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1.  Introduction

A random number generator is the heart of any cryptographic 
system. In serious cryptographic systems based on symmetric 
encryption, only physical random number generators are used 
to generate the keys. The development of modern quantum 
technologies has opened new perspectives for the creation of a 
protected communication system. The most striking example 
is quantum cryptography. For the distribution of secret keys in 
systems of quantum cryptography, a large number of random 
sequences 0 and 1 are required. In particular, physical random 
number generators are used.

Physical random number generators can be divided into 
two types—classical and quantum. Physical classical random 

number generators are based on the extraction of randomness 
from some physical process, the evolution of which in time is 
described by the laws of classical physics. The evolution of 
any, even arbitrarily complex, classical system is described 
by differential equations. Sequences that are obtained at the 
output of such a generator are also not truly random, since 
they are completely determined by the initial conditions. 
Their randomness is related only to the uncertainty of the ini-
tial conditions for the system. Therefore, such generators can 
not be considered as truly random. The second type of physi-
cal generators is quantum (see, for example, the review [1] 
and references therein). The extraction of a random sequence 
of numbers is based on the measurements performed over 
quantum systems.
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Abstract
We implemented experimentally a quantum random number generator, based on the 
registration of quasi-single-photon light by a silicon photo-multiplier, which allows one to 
reliably achieve the Poisson statistics of photocounts. The use of the optimal grouping of 
photocounts and a polynomial-length sequence of the method for extracting the random 
sequence 0 and 1 made it possible to achieve the output rate of a provably random sequence up 
to 75 Mbit s−1.
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Unlike classical physics, measurements over a quantum 
system, each time prepared in a certain and the same state, 
produce an accidental result, which is the fundamental law 
of nature in the micro-world. Therefore, only random num-
ber generators can be truly random. A random sequence is a 
sequence of 0 and 1, which are independent in each position, 
and probability P(0) = P(1) = 1

2.
The sequence of measurement results (x1, x2, . . . xn) over a 

quantum system in the general case is not statistically independ-
ent, i.e. the distribution function does not decompose into the 
product P(x1, x2, . . . xn) �= P(x1)P(x2) . . .P(xn). In this case, 
the number of truly random bits is given by min by the Renyi 
entropy Hmin = − log(maxP(x1,x2,...xn)P(x1, x2, . . . xn)). There 
are whole mathematical direction—randomness extractors, 
and there are procedures that allow one to extract randomness 
from the distribution P(x1, x2, . . . xn) �= P(x1)P(x2) . . .P(xn) 
(see, for example, [2]). However, the problem is that in a 
real situation, the distribution function P(x1, x2, . . . xn) is 
unknown. In addition, the very procedure of obtaining a truly 
random sequence requires a seed random sequence for ran-
domly selecting a hash function.

It is convenient to choose such quantum-mechanical meas-
urements that ensure the statistical independence of succes-
sive acts of measurement. It goes without saying that the 
verification of the correctness of the choice and the exper
imental realization of the physical process that ensures the 
statistical independence of the successive results of quantum 
mechanical measurements is checked at the final stage from 
the random sequence 0 and 1. This, however, takes place for 
both types of physical random number generators mentioned 
above.

Ideal quantum randomness might be the act of absorbing a 
single photon by an atom. Since a strictly single-photon source 
is currently absent, it is necessary to use quasi-single-photon 
states of light. In practice, such sources of quasi-single-photon 
states occur at the output of a strongly attenuated laser. The 
photon statistics of such light is supposed to be coherent.

As is known, the root cause of the Poisson statistics of pho-
tocounts while detecting laser radiation has a fundamentally 
quantum nature and is due to the absorption of photons by 
atoms (see details in [3]). The probability of finding m pho-
tons within a time window T at Poissonian statistics is (see for 
example, [3])

PT(m) = e−µµ
m

m!
.

Since avalanche detectors do not distinguish the number of 
photons, random events are: either the absence of a photo-
count in the time slot (cycle) T —� or photocount—*. In this 
case, the probability of photocounts (from one, two or more 
photons in the window T ) is P(∗) = 1 − e−µ, respectively, 
the absence of a photocount is P(�) = e−µ.

