, χ1)∙2+ψ2(χ0, χ1, χ2)∙2

2+∙ ∙ ∙ .

We refer to these Boolean functions ψ0, ψ1, ψ2, . . . as coordinate functions
of the T -function f .
If the T -functions are restricted to the set of all numbers whose base-2
expansions are not longer than k, we sometimes refer to these restrictions
as T -functions on k-bit words: We usually associate the set of all k-bit
words to the set {0, 1, . . . , 2k − 1} of all residues modulo 2k; the latter set
constitutes the residue ring Z/2kZ modulo 2k w.r.t. modulo 2k operations
of addition and multiplication.
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constitutes the residue ring Z/2kZ modulo 2k w.r.t. modulo 2k operations
of addition and multiplication.
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Non-Archimedean theory of T-functions: basics

T-functions are continuous 2-adic maps

The most important is that all T-functions are continuous functions of 2-adic
variables since all T-functions satisfy a Lipschitz condition with a constant
1 with respect to the 2-adic metric, and vice versa.

1-Lipschtiz functions=Compatible functions=T-functions

A map f : Z2 → Z2 satisfies a 2-adic Lipschtiz condition with a constant
1 : |f(a) − f(b)|2 ≤ |a − b|2 for all a, b ∈ Z2 iff f is compatible: if a ≡ b

(mod 2k), then f(a) ≡ f(b) (mod 2k). This is equivalent to the condition
that f is a T-function.

The following functions satisfy the Lipschitz condition with a constant 1 and
thus are T-functions (and so also be used in compositions of cryptographic
primitives):
1 subtraction (u, v) 7→ u− v;
2 exponentiation (u, v) 7→ (1 + 2u)v;
3 negative powers, u 7→ (1 + 2u)−n;
4 division (u, v) 7→ u

1+2v .
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Non-Archimedean theory of T-functions: basics

Derivations of T-functions

Derivations of T-functions are defined in the same way as in classical Calcu-
lus. Note that as a T-function is a 1-Lipschitz function w.r.t. 2-adic metric,
the derivative must be a 2-adic integer (provided the derivative exists).

Definition 1 (uniform differentiability modulo 2M )

Given M ∈ N = {1, 2, 3, . . .}, a T-function f : Z2 → Z2 is called uniformly
differentiable modulo 2M iff there exists K ∈ N such that once ‖h‖2 6 1

2K

(that is, once h ≡ 0 (mod 2K)), for all x ∈ Z2, the congruence

f(x+ h) ≡ f(x) + f ′M (x) ∙ h (mod 2ord2h+M )

holds. The minimum K = K(M) is denoted via NM (f).

Here ord2(h) = − log2 |h|2 is just the length of the longest 0-prefix in
representation of h as an infinite binary word.
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Non-Archimedean theory of T-functions: basics

Classes of differentiability

From the definition of uniform differentiability modulo 2M it readily
follows that the derivative modulo 2M is defined up to a summand
which is 0 modulo 2M . Furthermore, it can be proved that a derivative
modulo 2M is a periodic function with a period of length 2NM (f).

It is obvious that if a T-function is uniformly differentiable modulo
2M+1 then it is uniformly differentiable modulo 2M . So, we have a
hierarchy of classes of uniform differentiability,

D1 ⊃ D2 ⊃ D3 ⊃ ∙ ∙ ∙ ⊃ D∞,

where Di is the class of all T-functions that are uniformly differentiable
modulo 2i, and D∞ is a class of all uniformly differentiable T-functions.
It turns out that the T-functions of major interest to cryptography, the
invertible ones, all lie in D1; i.e., they all are uniformly differentiable
modulo 2.
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Non-Archimedean theory of T-functions: basics

Bijectivity and transitivity modulo 2n and on Z2

The compatibility implies that given a T-function f : Z2 → Z2 and n ∈
N = {1, 2, 3, . . .}, the map f mod 2n : z 7→ f(z) mod 2n is a well-defined
transformation of the residue ring Z/2nZ = {0, 1, . . . , 2n − 1}; actually the
reduced map f mod 2n is a T-function on n-bit words.

