Linear Weaknesses in T-functions

Tao Shi,¹ Vladimir Anashin² and Dongdai Lin¹

¹State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences ²Faculty of Computational Mathematics and Cybernetics Lomonosov Moscow State University

- 2 Non-Archimedean theory of T-functions: basics
- 3 Main results

T-functions

Loosely speaking, a T-function on k-bit words is a map of k-bit words into k-bit words such that each i-th bit of image depends only on low-order bits 0, ..., i of the pre-image. Formally, a (univariate) T-function f is a mapping

 $\ldots; \chi_2; \chi_1; \chi_0 \stackrel{f}{\mapsto} \ldots, \psi_2(\chi_0, \chi_1, \chi_2); \psi_1(\chi_0, \chi_1); \psi_0(\chi_0)$

where $\chi_i \in \{0,1\}$, and each $\psi_i(\chi_0, \ldots, \chi_i)$ is a Boolean function in Boolean variables χ_0, \ldots, χ_i .

As any bit word may be regarded as a base-2 expansion of a non-negative integer, T-functions may be considered as maps from integers to integers.

The determinative property of T-functions (which might be used to state an equivalent definition of a T-function) is compatibility with all congruences modulo powers of 2: Given a (univariate) T-function f, if $a \equiv b \pmod{2^s}$ then $f(a) \equiv f(b) \pmod{2^s}$. Vice versa, every compatible map is a T-function.

T-functions

Loosely speaking, a T-function on k-bit words is a map of k-bit words into k-bit words such that each i-th bit of image depends only on low-order bits 0, ..., i of the pre-image. Formally, a (univariate) T-function f is a mapping

$$\ldots; \chi_2; \chi_1; \chi_0 \stackrel{f}{\mapsto} \ldots, \psi_2(\chi_0, \chi_1, \chi_2); \psi_1(\chi_0, \chi_1); \psi_0(\chi_0)$$

where $\chi_i \in \{0, 1\}$, and each $\psi_i(\chi_0, \dots, \chi_i)$ is a Boolean function in Boolean variables χ_0, \dots, χ_i .

As any bit word may be regarded as a base-2 expansion of a non-negative integer, T-functions may be considered as maps from integers to integers.

The determinative property of T-functions (which might be used to state an equivalent definition of a T-function) is compatibility with all congruences modulo powers of 2: Given a (univariate) T-function f, if $a \equiv b \pmod{2^s}$ then $f(a) \equiv f(b) \pmod{2^s}$. Vice versa, every compatible map is a T-function.

T-functions

Loosely speaking, a T-function on k-bit words is a map of k-bit words into k-bit words such that each i-th bit of image depends only on low-order bits 0, ..., i of the pre-image. Formally, a (univariate) T-function f is a mapping

$$\ldots; \chi_2; \chi_1; \chi_0 \stackrel{f}{\mapsto} \ldots, \psi_2(\chi_0, \chi_1, \chi_2); \psi_1(\chi_0, \chi_1); \psi_0(\chi_0)$$

where $\chi_i \in \{0, 1\}$, and each $\psi_i(\chi_0, \dots, \chi_i)$ is a Boolean function in Boolean variables χ_0, \dots, χ_i .

As any bit word may be regarded as a base-2 expansion of a non-negative integer, T-functions may be considered as maps from integers to integers.

The determinative property of T-functions (which might be used to state an equivalent definition of a T-function) is compatibility with all congruences modulo powers of 2: Given a (univariate) T-function f, if $a \equiv b \pmod{2^s}$ then $f(a) \equiv f(b) \pmod{2^s}$. Vice versa, every compatible map is a T-function.

Important examples of *T*-functions are basic machine instructions: integer arithmetic operations (addition, multiplication,...); bitwise logical operations $(\lor, \oplus, \land, \neg)$; some of their compositions (masking, shifts towards high order bits, reduction modulo 2^k). A composition of T-functions is a T-function (for instance, any polynomial with integer coefficients is a *T*-function).

Important examples of *T*-functions are basic machine instructions: integer arithmetic operations (addition, multiplication,...); bitwise logical operations $(\lor, \oplus, \land, \neg)$; some of their compositions (masking, shifts towards high order bits, reduction modulo 2^k). A composition of T-functions is a T-function (for instance, any polynomial with integer coefficients is a *T*-function).

Important examples of *T*-functions are basic machine instructions: integer arithmetic operations (addition, multiplication,...); bitwise logical operations $(\lor, \oplus, \land, \neg)$; some of their compositions (masking, shifts towards high order bits, reduction modulo 2^k). A composition of T-functions is a T-function (for instance, any polynomial with integer coefficients is a *T*-function).

Important examples of *T*-functions are basic machine instructions: integer arithmetic operations (addition, multiplication,...); bitwise logical operations $(\lor, \oplus, \land, \neg)$; some of their compositions (masking, shifts towards high order bits, reduction modulo 2^k). A composition of T-functions is a T-function (for instance, any polynomial with integer coefficients is a *T*-function).

Coordinate sequences

Given a transitive T-function f, we consider a k-bit word sequence x_0, x_1, \ldots produced by f with respect to the recurrence law

$$x_i = f(x_{i-1}) = f^i(x_0) = \underbrace{f(\dots(f(x_0)\dots))}_i, \quad i = 0, 1, 2, \dots,$$

(by the definition, $f^0(x_0) = x_0$), and denote by $\delta_n(x_i)$ the *n*-th bit of the word x_i , $n = 0, 1, \ldots, k - 1$.

• The *n*-th coordinate sequence is the bit sequence

 $\delta_n(x_0), \delta_n(x_1), \delta_n(x_2) \dots$

Coordinate sequences

Given a transitive T-function f, we consider a k-bit word sequence x_0, x_1, \ldots produced by f with respect to the recurrence law

$$x_i = f(x_{i-1}) = f^i(x_0) = \underbrace{f(\dots(f(x_0)\dots))}_i \quad i = 0, 1, 2, \dots,$$

(by the definition, $f^0(x_0) = x_0$), and denote by $\delta_n(x_i)$ the *n*-th bit of the word x_i , $n = 0, 1, \ldots, k - 1$.

