Ангiotензин II стимулирует нейротропическую активность MSC человека
Angiotensin II stimulates the neurotrophic activity of human MSCs

СВЕДЕНИЯ ОБ АВТОРАХ

Антипан Игорь Игоревич

Кандидат биологических наук, старший преподаватель кафедры биохимии и молекулярной медицины Факультета фундаментальной медицины МГУ имени Ломоносова, Москва, Ломоносовский проспект 27 к 1, 119122. Тел.: 89096871100. E-mail: tyurinkuzmin.mp@gmail.com

Образование

Активация циркулирующей в крови и локальной ренин-ангиотензиновальной альдостероновой системы принимает участие в развитии таких патологий сердечно-сосудистой системы как атеросклероз, гипертония и гипертрофия миокарда [1, 2]. Участие ангиотензинов II в этих процессах опосредовано его взаимодействием с рецептором 1 типа (AT1), который экспрессируется клетками сосудистой стенки (ендотелием и гладкомышечными клетками) [3-5]. Помимо AT1 клетки могут экспрессировать также ангиотензин II 2 рецептор, представляющий собой 4 мутантно-наследуемый и гипертрофирующий фермент, а также экспрессирующий рецептор ангиотензинов II.

Активность AT2 рецептора или антагонисты AT1 рецептора ангиотензин II стимулируют регенерацию при повреждении центральной и периферической нервной системы [6-10]. Поэтому мы предположили, что ангиотензин II стимулирует нейротропическую активность MSC.

Материалы и методы

Активация клеток

В работе использовали первичные культуры MSC подкожной жировой ткани человека и клетки нейробластомы мыши (O2A, Neuro2A).

MSC выделяли из подкожной жировой клетчатки здоровых доноров по методике [11]. Все доноры были информированы согласие на использование клеток. Первичную культуру MSC растит в среде Mesenchymal Stem Cell Basal Medium (Thermo Scientific, США) с добавлением 10% AdvancedSTEM Growth Factor Supplement (HyClone, США). 100 ед/мл пенициллина, 100 ед/мл стрептомицина, 250 нг/мл Амфотерцина В (HyClone, США). При достижении клетками 90% монолоя, культуру MSC подклювали с использованием раствора HyTasTm (HyClone, США). Для экспериментов использовали MSC 2-5 пассажей.

Клетки нейробластомы мыши линии Neuro2A культивирова-
наполнили криоконсервированной Дульбекко среде Игла с 5 г/л глюко-
зы (DMEM, Пан-Око, Россия) с добавлением 10% фетальной бычьей сыворотки (FBS) (HyClone, США), 100 ед/мл пенициллина и 100 мг/мл стрептомицина при 37°С с 5% CO2. При культивировании клетки промывали раствором Версена (Пан-Око, Россия) и добавляли раствор 2,5% триспина (HyClone, США).

Обработка MSC ангиотензином II и ингибиторами к рецепторам ангиотензинов II

MSC отмывали от сыворотки 3 раза по 5 минут раствором Версена (Пан-Око, Россия). Далее для культивирования клеток применяли среду для роста нейробластомы - DMEM с 1 г/л глюкозы (Пан-Око, Россия) с 100 ед/мл пенициллина и 100 мг/мл стрептомицина, без добавления FBS. Для ингибирования рецепторов ангиотензин II (через 6 часов после начала обработки ангиотензином II) 100 нмоль/мл пенициллина и 100 мг/мл стрептомицина.

Уровень нРНК нейроотропических факторов и факторов роста клеток были измерены через 5 часов после отмывки от ангиотензинов II (через 6 часов после начала обработки ангиотензином II). Для экспериментов по оценке нейротропической активности МСК концентрированную среду собирали через 24 часа (через 1 сутки после начала обработки ангиотензином II) и добавляли FBS до 1% и наносили на дифференцированные клетки Neuro2A.

Выделение РНК, обратная транскрипция и ПЦР в реальном времени

Тотальную РНК из клеток выделяли и очищали с помощью набора Direct-zol™ RNA MiniPrep согласно инструкциям производителя. Образцы РНК денатурировали и проводили на колонках с концентрацией кетогептаметра Nanodrop (Thermo Scientific, США). Для дальнейшего анализа использовали ПЦР с соотношением 260/280 нм от 1,9 до 2,1. Первый цикл КДНК синтезировали, используя SuperScript® III First-Strand Synthesis System (Life Technologies, США). Реакцию проводили с 1 мкг РНК в 20 мкл, с добавлением градиентов Оligo(dT)20, согласно инструкции производителя. Обратную транскрипцию инактивировали 15 мин. при 70°С. КДНК хранили при -20°С до дальнейшего использования. Количество ПЦР в реальном времени — RT-PCR проводили в 96-лучковых реактометрах с помощью прибора DT-96 (ДНК-технология, Россия). Каждый образец, анализировали в трех повторах, в реакциях по 25 мкл, с 1мк РНК (в итоге брала на 100нг РНК на реакцию) и смесью qPCRmix- HS SYBR (Eugeron, Россия). Аmplifikацию проводили по схеме: 3 минуты при 94°С, затем