For the future it is important that the procedure for the 
extraction of randomness requires only statistical independ
ence of photocounts and does not require knowledge of the 
probabilities themselves p = P(�) 1 − p = P(∗).

Strong attenuation is required to achieve statistical 
independence of the sequence of photocounts. This is due to 

the technical limitations of the avalanche detector’s opera-
tion, more precisely due to the finite time of recovery of the 
detector after registration, which gives a limitation on the rate 
of formation of the random sequence. The rebuilding of the 
detector before the next registration act ensures the statistical 
independence of successive photocounts. Therefore, although 
they make it possible to achieve random sequences with good 
statistical properties, quantum random number generators are 
rather slow.

To achieve the maximum generation rate of random num-
bers, it is necessary to solve three main tasks.

	(1)	To choose a method for recording quasi-single-photon 
states of laser radiation, which ensures the statistical 
independence of photocounts.

	(2)	To choose a method of photocounts bunching, which pro-
vides extraction of all the randomness that is contained in 
the physical process.

	(3)	To choose a method of random extraction that allows 
algorithmically effective implementation.

2.  Ideology in the implementation of QRNG

	(1)	The main problem in the photodetection of single-
photon light by single-photon avalanche detectors 
(SPADs) [4] which operate in the Geiger mode is to take 
into account the dead time of the detector, which limits 
the clock frequency and the rate of photocounts. The 
clock frequency can not exceed the inverse time of the 
avalanche resolution. In addition, afterpulsing effects 
after recording a real photon can lead to parasitic counts 
after the registration of a photon. Both of these effects 
violate the ideal Poisson statistics of photocounts [5]. To 
eliminate these parasitic effects, no single SPADs were 
used, but instead the avalanche detector arrays contained 
several thousand such tiny SPADs connected in parallel 
silicon photo-multipliers (SiPMs) [6]. Since the average 
number of photons during a clock pulse does not exceed 
one thousand photons per pixel (see below), after regis-
tration with a separate photon detector, the probability 
that the next photon will fall into the same detector is 
extremely small. This allows one to increase the clock 
speed and the rate of photon input to the matrix. In 
this case, the dead time of a separate photodetector 
and the clock frequency are effectively unbound since 
the frequency band expands in a first approximation in 
proportion to the number of cells in the SiPM.

	(2)	In each time slot, there can be only a single photocount. 
All sequences of length n of cycles containing the same 
number of � (n − k levels—pieces) and ∗ (k particles) 
have the same probability. The number of such sequences 
is equal to the statistical weight for Fermi–Dirac statistics 
for the allocation of k fermions to n − k levels [8]. As was 
shown earlier [9], such a natural bunching of sequences 
into classes with the same number � and ∗ allows us to 
extract in the asymptotic limit all the randomness con-
tained in the physical process.

Laser Phys. Lett. 14 (2017) 125207



3

K A Balygin et al

	(3)	The extraction of all randomness reduces to the num-
bering of all equiprobable sequences from one class. We 
used an algorithm from the theory of arithmetic coding, 
which requires only polynomial memory resources along 
the length of the sequences. Direct table  numbering 
requires an exponentially large memory 2n, where n is 
the length of the sequence. The polynomial algorithm 
used allows processing sequences of 64 time slots. At 
this length, almost all randomness is extracted. Direct 
addressing would require 264 ≈ 1020 bits of memory, 
which is unrealistic.

3.  Numbering sequences in classes and extracting 
a random sequence of 0 and 1

When extracting randomness, it is necessary to build a compu-
tationally efficient output block of the random sequence 0 and 
1 from the sequence of photo-accounts of length n i1, i2, . . . in 
(ij = ∗ or �). A tabular method of addressing this is possible 
when extracting a random sequence, which was used in our 
work [10]. The generation rate of random numbers with this 
method is technically limited by the size of the table, which 
grows exponentially along the length of the sequence.

Here we use the numbering method, which requires only 
polynomial resources along the length of the sequence, which 
allows us to process practically sequences of any length. It 
is convenient to use methods and results from the theory of 
arithmetic coding. The extraction of randomness occurs in 
two stages.