• The *n*-th coordinate sequence is the bit sequence

 $\delta_n(x_0), \delta_n(x_1), \delta_n(x_2) \dots$

Molland and Helleseth (2005) discovered that for the transitive T-function $f(x) = x + (x^2 \lor C)$ suggested by Klimov and Shamir (2003), adjacent coordinate sequences satisfy linear relation of the form

$$\delta_n(x_{i+2^{n-1}}) \equiv \delta_n(x_i) + \delta_{n-1}(x_i) + z_i \pmod{2}$$
, for all $i = 0, 1, 2, \dots$,

where the length of the period of the sequence z_i is only 4 (and not 2^n as in a general case, for an arbitrary transitive T-function); Jin-Song Wang and Wen-Feng Qi (2008) obtained similar result for a transitive polynomial function $f(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_m x^m$ with integer coefficients $c_0, c_1, \ldots \in \mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$.

Molland and Helleseth (2005) discovered that for the transitive T-function $f(x) = x + (x^2 \vee C)$ suggested by Klimov and Shamir (2003), adjacent coordinate sequences satisfy linear relation of the form

$$\delta_n(x_{i+2^{n-1}}) \equiv \delta_n(x_i) + \delta_{n-1}(x_i) + z_i \pmod{2}$$
, for all $i = 0, 1, 2, \dots$,

where the length of the period of the sequence z_i is only 4 (and not 2^n as in a general case, for an arbitrary transitive T-function); Jin-Song Wang and Wen-Feng Qi (2008) obtained similar result for a transitive polynomial function $f(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_m x^m$ with integer coefficients $c_0, c_1, \ldots \in \mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}.$

Background

Our contribution

• Firstly, we prove that the linear relation

$$\delta_n(x_{i+2^{n-1}}) \equiv \delta_n(x_i) + \delta_{n-1}(x_i) + z_i \pmod{2}; \ i = 0, 1, 2, \dots$$

holds for a much wider class of T-functions than polynomials over \mathbb{Z} and Klimov-Shamir functions $f(x) = x + (x^2 \vee C)$, $C \in \mathbb{Z}$. This wider class contains exponential T-functions (such as $f(x) = 3x + 3^x$), fractional T-functions (such as $f(x) = 1 + x + \frac{4}{1+2x}$) and many other T-functions that might be extremely complex compositions of numerical and logical operators.

The length of the period of the binary sequence z_i in the relation depends on the function f and is not necessarily 4 any longer. However, the length is still short and does not depend on the order n of coordinate sequence.

Background

Our contribution

• Firstly, we prove that the linear relation

$$\delta_n(x_{i+2^{n-1}}) \equiv \delta_n(x_i) + \delta_{n-1}(x_i) + z_i \pmod{2}; \ i = 0, 1, 2, \dots$$

holds for a much wider class of T-functions than polynomials over \mathbb{Z} and Klimov-Shamir functions $f(x) = x + (x^2 \vee C)$, $C \in \mathbb{Z}$. This wider class contains exponential T-functions (such as $f(x) = 3x + 3^x$), fractional T-functions (such as $f(x) = 1 + x + \frac{4}{1+2x}$) and many other T-functions that might be extremely complex compositions of numerical and logical operators.

The length of the period of the binary sequence z_i in the relation depends on the function f and is not necessarily 4 any longer. However, the length is still short and does not depend on the order n of coordinate sequence. • Secondly, for a slightly narrower class of T-functions than the previous one, we prove that a quadratic relation holds for any three consecutive coordinate sequences. Earlier a relation of this sort was known only for Klimov-Shamir T-function.

Both linear and quadratic relations we discuss may be used to construct attacks against some T-function-based stream ciphers, and moreover, against stream ciphers based on multiword T-functions (such as TSC) as well as the ones that T-function-based counter-dependent generators (such as ABC). We obtain our results by using techniques of non-Archimedean dynamics; that is, we expand T-functions onto the whole space \mathbb{Z}_2 of 2-adic integers and study corresponding dynamical systems. • Secondly, for a slightly narrower class of T-functions than the previous one, we prove that a quadratic relation holds for any three consecutive coordinate sequences. Earlier a relation of this sort was known only for Klimov-Shamir T-function.

Both linear and quadratic relations we discuss may be used to construct attacks against some T-function-based stream ciphers, and moreover, against stream ciphers based on multiword T-functions (such as TSC) as well as the ones that T-function-based counter-dependent generators (such as ABC). We obtain our results by using techniques of non-Archimedean dynamics; that is, we expand T-functions onto the whole space \mathbb{Z}_2 of 2-adic integers and study corresponding dynamical systems. • Secondly, for a slightly narrower class of T-functions than the previous one, we prove that a quadratic relation holds for any three consecutive coordinate sequences. Earlier a relation of this sort was known only for Klimov-Shamir T-function.

Both linear and quadratic relations we discuss may be used to construct attacks against some T-function-based stream ciphers, and moreover, against stream ciphers based on multiword T-functions (such as TSC) as well as the ones that T-function-based counter-dependent generators (such as ABC). We obtain our results by using techniques of non-Archimedean dynamics; that is, we expand T-functions onto the whole space \mathbb{Z}_2 of 2-adic integers and study corresponding dynamical systems.

2-adic integers

From the definition, any T-function is well-defined on the set \mathbb{Z}_2 of all infinite binary sequences $\ldots \delta_2(x)\delta_1(x)\delta_0(x) = x$, where $\delta_j(x) \in \{0,1\}$, $j = 0, 1, 2, \ldots$

Arithmetic operations (addition and multiplication) with these sequences could be defined via standard "school-textbook" algorithms of addition and multiplication of natural numbers represented by base-2 expansions. The ring \mathbb{Z}_2 is commutative with respect to the so defined addition and multiplication, and is called the ring of 2-adic integers

From the definition, any T-function is well-defined on the set \mathbb{Z}_2 of all infinite binary sequences $\ldots \delta_2(x)\delta_1(x)\delta_0(x) = x$, where $\delta_j(x) \in \{0,1\}$, $j = 0, 1, 2, \ldots$

Arithmetic operations (addition and multiplication) with these sequences could be defined via standard "school-textbook" algorithms of addition and multiplication of natural numbers represented by base-2 expansions. The ring \mathbb{Z}_2 is commutative with respect to the so defined addition and multiplication, and is called the ring of 2-adic integers

2-adic metric

The ring \mathbb{Z}_2 is a metric space: A distance (=metric) d(a, b) between $a, b \in \mathbb{Z}_2$ is 2^{-l} , where l =(the length of the longest common prefix of a and b). Absolute value of $a \in \mathbb{Z}_2$ is a distance from a to 0: $|a|_2 = d(a, 0)$; so $d(a, b) = |a - b|_2$. The metric d is non-Archimedean; that is, satisfies the strong triangle inequality: for all $a, b, c \in \mathbb{Z}_2$

$$|a-b|_2 \le \max\{|a-c|_2, |c-b|_2\},\$$

Formally, the ring \mathbb{Z}_2 could be defined as a completion of the ring \mathbb{Z} with respect to this non-Archimedean metric.