Given n ∈ N, a T-function f : Z2 → Z2 is said to be bijective (resp.,
transitive) modulo 2n iff it is invertible (resp. transitive) on n-bit
words; that is, iff the reduced map f mod 2n : Z/2nZ → Z/2nZ is
a permutation (resp., a permutation with the only cycle, of length 2n)
on the residue ring Z/2nZ

Definition 2 (Bijectivity, transitivity)

We say that a T-function f : Z2 → Z2 is bijective iff it is bijective modulo
2n for all n ∈ N; we say that f is transitive iff f is transitive modulo 2n for
all n ∈ N.

Actually the definition is a theorem that is proved in the p-adic ergodic
theory.
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Non-Archimedean theory of T-functions: basics

Bijectivity and transitivity of differentiable T-functions

In the p-adic ergodic theory the following assertions are proved:

Theorem 3 (Bijectivity/transitivity conditions)

If a T-function f : Z2 → Z2 is bijective then it is uniformly differentiable
modulo 2 and its derivative modulo 2 is 1 everywhere: f ′1(x) ≡ 1 (mod 2)
for all x ∈ Z2 (equivalently, for all x ∈ Z/2N1(f)Z).
Let a T-function f be uniformly differentiable modulo 2. Then f is bijec-
tive iff f is bijective modulo 2N1(f) and f ′1(x) ≡ 1 (mod 2) everywhere.
Equivalently: if and only if f is bijective modulo 2N1(f)+1.
Let a T-function f be uniformly differentiable modulo 4. Then f is transi-
tive iff f is transitive modulo 2N2(f)+2.

For instance, the Klimov-Shamir T-function f(x) = x + (x2 ∨ 5) is transitive
since f is uniformly differentiable, N2(f) = 2; so it suffices to check whether
the residues modulo 16 of 0, f(0), f2(0) = f(f(0)), . . . , f15(0) are all different.
This can readily be verified by direct calculations.
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Non-Archimedean theory of T-functions: basics

Properties of coordinate sequences

Given a transitive T-function f : Z2 → Z2 and a 2-adic integer x0 ∈ Z2,
consider the i-th coordinate sequence (δi(f

j(x0))
∞
j=0.

The sequence satisfies recurrence relation δi(xj+2i) ≡ δi(xj)+1 (mod 2), for all j, i =
0, 1, 2, . . .; that is, the second half of the period of the i-th coordinate
sequence is bitwise negation of the first half;
So the shortest period (which is of length 2i+1) of the sequence is
completely determined by its first 2i bits.

Given arbitrary T-function f , the first half’s of periods of coordinate se-
quences should be considered as independent, in the following meaning:

Theorem 4 (the independence of coordinate sequences)

Given a set S0,S1,S2, . . . of binary sequences Si = (ζj)
2i−1
j=0 of length 2

i,
i = 0, 1, 2, . . ., there exists a transitive T-function f and a 2-adic integer
x0 ∈ Z2 such that each first half of each i-th coordinate sequence is the
sequence Si, i = 0, 1, 2, . . .: δi(f j(x0)) = ζj , for all j = 0, 1, . . . , 2i − 1.

The essence of our contribution:

If a transitive T-function is uniformly differentiable modulo 4 then its co-
ordinate sequences can not be considered as independent: there are linear
relations among them.
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x0 ∈ Z2 such that each first half of each i-th coordinate sequence is the
sequence Si, i = 0, 1, 2, . . .: δi(f j(x0)) = ζj , for all j = 0, 1, . . . , 2i − 1.

