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Abstract.  A detailed hydrodynamic simulation of major meteorological parameters for the last 

30 years (1985 – 2014) has been performed for the Sea of Okhotsk and the Sakhalin Island. 

The regional non-hydrostatic atmospheric model COSMO-CLM was used for this long-term 

simulation with horizontal resolutions of ~13.2, ~6.6 and ~2.2 km. This dataset was created to 

help in the investigation of statistical characteristics and physical mechanisms of formation of 

extreme weather events (primarily wind speed extremes) on small spatio-temporal scales. The 

detailed meteorological information thus obtained could be used to take into account the coast 

configuration, mountain systems, and other important mesoscale features of the terrain. This 

paper describes a proposed downscaling technology for long-term simulations with three 

“nested domains”. The results of verification of the dataset and estimation of extreme wind 

velocities are presented. 

1. Introduction 

The hydrometeorological information about the Arctic and Far East regions is presented, apart from 

poor station data, by reanalysis data (NCEP/NCAR [1], NCEP-CFSR [2], ERA-Interim [3], MERRA 

[4], NARR [5], ASR [6,7], etc.) and global climate modeling data with a spatial resolution of about 

tens of kilometers. This resolution may be insufficient for many goals and applications. For example, 

extreme weather events, especially genesis of extreme wind speeds, are evidently associated with 

local-scale and mesoscale processes including non-hydrostatic effects. In Kislov et al. [8] it was shown 

that a global model could not reproduce a significant part of wind extremes distribution, so-called 

‘dragons’ [9]. It is good reason to use more detailed resolution and more precise models and 
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simulations, namely, non-hydrostatic mesoscale regional atmospheric models. There is an additional 

advantage for use of mesoscale models, specifically for taking into account complex terrain 

characteristics, such as coastline, mountain topography, detailed surface features, etc. 

However, an investigation of extreme weather events and wind speeds could be considered using 

the long-term simulations and robust statistical estimates of outputs. The combination of high 

resolution, detailing of mesoscale processes, a long period for analysis and assessments is a good 

challenge for new research, explanations of physical mechanisms and possible trends of extreme wind 

speeds. Solution of the corresponding task requires an appropriate model tool, computational 

resources; many test runs for model configuration optimization, selection of model domains, and 

development of a general technology, validation and verification of model results. 

2. Data and methods 

 

2.1 Model description 

The COSMO-CLM model (ver. 5.0) is used as the main tool for the creation of this long-term 

meteorological archive. COSMO-CLM is the climate version of the well-known mesoscale COSMO 

model, including some modifications and extensions adapted to the long-term numerical experiments. 

It is developed by German Weather Service (DWD) and CLM-Community (see CLM Community site 

http://www.clm-community.eu/, [10, 11]). The COSMO-CLM model is based on the primitive Navier-

Stokes equations describing the dynamics of compressible fluid in the moist atmosphere. The model 

equations are solved on the rotational grid ‘latitude-longitude’ (λ, φ) with a pole tilt. It helps to 

minimize the problem of meridians convergence over the pole. The numerical scheme is realized on 

Arakawa C-grid, and the vertical coordinate is a hybrid Gal-Chen coordinate. 

The standard configuration of the COSMO-CLM model was applied with the Runge-Kutta 

integration scheme with 5
th
 advection order. The height-based hybrid Gal-Chen coordinate [12] is 

given as an analogue of the σ-coordinate from the surface up to Z0 level and as the Z-coordinate above 

the Z0 level. The Ritter and Geleyn radiation scheme [13] is based on the δ two-stream version of the 

radiation transfer equation. The precipitation formation described by a bulk microphysics 

parameterization, Tiedtke mass-flux schemes with equilibrium closure based on moisture convergence 

are used for moist and shallow convection [14]. Turbulence is described by a prognostic TKE-based 

scheme, with 2.5 order closure [15]; the spectral nudging technique [16] and Smagorinsky diffusion 

included. A full description of the COSMO Model physics, dynamics and parameterizations is 

available on (http://www.cosmo-model.org/content/model/documentation/core/default.htm). 