Now, we represent every 2-adic integer $x = \ldots \delta_2(x)\delta_1(x)\delta_0(x)$ (where $\delta_i(x) \in \{0,1\}, i = 0, 1, 2, \ldots$) as the series $x = \sum_{i=0}^{\infty} \delta_i(x) \cdot 2^i$; (where $\delta_i(x) \in \{0,1\}, i = 0, 1, 2, \ldots$). The series are called canonic 2-adic expansion of the 2-adic integer x; the series converges to x with respect to the 2-adic metric.

2-adic metric

The ring \mathbb{Z}_2 is a metric space: A distance (=metric) d(a, b) between $a, b \in \mathbb{Z}_2$ is 2^{-l} , where l =(the length of the longest common prefix of a and b). Absolute value of $a \in \mathbb{Z}_2$ is a distance from a to 0: $|a|_2 = d(a, 0)$; so $d(a, b) = |a - b|_2$. The metric d is non-Archimedean; that is, satisfies the strong triangle inequality: for all $a, b, c \in \mathbb{Z}_2$

$$|a-b|_2 \le \max\{|a-c|_2, |c-b|_2\},\$$

Formally, the ring \mathbb{Z}_2 could be defined as a completion of the ring \mathbb{Z} with respect to this non-Archimedean metric.

Now, we represent every 2-adic integer $x = \ldots \delta_2(x)\delta_1(x)\delta_0(x)$ (where $\delta_i(x) \in \{0,1\}, i = 0, 1, 2, \ldots$) as the series $x = \sum_{i=0}^{\infty} \delta_i(x) \cdot 2^i$; (where $\delta_i(x) \in \{0,1\}, i = 0, 1, 2, \ldots$). The series are called canonic 2-adic expansion of the 2-adic integer x; the series converges to x with respect to the 2-adic metric.

2-adic metric

The ring \mathbb{Z}_2 is a metric space: A distance (=metric) d(a, b) between $a, b \in \mathbb{Z}_2$ is 2^{-l} , where l =(the length of the longest common prefix of a and b). Absolute value of $a \in \mathbb{Z}_2$ is a distance from a to 0: $|a|_2 = d(a, 0)$; so $d(a, b) = |a - b|_2$. The metric d is non-Archimedean; that is, satisfies the strong triangle inequality: for all $a, b, c \in \mathbb{Z}_2$

$$|a-b|_2 \le \max\{|a-c|_2, |c-b|_2\},\$$

Formally, the ring \mathbb{Z}_2 could be defined as a completion of the ring \mathbb{Z} with respect to this non-Archimedean metric.

Now, we represent every 2-adic integer $x = \ldots \delta_2(x)\delta_1(x)\delta_0(x)$ (where $\delta_i(x) \in \{0,1\}, i = 0, 1, 2, \ldots$) as the series $x = \sum_{i=0}^{\infty} \delta_i(x) \cdot 2^i$; (where $\delta_i(x) \in \{0,1\}, i = 0, 1, 2, \ldots$). The series are called canonic 2-adic expansion of the 2-adic integer x; the series converges to x with respect to the 2-adic metric.

 $T\mbox{-}{\rm functions}$ may be viewed as mappings from 2-adic integers to 2-adic integers: e.g., for a univariate $T\mbox{-}{\rm function}~f$

$$\chi_0 + \chi_1 \cdot 2 + \chi_2 \cdot 2^2 + \cdots \xrightarrow{f} \psi_0(\chi_0) + \psi_1(\chi_0, \chi_1) \cdot 2 + \psi_2(\chi_0, \chi_1, \chi_2) \cdot 2^2 + \cdots$$

We refer to these Boolean functions $\psi_0, \psi_1, \psi_2, \ldots$ as coordinate functions of the T-function f.

 $T\mbox{-}{\rm functions}$ may be viewed as mappings from 2-adic integers to 2-adic integers: e.g., for a univariate $T\mbox{-}{\rm function}~f$

$$\chi_0 + \chi_1 \cdot 2 + \chi_2 \cdot 2^2 + \cdots \xrightarrow{f} \psi_0(\chi_0) + \psi_1(\chi_0, \chi_1) \cdot 2 + \psi_2(\chi_0, \chi_1, \chi_2) \cdot 2^2 + \cdots$$

We refer to these Boolean functions $\psi_0, \psi_1, \psi_2, \ldots$ as coordinate functions of the T-function f.

 $T\mbox{-}{\rm functions}$ may be viewed as mappings from 2-adic integers to 2-adic integers: e.g., for a univariate $T\mbox{-}{\rm function}~f$

$$\chi_0 + \chi_1 \cdot 2 + \chi_2 \cdot 2^2 + \cdots \xrightarrow{f} \psi_0(\chi_0) + \psi_1(\chi_0, \chi_1) \cdot 2 + \psi_2(\chi_0, \chi_1, \chi_2) \cdot 2^2 + \cdots$$

We refer to these Boolean functions $\psi_0, \psi_1, \psi_2, \ldots$ as coordinate functions of the T-function f.

 $T\mbox{-}{\rm functions}$ may be viewed as mappings from 2-adic integers to 2-adic integers: e.g., for a univariate $T\mbox{-}{\rm function}~f$

$$\chi_0 + \chi_1 \cdot 2 + \chi_2 \cdot 2^2 + \cdots \xrightarrow{f} \psi_0(\chi_0) + \psi_1(\chi_0, \chi_1) \cdot 2 + \psi_2(\chi_0, \chi_1, \chi_2) \cdot 2^2 + \cdots$$

We refer to these Boolean functions $\psi_0, \psi_1, \psi_2, \ldots$ as coordinate functions of the *T*-function *f*.