At the first stage the output sequence i1, i2, . . . in, is given 
by the number, which is determined by the polynomial algo-
rithm (see details in [11]). Suppose that there are K  counts 
in the sequence *. Denote the position number by the index 
jm. Then, there is a one-to-one correspondence between 
the sequence of photocounts (i1, i2, . . . in) and its number 
Num(i1, i2, . . . in) (0 � Num(i1, i2, . . . in) � CK

n − 1)

Num(i1, i2, . . . in) = C1
j1−1 + C2

j2−1 + . . .+ Ck
jk−1, Cl

j = 0, j < l.
� (1)
Binomial coefficients can be calculated in advance and placed 
in a table of size n × n. The binomial coefficient is selected on 
the fly as soon as the photocounts (*) appear. When the first 
count appears at position j1, a number (binomial coefficient) 
is selected at the intersection of the first line j1 of the row and 
the first column of the matrix. When the second count appears, 
the coefficient in the matrix is taken at the intersection of 
j2 of the row and the second column, etc. The result is the 
sequence number Num(i1, i2, . . . in). The method of number-
ing the sequences of photocounts from the class is explained 
in figure 1(a)). Let the sequence belong to some class, the total 
number of sequences in the class Nk.

The second step is to obtain a block of random 0 and 1 
from the sequence number. Sequence numbers are in the range 
0 � Num � Nk − 1. Let the number of the current sequence 
be Num.

Then the procedure is recursively executed. If the 
number of the current sequence Num is in the interval 

2k0 + 2k1 + . . .+ 2ki−1 � Num � 2k0 + 2k1 + . . .+ 2ki−1 + 2ki − 1 , 
(i � imax), then the output random sequence is ki lower order 
bits of the binary representation Num. The number of sequence 
numbers in this range is 2ki.

For example, Nk = 6 = (110)2, let the sequence 
number Num = 3 = (011)2, then the output is (11). If 
Num = 5 = (101)2, then one gets (01) at output.

4.  Physical realization QRNG

The functional diagram of QRNG is shown in figure  1(b)). 
The scheme uses the minimum number of elements.

The SiPMs used have been developed by MEPhI-Pulsar 
(Moscow, Russia) and produced by the Technological Center 
of MIET (Zelenograd, Russia). The SiPMs have a sensitive 
area approx 1 × 1 mm2 and consisted of Npix = 1156 pix-
els with 32 × 32 µ2. The operational voltage (several volts 
above breakdown) is 40V [7]. The temperature of the detec-
tor was stabilized at 250 C. The source of radiation was a 
LED (SLD3143VL) from a Sony Laser Diode with a work-
ing wavelength of 0.405 µ. For processing we used FPGA 
of Intel FPGA (Altera) at 150 MHz frequency. Also, we used 
an external interface USB 2.0 for outputting a resultant ran-
dom sequence in a continuous regime. The advantage of the 
SiPMs that we use for registering the light is their high value 
of the quenching resistors Rq, which exceeds 1 MOhm. Due to 
this fact the SiPMs possess quite low afterpulsing probability 
since the dead time after firing the pixel is proportional to Rq 
(t = Rq · Cp, where Cp is the pixel capacitance). During the 
pixel recovery process, for which duration is determined by 
the dead time, for the most part the charge carriers released 
from the traps produced in the primary discharge do not 
have the ability to initiate correlated discharge in that pixel. 
Another very important feature of such an SiPM is the quite 
fast and narrow pixel signal, which is of the order of 1 ns for 
a very simple readout by using only 2 output pins (in contrast 
to the fast output of the Sensl SiPMs which requires 3 pins for 
the connection).

It should be noted that requirements to the SiPM param
eters gained, for example, from the cryptography applications, 
are not the same as for the conventional mass market, which 
is mostly governed now by medical applications (Positron 
Emission Thomography (PET) and time-of-flight TOF PET). 
This means that special development of SiPMs devoted to very 
important strategic application areas is mandatory in order to 
obtain the highest possible quality and safety of Quantum 
Random Number Generators.