The essence of our contribution:

If a transitive T-function is uniformly differentiable modulo 4 then its co-
ordinate sequences can not be considered as independent: there are linear
relations among them.
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Main results

Linear dependencies

Given a transitive T-function f : Z2 → Z2 and the initial state x0 ∈ Z2, for
i = 0, 1, 2, . . ., xi = f i(x0), denote by χ

i
n = δi(f

n(x0)) the n-th digit in
the canonic 2-adic expansion of the n-th iterate of x0. Our first result yields
that if a transitive T-function is uniformly differentiable modulo 4 then two
adjacent coordinate sequences satisfy a linear relation:
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Main results

Linear dependencies

Given a transitive T-function f : Z2 → Z2 and the initial state x0 ∈ Z2, for
i = 0, 1, 2, . . ., xi = f i(x0), denote by χ

i
n = δi(f

n(x0)) the n-th digit in
the canonic 2-adic expansion of the n-th iterate of x0. Our first result yields
that if a transitive T-function is uniformly differentiable modulo 4 then two
adjacent coordinate sequences satisfy a linear relation:

Theorem 5 (Linear relation between two adjacent coordinate sequences)

Let a transitive T-function f be uniformly differentiable modulo 4. Given
x0 ∈ Z2, for all n ≥ N2(f) + 1 the following congruence holds:

χi+2
n−1

n ≡ χin−1 + χ
i
n + χ

0
n−1 + χ

0
n + χ

2n−1

n + y(i) (mod 2). (1)

The length of the shortest period of the binary sequence (y(i))∞i=0 is 2
K ,

0 ≤ K ≤ N2(f). Furthermore, y(i) does not depend on n.
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Main results

Linear dependencies

Theorem 5 (Linear relation between two adjacent coordinate sequences)

Let a transitive T-function f be uniformly differentiable modulo 4. Given
x0 ∈ Z2, for all n ≥ N2(f) + 1 the following congruence holds:

χi+2
n−1

n ≡ χin−1 + χ
i
n + χ

0
n−1 + χ

0
n + χ

2n−1

n + y(i) (mod 2). (1)

The length of the shortest period of the binary sequence (y(i))∞i=0 is 2
K ,

0 ≤ K ≤ N2(f). Furthermore, y(i) does not depend on n.

Note that if a T-function is transitive then by Theorem 3 it is uniformly
differentiable modulo 2; so conditions of the above theorem are not too
restrictive: we only demand the T-function to lie in the second large
differentiability class D2.
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Main results

Linear dependencies

Theorem 5 (Linear relation between two adjacent coordinate sequences)

Let a transitive T-function f be uniformly differentiable modulo 4. Given
x0 ∈ Z2, for all n ≥ N2(f) + 1 the following congruence holds:

χi+2
n−1

n ≡ χin−1 + χ
i
n + χ

0
n−1 + χ

0
n + χ

2n−1

n + y(i) (mod 2). (1)

The length of the shortest period of the binary sequence (y(i))∞i=0 is 2
K ,

0 ≤ K ≤ N2(f). Furthermore, y(i) does not depend on n.

As both polynomial T-functions (the ones represented by polynomials
over Z2) and the Klimov-Shamir T-function (of the form x+(x2∨C),
C ∈ Z) are uniformly differentiable (thus, lie in D∞ and whence in D2),
the above theorem could be considered as a generalization of results
due to Wang and Qi, and to Molland and Helleseth.
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Main results

Linear dependencies

Theorem 5 (Linear relation between two adjacent coordinate sequences)

Let a transitive T-function f be uniformly differentiable modulo 4. Given
x0 ∈ Z2, for all n ≥ N2(f) + 1 the following congruence holds:

χi+2
n−1

n ≡ χin−1 + χ
i
n + χ

0
n−1 + χ

0
n + χ

2n−1

n + y(i) (mod 2). (1)

The length of the shortest period of the binary sequence (y(i))∞i=0 is 2
K ,

0 ≤ K ≤ N2(f). Furthermore, y(i) does not depend on n.