 $T\mbox{-}{\rm functions}$ may be viewed as mappings from 2-adic integers to 2-adic integers: e.g., for a univariate $T\mbox{-}{\rm function}~f$

$$\chi_0 + \chi_1 \cdot 2 + \chi_2 \cdot 2^2 + \cdots \xrightarrow{f} \psi_0(\chi_0) + \psi_1(\chi_0, \chi_1) \cdot 2 + \psi_2(\chi_0, \chi_1, \chi_2) \cdot 2^2 + \cdots$$

We refer to these Boolean functions $\psi_0, \psi_1, \psi_2, \ldots$ as coordinate functions of the *T*-function *f*.

The most important is that all T-functions are continuous functions of 2-adic variables since all T-functions satisfy a Lipschitz condition with a constant 1 with respect to the 2-adic metric, and vice versa.

1-Lipschtiz functions=Compatible functions=T-functions

A map $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ satisfies a 2-adic Lipschtiz condition with a constant $1: |f(a) - f(b)|_2 \le |a - b|_2$ for all $a, b \in \mathbb{Z}_2$ iff f is compatible: if $a \equiv b \pmod{2^k}$, then $f(a) \equiv f(b) \pmod{2^k}$. This is equivalent to the condition that f is a T-function.

The following functions satisfy the Lipschitz condition with a constant 1 and thus are T-functions (and so also be used in compositions of cryptographic primitives):

- subtraction $(u, v) \mapsto u v$;
- **2** exponentiation $(u, v) \mapsto (1 + 2u)^v$;
- ${f O}$ negative powers, $u\mapsto (1+2u)^{-n}$;
- division $(u, v) \mapsto \frac{u}{1+2v}$.

The most important is that all T-functions are continuous functions of 2-adic variables since all T-functions satisfy a Lipschitz condition with a constant 1 with respect to the 2-adic metric, and vice versa.

1-Lipschtiz functions=Compatible functions=T-functions

A map $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ satisfies a 2-adic Lipschtiz condition with a constant $1: |f(a) - f(b)|_2 \le |a - b|_2$ for all $a, b \in \mathbb{Z}_2$ iff f is compatible: if $a \equiv b \pmod{2^k}$, then $f(a) \equiv f(b) \pmod{2^k}$. This is equivalent to the condition that f is a T-function.

The following functions satisfy the Lipschitz condition with a constant 1 and thus are T-functions (and so also be used in compositions of cryptographic primitives):

- **1** subtraction $(u, v) \mapsto u v$;
- ② exponentiation $(u,v)\mapsto (1+2u)^v$;
- $egin{array}{lll}$ negative powers, $u\mapsto (1+2u)^{-n}$;

• division $(u, v) \mapsto \frac{u}{1+2v}$.

The most important is that all T-functions are continuous functions of 2-adic variables since all T-functions satisfy a Lipschitz condition with a constant 1 with respect to the 2-adic metric, and vice versa.

1-Lipschtiz functions=Compatible functions=T-functions

A map $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ satisfies a 2-adic Lipschtiz condition with a constant $1: |f(a) - f(b)|_2 \le |a - b|_2$ for all $a, b \in \mathbb{Z}_2$ iff f is compatible: if $a \equiv b \pmod{2^k}$, then $f(a) \equiv f(b) \pmod{2^k}$. This is equivalent to the condition that f is a T-function.

The following functions satisfy the Lipschitz condition with a constant 1 and thus are T-functions (and so also be used in compositions of cryptographic primitives):

- **1** subtraction $(u, v) \mapsto u v$;
- **2** exponentiation $(u, v) \mapsto (1 + 2u)^v$;
- 3) negative powers, $u\mapsto (1+2u)^{-n}$;

The most important is that all T-functions are continuous functions of 2-adic variables since all T-functions satisfy a Lipschitz condition with a constant 1 with respect to the 2-adic metric, and vice versa.

1-Lipschtiz functions=Compatible functions=T-functions

A map $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ satisfies a 2-adic Lipschtiz condition with a constant $1: |f(a) - f(b)|_2 \leq |a - b|_2$ for all $a, b \in \mathbb{Z}_2$ iff f is compatible: if $a \equiv b \pmod{2^k}$, then $f(a) \equiv f(b) \pmod{2^k}$. This is equivalent to the condition that f is a T-function.

The following functions satisfy the Lipschitz condition with a constant 1 and thus are T-functions (and so also be used in compositions of cryptographic primitives):

- **1** subtraction $(u, v) \mapsto u v$;
- 2 exponentiation $(u, v) \mapsto (1 + 2u)^v$;
- $\ \, {\rm \textbf{0}} \ \, {\rm \textbf{negative powers,}} \ \, u\mapsto (1+2u)^{-n};$

(a) division $(u, v) \mapsto \frac{u}{1+2v}$.

The most important is that all T-functions are continuous functions of 2-adic variables since all T-functions satisfy a Lipschitz condition with a constant 1 with respect to the 2-adic metric, and vice versa.

1-Lipschtiz functions=Compatible functions=T-functions

A map $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ satisfies a 2-adic Lipschtiz condition with a constant $1: |f(a) - f(b)|_2 \leq |a - b|_2$ for all $a, b \in \mathbb{Z}_2$ iff f is compatible: if $a \equiv b \pmod{2^k}$, then $f(a) \equiv f(b) \pmod{2^k}$. This is equivalent to the condition that f is a T-function.

The following functions satisfy the Lipschitz condition with a constant 1 and thus are T-functions (and so also be used in compositions of cryptographic primitives):

- **1** subtraction $(u, v) \mapsto u v$;
- 2 exponentiation $(u, v) \mapsto (1 + 2u)^v$;
- $\begin{tabular}{ll} \bullet \end{tabular} & \mbox{negative powers, } u\mapsto (1+2u)^{-n}; \end{tabular} \end{tabular}$
- division $(u, v) \mapsto \frac{u}{1+2v}$.

Derivations of T-functions

Derivations of T-functions are defined in the same way as in classical Calculus. Note that as a T-function is a 1-Lipschitz function w.r.t. 2-adic metric, *the derivative must be a 2-adic integer* (provided the derivative exists).