5. The average number of photons per pixel

Let us estimate the average number of photons incident on 
an individual pixel. This estimate is important to be sure 
that the generator is really quantum, and indeed photocounts 
from quasi-one-photon radiation are actually recorded. Let 
us verify that the generator actually works in the quantum 
mode. To do this we need to estimate the average number 
of photons incident on the SiPM. The actual observed value 
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is the probability of counting for one time slot (clock cycle) 
P(∗) = 0.255. This probability is equal to P(∗) = µ · Npix, µ is 
the average number of photons per pixel in the SiPM per time 
slot, Npix = 1156 is the number of pixels in the matrix. Finally 

we get µ = P(∗)
Npix

≈ 0.221 · 10−3 (average number of photons 

per sample per pixel), i.e. one pixel accepts less than a hun-

dredth of a photon. For a coherent state with Poisson statistics, 
the probability to find a single photon P(n = 1) = e−µµ ≈ µ 
(µ � 1), respectively, the probability to find pair of photons 

is P(n = 2) = e−µ µ2

2 ≈ 0.244 · 10−7. Thus, a single-photon 

case is almost realized.
It is important to note that in order to take into account 

the possible parasitic effect of the cross-talk effect between 
neighboring pixels on the statistics of photocounts (see, for 
example, [12]), additional research was carried out. At our 
working levels of photon fluxes, there was no distortion of the 
statistics (see figure 2).

6.  Demonstration of Poisson statistics  
of photocounts

The use of SiPM detectors makes it possible to achieve near-
ideal Poisson statistics of photocounts. In the case of Poisson 
statistics, the intervals between consecutive samples are a ran-
dom quantity that obeys the geometric distribution

P(Tk) = (1 − P(∗))k−1P(∗),� (2)

here Tk is the number of cycles between successive registra-
tion times. For ideal Poisson statistics, the logarithm of the 
probability ln(P(Tk)) (k is the number of cycles) should be 
a linear dependence on k. Figure  2 shows the experimental 
histogram. As follows from figure 2, the dependence shows 

Poisson statistics. With a large distance between photocounts, 
the probability of events is small, so deviations from the line 
in figure 2 with a distance of more than 70 cycles between 
successive photocounts are associated with a low probability 

Figure 1.  (a) Let us consider the example of sequence numbering of photocounts. Here, the length of the sequence is 6. The binomial 
coefficients in the table are computed once in advance. The horizontal dashed arrows indicate movement along the table as the sequence 
appears in the bar from left to right. Counting number 1 appears on bar 2, then the binomial coefficient in the table is taken, which is the 
vertical solid arrow. Then move horizontally in the table until the next report appears. Counting number 2 appears in measure number 3, 
the horizontal shaded arrow to the third measure—the row in the table. Then the solid arrow up to the second horizontal row—the number 
of the series is the reference number of the reference. Then move horizontally until the next countdown appears in step number 6 (the 
dashed arrow), the reference number 3. Then follow the solid arrow to the horizontal at number 3. In this case, at each step the binomial 
coefficients in the corresponding positions of the table are summed. The sum is the sequence number of the sequence in the class. Recall 
that the class is determined by the number of photocounts. (b) Functional block diagram of a random number generator. The clock rate was 
150 MHz. The pulse duration at half-height is less than 2 ns.

Figure 2.  Curve 1 (ln(Σ(Tk))) is the logarithm of the numbers 
of cycles between the successive registration times Tk, k is the 
number of cycles. Labels on the abscissa axis correspond to the 
number of cycles at a frequency of f = 150 MHz. Curve 2 is 
the logarithm of the number of time intervals with subtraction of 
the slope. The observed probability of counting for one time slot 
is P(∗) = 0.255. Recall that the theoretical limit of the speed of 
generation of random numbers is f · h(P(∗)) = 122.85 MHz, 
h(x) = −x log(x)− (1 − x) log(1 − x)—binary entropy function. 
The histogram was built with accumulation, the total number of 
events in the histogram 

∑128
k=0 Σ(Tk) = 290 444 0341. The number 

of counts in the first histogram box 740 566 410, respectively, is 
ln(740 566 410) = 20.423. At the upper limit of the duration of 
intervals of 128 cycles, the probability of counts is practically zero. 
Fluctuations in the time interval between samples with the number 
of cycles >70 are associated with rare events due to the exponential 
dependence of the time interval distribution function. The length of 
the processed blocks to extract random blocks was selected in 64 
cycles.