 
2.2 Experiments and downscaling technology description 

The COSMO-CLM model runs were executed using ERA-Interim reanalysis [3] data (~0.75
0
 

resolution) as driving conditions over the base domain (~13.2 km resolution) for the 1985 – 2014 

period (i.e. 30 years). Additionally, many external parameters data (e.g., land/sea mask, roughness 

length, leaf area index, etc.) came from EXTPAR v.3.0 tool provided by CLM-Community 

(www.clm-community.eu/index.php?menuid=174&reporeid=260) over the base domain (data from 

EXTPAR are provided in Table 1). All these data went into preprocessing routine int2lm and were 

interpolated onto the domain grid. 

Generally, the ‘nested domains’ technique was realized through three nested computational areas, 

with 13.2, 6.6, and 2.2 km resolutions. As a result, more than 20 detailed meteorological fields (see 

Appendix) within the 30-year period with 1-hour temporal resolution over the Okhotsk Sea and 

Sakhalin region were obtained. Initially, the model run was executed over the starting domain (‘base 

domain’) with a raw 13.2-km resolution through the whole period. After that, these outputs were used 

as initial and boundary conditions for interpolation and model run over the next domain, with 6.6 km 

resolution. And, finally, in the same way, we have executed model runs over the 2.2 km resolution 

domain with the driving conditions from the previous domain’s outputs. However, some shortcomings 

of the downscaling method should be noted. The first one is associated with occurring artifacts and 

http://www.clm-community.eu/
http://www.cosmo-model.org/content/model/documentation/core/default.htm
file:///D:/WORK/MISHA/2017/edit/www.clm-community.eu/index.php%3fmenuid=174&reporeid=260
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spurious effects at the domain boundaries. The second one is the bias associated with coarse 

resolution, which the regional climate model also adds by its own errors to the output data. 

Nevertheless, using the ‘nested domains’ scheme with finer resolution and reasonable choice of 

boundaries could allow us to reduce these errors and biases. 

 

Table 1. External parameters list provided by EXTPAR tool and required for the COSMO-

CLM model run initialization. 

Parameter Name Units 

HSURF Geometrical height m 

Z0 Roughness length m 

LAI_V Leaf area index, vegetation period 
 

LAI_R Leaf area index, non-vegetation period 
 

FR_LAND Land cover fraction 1 

PLCOV_V ground fraction covered by plants, vegetation period 1 

PLCOV_R ground fraction covered by plants, non-vegetation period 1 

ROOTDP Root depth m 

SOILTYP Soil type - 

T_CL Soil temperature K 

FR_LAKE Lakes fraction cover 1 

 

The ‘spectral nudging’ technique was additionally applied over the base domain in order to control 

the model behavior and link to the real atmospheric dynamics. This technique assimilates the large-

scale components of atmospheric circulation from reanalysis data not only on the boundaries, but also 

within the whole model domain. It limits the possible model retreat from the real conditions. It is 

based on the two-dimensional Fourier decomposition of reanalysis and regional model fields and the 

succeeding adjustment of simulation results. The temperature, wind speed, geopotential, and pressure 

were assimilated using this spectral nudging technique. Taking into account that the global control of 

atmospheric circulation is executed by the large-scale systems in the middle and upper troposphere, 

we have assumed 500 km and more as the spatial scale, and 850-hPa pressure level as the lowest for 

assimilation. 

Practically, this computational scheme was realized with model runs for a period of several months 

(from 3 – 4 up to a year). Such duration was used because of restrictions of computational resources 

and data storage volumes, as well as a risk of technical crashes of experiments during the continuous 

runs for longer periods. All simulations were executed on 288 cores of the RSC “Tornado” 

supercomputer system in the Main Computer Center of Roshydromet with a peak performance of 35 

Tflops. 30-year runs over 13.2 and 6.6 km domains together used ~2,400 hours of the CPU time. 

Additionally, many hours consumed test runs, debugging experiments, and simulations over the 2.2-

km domain (for the most extreme wind speed events), approximately 200 – 300 CPU hours. 

 

2.3. Selection of domains’ boundaries 

The selection of domains for simulations is one of the most important stages of preparation to 

simulations. There are many competing considerations to take into account. First, it is necessary to 

find a compromise between the limitations of computational resources and the size of the territory. 