Definition 1 (uniform differentiability modulo 2^M)

Given $M \in \mathbb{N} = \{1, 2, 3, ...\}$, a T-function $f : \mathbb{Z}_2 \to \mathbb{Z}_2$ is called uniformly differentiable modulo 2^M iff there exists $K \in \mathbb{N}$ such that once $||h||_2 \leq \frac{1}{2^K}$ (that is, once $h \equiv 0 \pmod{2^K}$), for all $x \in \mathbb{Z}_2$, the congruence

 $f(x+h) \equiv f(x) + f'_M(x) \cdot h \pmod{2^{ord_2h+M}}$

holds. The minimum K = K(M) is denoted via $N_M(f)$.

Here $ord_2(h) = -\log_2 |h|_2$ is just the length of the longest 0-prefix in representation of h as an infinite binary word.

Derivations of T-functions

Derivations of T-functions are defined in the same way as in classical Calculus. Note that as a T-function is a 1-Lipschitz function w.r.t. 2-adic metric, *the derivative must be a 2-adic integer* (provided the derivative exists).

Definition 1 (uniform differentiability modulo 2^M)

Given $M \in \mathbb{N} = \{1, 2, 3, ...\}$, a T-function $f : \mathbb{Z}_2 \to \mathbb{Z}_2$ is called uniformly differentiable modulo 2^M iff there exists $K \in \mathbb{N}$ such that once $||h||_2 \leq \frac{1}{2^K}$ (that is, once $h \equiv 0 \pmod{2^K}$), for all $x \in \mathbb{Z}_2$, the congruence

$$f(x+h) \equiv f(x) + f'_M(x) \cdot h \pmod{2^{ord_2h+M}}$$

holds. The minimum K = K(M) is denoted via $N_M(f)$.

Here $ord_2(h) = -\log_2 |h|_2$ is just the length of the longest 0-prefix in representation of h as an infinite binary word.

Classes of differentiability

- From the definition of uniform differentiability modulo 2^M it readily follows that the derivative modulo 2^M is defined up to a summand which is 0 modulo 2^M . Furthermore, it can be proved that a derivative modulo 2^M is a periodic function with a period of length $2^{N_M(f)}$.
- It is obvious that if a T-function is uniformly differentiable modulo 2^{M+1} then it is uniformly differentiable modulo 2^M. So, we have a hierarchy of classes of uniform differentiability,

$$\mathfrak{D}_1 \supset \mathfrak{D}_2 \supset \mathfrak{D}_3 \supset \cdots \supset \mathfrak{D}_{\infty},$$

where \mathfrak{D}_i is the class of all T-functions that are uniformly differentiable modulo 2^i , and \mathfrak{D}_{∞} is a class of all uniformly differentiable T-functions. It turns out that the T-functions of major interest to cryptography, the invertible ones, all lie in \mathfrak{D}_1 ; i.e., they all are uniformly differentiable modulo 2.

Classes of differentiability

- From the definition of uniform differentiability modulo 2^M it readily follows that the derivative modulo 2^M is defined up to a summand which is 0 modulo 2^M . Furthermore, it can be proved that a derivative modulo 2^M is a periodic function with a period of length $2^{N_M(f)}$.
- It is obvious that if a T-function is uniformly differentiable modulo 2^{M+1} then it is uniformly differentiable modulo 2^M . So, we have a hierarchy of classes of uniform differentiability,

$$\mathfrak{D}_1 \supset \mathfrak{D}_2 \supset \mathfrak{D}_3 \supset \cdots \supset \mathfrak{D}_\infty,$$

where \mathfrak{D}_i is the class of all T-functions that are uniformly differentiable modulo 2^i , and \mathfrak{D}_{∞} is a class of all uniformly differentiable T-functions. It turns out that the T-functions of major interest to cryptography, the invertible ones, all lie in \mathfrak{D}_1 ; i.e., they all are uniformly differentiable modulo 2.

Classes of differentiability

- From the definition of uniform differentiability modulo 2^M it readily follows that the derivative modulo 2^M is defined up to a summand which is 0 modulo 2^M . Furthermore, it can be proved that a derivative modulo 2^M is a periodic function with a period of length $2^{N_M(f)}$.
- It is obvious that if a T-function is uniformly differentiable modulo 2^{M+1} then it is uniformly differentiable modulo 2^M . So, we have a hierarchy of classes of uniform differentiability,

$$\mathfrak{D}_1 \supset \mathfrak{D}_2 \supset \mathfrak{D}_3 \supset \cdots \supset \mathfrak{D}_\infty,$$

where \mathfrak{D}_i is the class of all T-functions that are uniformly differentiable modulo 2^i , and \mathfrak{D}_{∞} is a class of all uniformly differentiable T-functions. It turns out that the T-functions of major interest to cryptography, the invertible ones, all lie in \mathfrak{D}_1 ; i.e., they all are uniformly differentiable modulo 2.

Bijectivity and transitivity modulo 2^n and on \mathbb{Z}_2

The compatibility implies that given a T-function $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ and $n \in \mathbb{N} = \{1, 2, 3, \ldots\}$, the map $f \mod 2^n : z \mapsto f(z) \mod 2^n$ is a well-defined transformation of the residue ring $\mathbb{Z}/2^n\mathbb{Z} = \{0, 1, \ldots, 2^n - 1\}$; actually the reduced map $f \mod 2^n$ is a T-function on *n*-bit words.

• Given $n \in \mathbb{N}$, a T-function $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ is said to be bijective (resp., transitive) modulo 2^n iff it is invertible (resp. transitive) on *n*-bit words; that is, iff the reduced map $f \mod 2^n \colon \mathbb{Z}/2^n\mathbb{Z} \to \mathbb{Z}/2^n\mathbb{Z}$ is a permutation (resp., a permutation with the only cycle, of length 2^n) on the residue ring $\mathbb{Z}/2^n\mathbb{Z}$

Definition 2 (Bijectivity, transitivity)

We say that a T-function $f : \mathbb{Z}_2 \to \mathbb{Z}_2$ is bijective iff it is bijective modulo 2^n for all $n \in \mathbb{N}$; we say that f is transitive iff f is transitive modulo 2^n for all $n \in \mathbb{N}$.

Actually the definition is a theorem that is proved in the p-adic ergodic theory.

Bijectivity and transitivity modulo 2^n and on \mathbb{Z}_2

The compatibility implies that given a T-function $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ and $n \in \mathbb{N} = \{1, 2, 3, \ldots\}$, the map $f \mod 2^n : z \mapsto f(z) \mod 2^n$ is a well-defined transformation of the residue ring $\mathbb{Z}/2^n\mathbb{Z} = \{0, 1, \ldots, 2^n - 1\}$; actually the reduced map $f \mod 2^n$ is a T-function on *n*-bit words.