The class of transitive T-functions that are uniformly differentiable
modulo 4 is wide: for instance, it includes

all T-functions f(x) = u(x)+4 ∙v(x) and f(x) = u(x+4 ∙v(x)), where
u is a transitive T-function that is uniformly differentiable modulo 4 and
v is an arbitrary T-function.
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Linear dependencies

Theorem 5 (Linear relation between two adjacent coordinate sequences)

Let a transitive T-function f be uniformly differentiable modulo 4. Given
x0 ∈ Z2, for all n ≥ N2(f) + 1 the following congruence holds:

χi+2
n−1

n ≡ χin−1 + χ
i
n + χ

0
n−1 + χ

0
n + χ

2n−1

n + y(i) (mod 2). (1)

The length of the shortest period of the binary sequence (y(i))∞i=0 is 2
K ,

0 ≤ K ≤ N2(f). Furthermore, y(i) does not depend on n.

The class of transitive T-functions that are uniformly differentiable
modulo 4 is wide: for instance, it includes

all T-functions of the form f(x) = 1 + x+ 2(g(x+ 1)− g(x)) where g
is a bijective T-function
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Main results

Linear dependencies

Theorem 5 (Linear relation between two adjacent coordinate sequences)

Let a transitive T-function f be uniformly differentiable modulo 4. Given
x0 ∈ Z2, for all n ≥ N2(f) + 1 the following congruence holds:

χi+2
n−1

n ≡ χin−1 + χ
i
n + χ

0
n−1 + χ

0
n + χ

2n−1

n + y(i) (mod 2). (1)

The length of the shortest period of the binary sequence (y(i))∞i=0 is 2
K ,

0 ≤ K ≤ N2(f). Furthermore, y(i) does not depend on n.

The class of transitive T-functions that are uniformly differentiable
modulo 4 is wide: for instance, it includes

more specific functions, exponential functions of the form f(x) =
ax + ax, where a ≡ 1 (mod 2); rational functions of the form f(x) =
u(x)

1+4∙v(x) , where u is a transitive polynomial and v is arbitrary T-function.
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Main results

Quadratic dependencies

Our second result yields that if a T-function lies in the third largest dif-
ferentiability class D3 then there exists a quadratic relation among three
adjacent coordinate sequences:

Theorem 6 (Quadratic relation among three adjacent coordinate sequences)

Let a transitive T-function f be uniformly differentiable modulo 8. Given
x0 ∈ Z2, for all n ≥ N3(f) + 2 following congruence holds:

χi+2
n−2

n ≡ χin−2χ
i
n−1 + θ(n, i)(χ

i
n−2 + χ

i
n−1) + χ

i
n + yn,i (mod 2), (2)

where θ(n, i) ∈ {0, 1}. Furthermore, the length of the shortest period of
binary sequences (θ(n, i))∞i=0and (yn,i)

∞
i=0 are factors of 2

N3(f).

Theorem 6 may be considered as a generalization of a result of Luo and Qi,
who proved quadratic relation for the Klimov-Shamir T-function.
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Messages of the talk

Mathematics: We have proved that a vast body of transitive T-functions
exhibit linear and quadratic weaknesses: we found a linear and a quadratic
relation that are satisfied by output sequences generated by univariate tran-
sitive T-functions that constitute a very vast class D2.
Earlier relations of this sort were known only for T-functions of two special
types: for the Klimov-Shamir T-function x+ (x2 ∨ C) and for polynomials
with integer coefficients. The class D2 is much wider: it contains rational
functions, exponential functions as well as their various compositions with
bitwise logical operations.
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Messages of the talk

Applications: On the base of methods we have developed, it can be proved
that similar relations hold in output sequences of corresponding classes of
multivariate T-functions as well as in output sequences of T-function-based
counter-dependent generators; the latter are generators with a recursion law
of the form xi+1 = fi(xi).
Primitives of both types, the multivariate T-function-based ordinary genera-
tors and T-function-based counter-dependent generators, are used in stream
ciphers, e.g., in ASC, TF-i, TSC, and in ABC. Therefore the relations we
have found may be used to construct attacks against ciphers of this kind.
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Thank you !
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