Second, it is not recommended to draw the domain boundary near large mountain ranges, because it 

affects gravitational boundary waves propagation. Third, the boundaries of the next nested domain 

should be shifted inside from the previous ones by 4 – 10 model grids, i.e. by 20 – 50 km. Ultimately, 
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trying to take into account all these considerations, we have selected the following boundaries, as 

shown in Figure 1. The main characteristics of these domains are listed in Table 2. 

 
Figure 1. Map of boundaries of model domains with 13.2, 6.6 and 2.2 km horizontal resolutions. 

 

Table 2. Main characteristics of model domains. 

Characteristics 13.2 km domain 6.6 km domain 2.2 km domain 

Longitude of tilted pole 110
0
 E 110

0
 E 110

0
 E 

Latitude of tilted pole 60
0
 N 60

0
 N 60

0
 N 

Total number of grid points 145*355 = 51475 228*525 = 119700 300*500 = 150000 

Horizontal resolution, grad (km) 0.12
0
 (~13.2 km) 0.06

0
 (~6.6 km) 0.02

0
 (~2.2 km) 

Time step, sec 120 60 20 

Number of model levels in 

atmosphere 

40 40 50 

Number of model levels in soil 9 9 9 

Source of initial and boundary 

conditions 

ERA-Interim 

(~0.75
0
) 

COSMO-CLM  

13.2 km 

COSMO-CLM  

6.6 km 

 

An important reason to select boundaries for the ‘base’ domain (13.2 km resolution) was accounting 

for the synoptic-scale features of atmospheric circulation over the given region, including the monsoon 

system and the associated cyclonic activity, both in summer typhoons and winter polar fronts. 

Therefore, the eastern boundaries were extended farther to the Pacific Ocean. It allowed to catch out 

severe cyclones at early stages of its formation and reproduce its evolution better. A realistic 

simulation over the ‘base’ domain was important to get adequate driving conditions for the 6.6 km 



5

1234567890

CITES-2017 IOP Publishing

IOP Conf. Series: Earth and Environmental Science 96 (2017) 012004    doi   :10.1088/1755-1315/96/1/012004

domain runs. The boundaries of the 6.6 km domain are only slightly smaller than the ‘base’ one, 

contouring the Okhotsk Sea. This boundary seems to be sufficient for a good reproduction of the wind 

speed climatology over the region. The 2.2 km domain covers the Sakhalin Island, parts of the 

Okhotsk Sea, the Kamchatka peninsula, and the Japan Sea. Since the main goal of this domain was to 

simulate the extreme wind speeds near the Sakhalin Island, this domain was enlarged over the Okhotsk 

Sea in order to resolve and reproduce many mesoscale cyclonic features contributing to the formation 

of extreme winds. 

 

3. Results and discussion 

 

3.1. Verification of dataset 

The verification of the obtained dataset was performed with observation data obtained from the 

“Hydrometcenter database” and www.rp5.ru archive on temperature, wind speed, and wind gusts (Ug 

> 10 m/s). The stations located in less than 100 km from the coast and 500 m of absolute height were 

sorted out. Estimates of the model quality were obtained over three verification areas (see Figure 2): 1) 

Okhotsk sea, adjacent water and coastal areas (124 stations), 2) Sakhalin Island, strait of Tartary, the 

southern part of Okhotsk Sea (50 stations), and 3) the northern part of the eastern Sakhalin coast (6 

stations). The primary comparison was made for 2014 because of the most thorough observational 

data archive. We have considered four periods for assessment – January-March (JFM), April-June 

(AMJ), July-September (JAS), and October-December (OND) of 2014. 

 
Figure 2. Map of verification areas 1, 2 and stations in area 3. 

 

We applied a specific technique for verification of the modelled temperature and wind speed. For 

each station, that model grid for comparison was defined which had the minimal RMSE with 

observations. The corresponding model grid was found over the 25 x 25 km square around the station, 

i.e. 3 x 3 model grids with a 13.2-km resolution and 5 x 5 model grids with a 6.6 km resolution. 