• Given $n \in \mathbb{N}$, a T-function $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ is said to be bijective (resp., transitive) modulo 2^n iff it is invertible (resp. transitive) on *n*-bit words; that is, iff the reduced map $f \mod 2^n \colon \mathbb{Z}/2^n\mathbb{Z} \to \mathbb{Z}/2^n\mathbb{Z}$ is a permutation (resp., a permutation with the only cycle, of length 2^n) on the residue ring $\mathbb{Z}/2^n\mathbb{Z}$

Definition 2 (Bijectivity, transitivity)

We say that a T-function $f : \mathbb{Z}_2 \to \mathbb{Z}_2$ is bijective iff it is bijective modulo 2^n for all $n \in \mathbb{N}$; we say that f is transitive iff f is transitive modulo 2^n for all $n \in \mathbb{N}$.

Actually the definition is a theorem that is proved in the p-adic ergodic theory.

Bijectivity and transitivity modulo 2^n and on \mathbb{Z}_2

The compatibility implies that given a T-function $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ and $n \in \mathbb{N} = \{1, 2, 3, \ldots\}$, the map $f \mod 2^n : z \mapsto f(z) \mod 2^n$ is a well-defined transformation of the residue ring $\mathbb{Z}/2^n\mathbb{Z} = \{0, 1, \ldots, 2^n - 1\}$; actually the reduced map $f \mod 2^n$ is a T-function on *n*-bit words.

• Given $n \in \mathbb{N}$, a T-function $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ is said to be bijective (resp., transitive) modulo 2^n iff it is invertible (resp. transitive) on *n*-bit words; that is, iff the reduced map $f \mod 2^n \colon \mathbb{Z}/2^n\mathbb{Z} \to \mathbb{Z}/2^n\mathbb{Z}$ is a permutation (resp., a permutation with the only cycle, of length 2^n) on the residue ring $\mathbb{Z}/2^n\mathbb{Z}$

Definition 2 (Bijectivity, transitivity)

We say that a T-function $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ is bijective iff it is bijective modulo 2^n for all $n \in \mathbb{N}$; we say that f is transitive iff f is transitive modulo 2^n for all $n \in \mathbb{N}$.

Actually the definition is a theorem that is proved in the $\ensuremath{\textit{p}}\xspace$ -adic ergodic theory.

In the p-adic ergodic theory the following assertions are proved:

Theorem 3 (Bijectivity/transitivity conditions)

- If a T-function f: Z₂ → Z₂ is bijective then it is uniformly differentiable modulo 2 and its derivative modulo 2 is 1 everywhere: f'₁(x) ≡ 1 (mod 2) for all x ∈ Z₂ (equivalently, for all x ∈ Z/2^{N₁(f)}Z).
- Let a T-function f be uniformly differentiable modulo 2. Then f is bijective iff f is bijective modulo $2^{N_1(f)}$ and $f'_1(x) \equiv 1 \pmod{2}$ everywhere. Equivalently: if and only if f is bijective modulo $2^{N_1(f)+1}$.
- Let a T-function f be uniformly differentiable modulo 4. Then f is transitive iff f is transitive modulo $2^{N_2(f)+2}$.

For instance, the Klimov-Shamir T-function $f(x) = x + (x^2 \vee 5)$ is transitive since f is uniformly differentiable, $N_2(f) = 2$; so it suffices to check whether the residues modulo 16 of $0, f(0), f^2(0) = f(f(0)), \ldots, f^{15}(0)$ are all different. This can readily be verified by direct calculations.

In the p-adic ergodic theory the following assertions are proved:

Theorem 3 (Bijectivity/transitivity conditions)

- If a T-function f: Z₂ → Z₂ is bijective then it is uniformly differentiable modulo 2 and its derivative modulo 2 is 1 everywhere: f'₁(x) ≡ 1 (mod 2) for all x ∈ Z₂ (equivalently, for all x ∈ Z/2^{N₁(f)}Z).
- Let a T-function f be uniformly differentiable modulo 2. Then f is bijective iff f is bijective modulo $2^{N_1(f)}$ and $f'_1(x) \equiv 1 \pmod{2}$ everywhere. Equivalently: if and only if f is bijective modulo $2^{N_1(f)+1}$.

• Let a T-function f be uniformly differentiable modulo 4. Then f is transitive iff f is transitive modulo $2^{N_2(f)+2}$.

For instance, the Klimov-Shamir T-function $f(x) = x + (x^2 \vee 5)$ is transitive since f is uniformly differentiable, $N_2(f) = 2$; so it suffices to check whether the residues modulo 16 of $0, f(0), f^2(0) = f(f(0)), \ldots, f^{15}(0)$ are all different. This can readily be verified by direct calculations.

In the p-adic ergodic theory the following assertions are proved:

Theorem 3 (Bijectivity/transitivity conditions)

- If a T-function f: Z₂ → Z₂ is bijective then it is uniformly differentiable modulo 2 and its derivative modulo 2 is 1 everywhere: f'₁(x) ≡ 1 (mod 2) for all x ∈ Z₂ (equivalently, for all x ∈ Z/2^{N₁(f)}Z).
- Let a T-function f be uniformly differentiable modulo 2. Then f is bijective iff f is bijective modulo $2^{N_1(f)}$ and $f'_1(x) \equiv 1 \pmod{2}$ everywhere. Equivalently: if and only if f is bijective modulo $2^{N_1(f)+1}$.
- Let a T-function f be uniformly differentiable modulo 4. Then f is transitive iff f is transitive modulo $2^{N_2(f)+2}$.

For instance, the Klimov-Shamir T-function $f(x) = x + (x^2 \vee 5)$ is transitive since f is uniformly differentiable, $N_2(f) = 2$; so it suffices to check whether the residues modulo 16 of $0, f(0), f^2(0) = f(f(0)), \ldots, f^{15}(0)$ are all different. This can readily be verified by direct calculations.