Moreover, stations having more than 5% observation lacunas were rejected. 

file:///D:/WORK/MISHA/2017/edit/www.rp5.ru
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Summarizing the verification results, the mean temperature errors are about 0.5 
0
C, while the 

RMSE reaches 2 - 3 
0
C. The wind speed is overestimated by the model over inlands (RMSE is up to 2 

m/s). It’s noteworthy that wind gusts were reproduced by the model rather well (the ME was up to 1 

m/s, the RMSE was 2 – 3.5 m/s, and the correlation coefficients were 0.8 and more), despite a fairly 

simple algorithm [17]. Additionally, the most noticeable errors are for Area 1, 2 the errors are less for 

Area 2, and much less for Area 3. 

For several stations, errors may be high, but it could be explained by errors in the model land-mask 

and its inconsistences with the real surface and terrain in these cases. Seasonal courses of the 

parameters and error were revealed. RMSE for temperature over Area 1 is maximal in winters and 

minimal in summers. This is associated with overestimation of temperature by the model during strong 

freezings and, consequently, stable stratifications near the surface. For the Sakhalin’s eastern coast, the 

situation is vice versa. The correlation coefficients for temperature are more than 0.9 during the entire 

year; therefore, the model reproduces its synoptic and daily variability correctly. The largest RMSEs 

for wind speed in the OND period, i.e. the ‘storm season’, are associated with maxima absolute values 

in this time. Thus, the lower correlation coefficients during the summer season could be explained by 

the frequency of convective movements. The transition from the resolution of 13.2 km to 6.6 km does 

not provide any significant improvement, but one should note a slight decrease of the errors and 

increase of the correlation coefficients. Also, a decrease of the errors range for parts of the seasons, 

parameters and areas was observed. 

As for the spatial distribution of errors, maximal temperature errors are observed at the coastal 

stations (mostly in summer) or in inner lands (mostly in winter). The summer errors could be 

explained by a strong contrast between the sea and land and, hence, by the complexity in reproduction 

of the local land-sea interactions. The winter errors are linked to the well-known overestimation of 

turbulent mixing in the boundary layer by the COSMO-CLM model in stable stratification conditions 

that leads to rising of the model temperature. 

The spatial distribution of wind speed errors is simpler. They are larger over the inlands, because of 

inconsistency between the real and model-defined roughness length in the land-sea mask for several 

stations. The errors for the coastal stations are smaller due to a less number of factors determining the 

wind speed. 

Verification for the 2.2-km domain was performed only for extreme wind situations listed in Table 

3. Generally, comparison characteristics for these short periods of extremes are not worse than 

analogous ones for seasons. Therefore, the model could reproduce both the background seasonal 

variability and its dynamics during the extreme winds with the same quality. Using finer resolution 

slightly improves the model results, especially by transition to 2.2 km. 

 

3.2. Synoptic analysis of extreme wind situations 

Extreme wind speed situations were sorted out from the given archive (15 cases listed in Table 3) and 

analyzed according to the synoptic processes. Two main types of synoptic situations were identified as 

favorable for the genesis of extreme winds. All selected storms were observed during the cold season. 

The synoptic features leading to extreme wind speeds were associated with a strong thermal gradient 

between the cold continental air mass over Eastern Eurasia and the marine polar air masses over the 

Pacific and Okhotsk Sea during winter. It leads to strengthening of the cyclonic activity at the polar 

and arctic fronts over the Okhotsk Sea and Sakhalin Island. All selected extreme winds were of 

northern directions and caused by cyclones. 

The first type (most frequent) was associated with developing of cyclones over the Primorsky Kray 

or Japan Sea (example for 28.01.1989, 07 UTC, Figure 3a). Then it intensified, moved to the west or 

north coast of the Sakhalin Island, crossed it, and came to the Okhotsk Sea. Here, in the rear of the 

cyclone, the wind speed usually intensified again. The intensity and duration of extreme winds cases 

varied from a few hours to a day and 25 to 35 m/s. 
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Table 3. Dates of extreme synoptic situations over the Okhotsk Sea region and maximal wind speed 

values (m/s) reproduced by COSMO-CLM model. 

№ Date 
Wind speed, m/s 

13.2 km 6.6 km 2.2 km 

1 25.03.1987 29.7 31.6 31.1 

2 28.01.1989 32.3 34.3 34.3 

3 19.12.1989 28.6 30.0 31.8 

4 8.11.1995 27.0 26.7 27.0 

5 1.02.1996 28.3 29.2 28.9 

6 14.02.1996 32.8 34.2 34.0 

7 28.02.1999 33.3 35.2 35.5 

8 14.11.1999 27.4 25.3 28.7 

9 11.01.2000 28.3 29.3 29.6 

10 12.01.2001 30.8 30.3 30.7 

11 5.12.2002 27.7 30.0 29.0 

12 8.01.2005 29.8 28.7 30.6 

13 27.02.2006 28.9 29.0 30.6 

14 3.02.2014 27.7 25.5 26.7 

15 6.03.2014 24.9 24.8 26.8 

 

The second type was characterized by the penetration of intensified cyclones from the Pacific 

Ocean through the Kamchatka peninsula, Kuril or Japan Islands, especially Hokkaido (example for 

19.12.1989, 11 UTC, Figure 3b). Next, the deepening cyclones crossed the Okhotsk Sea and got close 

to the Sakhalin Island, causing extreme winds offshore. This group was characterized by less deep but 

larger cyclones. 

A comparison of the reproduction of these extreme situations at different model resolutions showed 

that on 2.2 km the wind speed maximums are slightly higher (the added value is 2 – 3 m/s) and its 

spatial distribution is more spotted compared to rawer resolutions. In most cases using a finer 

resolution leads to decreasing of the mean speed and gusts errors. At the same time, these features are 

not so evident by transition from 13.2 to 6.6 km, in contrast to the transition from 6.6 km to 2.2 km. It 

follows that 6.6 km resolution does not provide a significant improvement of the model results due to 

a bad resolving of the ‘grey zone’ processes, obviously. However, the 2.2 km resolution improves the 

reproduction of extreme winds in the surface layer because of explicit resolving of deep convection, 

detailed terrain, coastline, and turbulent motions description. 
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a)       b) 

 

Figure 3. Sea level pressure (hPa) and wind speed (m/s) 28.01.1989, 07 UTC (a) and 19.12.1989, 

11 UTC (b) reproduced by COSMO-CLM model on the 13.2 km domain. 

 

4. Conclusions and recommendations for future research 

It is for the first time in the Russian Federation that a technology of detailed regional modelling of 

atmospheric processes was realized on long-term timescales. Overall, the analysis showed that the 

used downscaling technique with applying the COSMO-CLM model reproduced the meteorological 

conditions, spatial distribution, seasonal and synoptic variability of temperature and extreme wind 

speed for the study area with approximately the same adequate quality. Some relations between the 

reproduction quality of mesoscale atmospheric circulation features and the horizontal resolution of the 

model were revealed. In particular, it was shown that ~6.6 km resolution does not provide any 

significant improvement in comparison to ~13.2 km resolution, whereas ~2.2 km resolution provides 

an appreciable improvement of the quality. 

The obtained high-resolution dataset will be used for a full and comprehensive analysis of the 

physical mechanisms of extreme weather events, the reproduction quality of hydrometeorological 

fields, their statistical estimates, climatological trends, spatial distribution of a large variety of 

hydrometeorological parameters on diurnal, seasonal, and interannual timescales, using this 

information for a detailed environment state assessment and many other objectives. 
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Appendix  

List of main output variables: 

 Sea level pressure (hPa) 

 Air temperature 2 and 10 m (
0
C) 
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 Potential air temperature 2 and 10 m (
0
C) 

 Surface temperature (
0
С) 

 Specific humidity 2 and 10 m (g/kg) 

 10 m zonal and meridional wind (m/s) 

 10 m wind speed maxima during 1 hour (m/s) 

 10 m wind gust during 1 hour (m/s) 

 Hourly snow and rain precipitation (kg/m
2
, both) 

 Radiation (direct and diffuse) shorter and longer than 700 nm  (W/m
2
, both) 

 Downward shortwave radiation (W/m
2
) 

 Upward shortwave radiation (W/m
2
) 

 Downward and upward longwave radiation (W/m
2
) 

 Sensible and latent heat flux (W/m
2
) 
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