In the p-adic ergodic theory the following assertions are proved:

Theorem 3 (Bijectivity/transitivity conditions)

- If a T-function f: Z₂ → Z₂ is bijective then it is uniformly differentiable modulo 2 and its derivative modulo 2 is 1 everywhere: f'₁(x) ≡ 1 (mod 2) for all x ∈ Z₂ (equivalently, for all x ∈ Z/2^{N₁(f)}Z).
- Let a T-function f be uniformly differentiable modulo 2. Then f is bijective iff f is bijective modulo $2^{N_1(f)}$ and $f'_1(x) \equiv 1 \pmod{2}$ everywhere. Equivalently: if and only if f is bijective modulo $2^{N_1(f)+1}$.
- Let a T-function f be uniformly differentiable modulo 4. Then f is transitive iff f is transitive modulo $2^{N_2(f)+2}$.

For instance, the Klimov-Shamir T-function $f(x) = x + (x^2 \vee 5)$ is transitive since f is uniformly differentiable, $N_2(f) = 2$; so it suffices to check whether the residues modulo 16 of $0, f(0), f^2(0) = f(f(0)), \ldots, f^{15}(0)$ are all different. This can readily be verified by direct calculations.

Given a transitive T-function $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ and a 2-adic integer $x_0 \in \mathbb{Z}_2$, consider the *i*-th coordinate sequence $(\delta_i(f^j(x_0))_{j=0}^{\infty})$.

- The sequence satisfies recurrence relation δ_i(x_{j+2i}) ≡ δ_i(x_j)+1 (mod 2), 0, 1, 2, ...; that is, the second half of the period of the *i*-th coordinate sequence is bitwise negation of the first half;
- So the shortest period (which is of length 2^{i+1}) of the sequence is completely determined by its first 2^i bits.

Given *arbitrary* T-function f, the first half's of periods of coordinate sequences should be considered as independent, in the following meaning:

Theorem 4 (the independence of coordinate sequences)

Given a transitive T-function $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ and a 2-adic integer $x_0 \in \mathbb{Z}_2$, consider the *i*-th coordinate sequence $(\delta_i(f^j(x_0))_{j=0}^{\infty})$.

- The sequence satisfies recurrence relation δ_i(x_{j+2ⁱ}) ≡ δ_i(x_j)+1 (mod 2), 0, 1, 2, ...; that is, the second half of the period of the *i*-th coordinate sequence is bitwise negation of the first half;
- So the shortest period (which is of length 2^{i+1}) of the sequence is completely determined by its first 2^i bits.

Given *arbitrary* T-function f, the first half's of periods of coordinate sequences should be considered as independent, in the following meaning:

Theorem 4 (the independence of coordinate sequences)

Given a transitive T-function $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ and a 2-adic integer $x_0 \in \mathbb{Z}_2$, consider the *i*-th coordinate sequence $(\delta_i(f^j(x_0))_{j=0}^{\infty})$.

- The sequence satisfies recurrence relation δ_i(x_{j+2ⁱ}) ≡ δ_i(x_j)+1 (mod 2), 0,1,2,...; that is, the second half of the period of the *i*-th coordinate sequence is bitwise negation of the first half;
- So the shortest period (which is of length 2^{i+1}) of the sequence is completely determined by its first 2^i bits.

Given *arbitrary* T-function f, the first half's of periods of coordinate sequences should be considered as independent, in the following meaning:

Theorem 4 (the independence of coordinate sequences)

Given a transitive T-function $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ and a 2-adic integer $x_0 \in \mathbb{Z}_2$, consider the *i*-th coordinate sequence $(\delta_i(f^j(x_0))_{j=0}^{\infty})$.

- The sequence satisfies recurrence relation δ_i(x_{j+2ⁱ}) ≡ δ_i(x_j)+1 (mod 2), 0, 1, 2, ...; that is, the second half of the period of the *i*-th coordinate sequence is bitwise negation of the first half;
- So the shortest period (which is of length 2^{i+1}) of the sequence is completely determined by its first 2^i bits.

Given *arbitrary* T-function f, the first half's of periods of coordinate sequences should be considered as independent, in the following meaning:

Theorem 4 (the independence of coordinate sequences)

Given *arbitrary* T-function f, the first half's of periods of coordinate sequences should be considered as independent, in the following meaning:

Theorem 4 (the independence of coordinate sequences)

Given a set S_0, S_1, S_2, \ldots of binary sequences $S_i = (\zeta_j)_{j=0}^{2^i-1}$ of length 2^i , $i = 0, 1, 2, \ldots$, there exists a transitive T-function f and a 2-adic integer $x_0 \in \mathbb{Z}_2$ such that each first half of each *i*-th coordinate sequence is the sequence S_i , $i = 0, 1, 2, \ldots$: $\delta_i(f^j(x_0)) = \zeta_j$, for all $j = 0, 1, \ldots, 2^i - 1$.

The essence of our contribution:

If a transitive T-function is uniformly differentiable modulo 4 then its coordinate sequences can not be considered as independent: there are linear relations among them.

Main results

Linear dependencies

Given a transitive T-function $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ and the initial state $x_0 \in \mathbb{Z}_2$, for $i = 0, 1, 2, ..., x_i = f^i(x_0)$, denote by $\chi_n^i = \delta_i(f^n(x_0))$ the *n*-th digit in the canonic 2-adic expansion of the *n*-th iterate of x_0 . Our first result yields that if a transitive T-function is uniformly differentiable modulo 4 then *two* adjacent coordinate sequences satisfy a linear relation:

Main results

Linear dependencies

Given a transitive T-function $f: \mathbb{Z}_2 \to \mathbb{Z}_2$ and the initial state $x_0 \in \mathbb{Z}_2$, for $i = 0, 1, 2, ..., x_i = f^i(x_0)$, denote by $\chi_n^i = \delta_i(f^n(x_0))$ the *n*-th digit in the canonic 2-adic expansion of the *n*-th iterate of x_0 . Our first result yields that if a transitive T-function is uniformly differentiable modulo 4 then *two* adjacent coordinate sequences satisfy a linear relation:

Theorem 5 (Linear relation between two adjacent coordinate sequences)

Let a transitive T-function f be uniformly differentiable modulo 4. Given $x_0 \in \mathbb{Z}_2$, for all $n \ge N_2(f) + 1$ the following congruence holds:

$$\chi_n^{i+2^{n-1}} \equiv \chi_{n-1}^i + \chi_n^i + \chi_{n-1}^0 + \chi_n^0 + \chi_n^{2^{n-1}} + y(i) \pmod{2}.$$
 (1)

Let a transitive T-function f be uniformly differentiable modulo 4. Given $x_0 \in \mathbb{Z}_2$, for all $n \ge N_2(f) + 1$ the following congruence holds:

$$\chi_n^{i+2^{n-1}} \equiv \chi_{n-1}^i + \chi_n^i + \chi_{n-1}^0 + \chi_n^0 + \chi_n^{2^{n-1}} + y(i) \pmod{2}.$$
 (1)

The length of the shortest period of the binary sequence $(y(i))_{i=0}^{\infty}$ is 2^{K} , $0 \leq K \leq N_{2}(f)$. Furthermore, y(i) does not depend on n.

 Note that if a T-function is transitive then by Theorem 3 it is uniformly differentiable modulo 2; so conditions of the above theorem are not too restrictive: we only demand the T-function to lie in the second large differentiability class D₂.

Let a transitive T-function f be uniformly differentiable modulo 4. Given $x_0 \in \mathbb{Z}_2$, for all $n \ge N_2(f) + 1$ the following congruence holds:

$$\chi_n^{i+2^{n-1}} \equiv \chi_{n-1}^i + \chi_n^i + \chi_{n-1}^0 + \chi_n^0 + \chi_n^{2^{n-1}} + y(i) \pmod{2}.$$
 (1)

The length of the shortest period of the binary sequence $(y(i))_{i=0}^{\infty}$ is 2^{K} , $0 \leq K \leq N_{2}(f)$. Furthermore, y(i) does not depend on n.

As both polynomial T-functions (the ones represented by polynomials over Z₂) and the Klimov-Shamir T-function (of the form x + (x² ∨ C), C ∈ Z) are uniformly differentiable (thus, lie in D_∞ and whence in D₂), the above theorem could be considered as a generalization of results due to Wang and Qi, and to Molland and Helleseth.

Let a transitive T-function f be uniformly differentiable modulo 4. Given $x_0 \in \mathbb{Z}_2$, for all $n \ge N_2(f) + 1$ the following congruence holds:

$$\chi_n^{i+2^{n-1}} \equiv \chi_{n-1}^i + \chi_n^i + \chi_{n-1}^0 + \chi_n^0 + \chi_n^{2^{n-1}} + y(i) \pmod{2}.$$
 (1)

- The class of transitive T-functions that are uniformly differentiable modulo 4 is wide: for instance, it includes
 - all T-functions $f(x) = u(x) + 4 \cdot v(x)$ and $f(x) = u(x + 4 \cdot v(x))$, where u is a transitive T-function that is uniformly differentiable modulo 4 and v is an *arbitrary* T-function.

Let a transitive T-function f be uniformly differentiable modulo 4. Given $x_0 \in \mathbb{Z}_2$, for all $n \ge N_2(f) + 1$ the following congruence holds:

$$\chi_n^{i+2^{n-1}} \equiv \chi_{n-1}^i + \chi_n^i + \chi_{n-1}^0 + \chi_n^0 + \chi_n^{2^{n-1}} + y(i) \pmod{2}.$$
 (1)

- The class of transitive T-functions that are uniformly differentiable modulo 4 is wide: for instance, it includes
 - all T-functions of the form f(x) = 1 + x + 2(g(x+1) g(x)) where g is a bijective T-function

Let a transitive T-function f be uniformly differentiable modulo 4. Given $x_0 \in \mathbb{Z}_2$, for all $n \ge N_2(f) + 1$ the following congruence holds:

$$\chi_n^{i+2^{n-1}} \equiv \chi_{n-1}^i + \chi_n^i + \chi_{n-1}^0 + \chi_n^0 + \chi_n^{2^{n-1}} + y(i) \pmod{2}.$$
 (1)

- The class of transitive T-functions that are uniformly differentiable modulo 4 is wide: for instance, it includes
 - more specific functions, exponential functions of the form $f(x) = ax + a^x$, where $a \equiv 1 \pmod{2}$; rational functions of the form $f(x) = \frac{u(x)}{1+4 \cdot v(x)}$, where u is a transitive polynomial and v is arbitrary T-function.

Quadratic dependencies

Our second result yields that if a T-function lies in the third largest differentiability class \mathfrak{D}_3 then there exists a quadratic relation among *three* adjacent coordinate sequences:

Theorem 6 (Quadratic relation among three adjacent coordinate sequences)

Let a transitive T-function f be uniformly differentiable modulo 8. Given $x_0 \in \mathbb{Z}_2$, for all $n \ge N_3(f) + 2$ following congruence holds:

$$\chi_n^{i+2^{n-2}} \equiv \chi_{n-2}^i \chi_{n-1}^i + \theta(n,i)(\chi_{n-2}^i + \chi_{n-1}^i) + \chi_n^i + y_{n,i} \pmod{2}, \tag{2}$$

where $\theta(n,i) \in \{0,1\}$. Furthermore, the length of the shortest period of binary sequences $(\theta(n,i))_{i=0}^{\infty}$ and $(y_{n,i})_{i=0}^{\infty}$ are factors of $2^{N_3(f)}$.

Theorem 6 may be considered as a generalization of a result of Luo and Qi, who proved quadratic relation for the Klimov-Shamir T-function.

<u>Mathematics</u>: We have proved that a vast body of transitive T-functions exhibit linear and quadratic weaknesses: we found a linear and a quadratic relation that are satisfied by output sequences generated by univariate transitive T-functions that constitute a very vast class \mathfrak{D}_2 .

Earlier relations of this sort were known only for T-functions of two special types: for the Klimov-Shamir T-function $x + (x^2 \lor C)$ and for polynomials with integer coefficients. The class \mathfrak{D}_2 is much wider: it contains rational functions, exponential functions as well as their various compositions with bitwise logical operations.

Applications: On the base of methods we have developed, it can be proved that similar relations hold in output sequences of corresponding classes of *multivariate* T-functions as well as in output sequences of T-function-based counter-dependent generators; the latter are generators with a recursion law of the form $x_{i+1} = f_i(x_i)$.

Primitives of both types, the multivariate T-function-based ordinary generators and T-function-based counter-dependent generators, are used in stream ciphers, e.g., in ASC, TF-i, TSC, and in ABC. Therefore the relations we have found may be used to construct attacks against ciphers of this kind.

Thank you !