Laser Phys. Lett. 14 (2017) 125207
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of such events. The latter means that the length of the pro-
cessed sequences n = 64 can guarantee the Poisson character 
of the statistics of photocounts.

7. The generation rate of a random sequence  
and checking its statistical properties

The achieved generation rate of the resulting random sequence 
0 and 1 was 75 Mbit s−1. Recently we have demonstrated that 
the technique discussed above allows one to build a quantum 
random number generator achieving 64 Mbit s−1 [13]. Here we 
siginficanly improve both the registration procedure and data 
statistical development. Moreover, we exploited an advanced 
SiPM developed by MEPhI-Pulsar (Moscow, Russia).

To check the statistical properties of random sequences, the 
standard set of NIST tests was selected [14]. The hypothesis 
H0 is checked, or in other words, we check whether the given 
sequence is truly random. If this is so, then the various statistics 
of the S  or groups 0 and 1 are also random variables; the prob-
ability distributions of various statistics with the length of the 
sequence n → ∞ should tend to some standard distributions for 
the random sequence. Then we specify a certain significance 
level for α and a certain threshold for each statistic. If the prob-
ability of deviating the statistics exceeds the threshold value, 
then the hypothesis of randomness is rejected, the sequence is 
discarded. This means that even a generator of ideal random 
sequences can give out a sequence that has such an evasion.

Next, the probability P-value is calculated. It is the proba-
bility that even an ideal random source can produce a sequence 
with such a deviation of statistics. If P > α, then the hypoth-
esis H0 is accepted, for P < α, the hypothesis is rejected, the 
sequence is not considered to be random.

Interpretation of P-value—values. Given the significance 
level of α, P-value, there is a possibility that even an ideal 
generator ‘has the right’ to generate with such probability a 
sequence that will appear to be not random for this test. The 

smaller the P-value, the less likely the ideal generator is ‘enti-
tled’ to generate such a sequence. If the calculated P-value is 
greater than α, then the test is considered passed. The standard 
value of significance level for α ∈ [0.001, 0.01] [14]. We used 
α = 0.01. The proportion of the sequences that passed the 
tests is itself a random variable. The allowable range of fluc-
tuations is determined by the variance of the P-value. P-values 
are random variables with a Bernoulli distribution with two 
outcomes. One—the test is passed, the second outcome—the 
test is not passed. The allowable spread of P-values should fit 
into ‘three sigma’. The variance for a P-value is P(1 − P)N  
(N  is the number of test sequences). According to [14], at a 
significance level of α = 0.01, all P-values should fall within 

the interval ‘three sigma’ 1 − P ± 3
√

P(1−P)
N = 0.99 ± 0.297

N . 

A test for the uniformity of the values of the P-value. With 
a large number of tested sequences, the total value of the 
P-value for all tests is a sum of identically distributed quanti-
ties that is distributed according to the Gaussian normal law 

[10]. In this case, statistics X2
N =

∑M
j=1

(νj−N·pj)
2

N·pj
, where νj is 

the fraction of P-value values falling into the jth interval [0, 1], 
pj is the true probability of falling into the jth interval. With 
a large number of test sequences, the probability distribution 
of X2

N  does not depend on the distribution pj and tends to the 
Pearson distribution χ2(N − 1) with (N − 1)th degree of free-
dom [15]. The recommended number of intervals is M = 10 
[14]. The threshold value for the null hypothesis (H0 is a ran-
dom sequence) of the admissible spread is obtained for a given 
significance level α from the relation Pr{X2

N > tα|H0} = α, 
where tα = χ2

1−α,N−1—(1 − α)th quantile of the distribution 
χ2 with (N − 1) th degree of freedom. In other words, if the 
evasion of statistics X2

N > χ2
1−α,N−1, then the null hypoth-

esis H0 is rejected, and the sequence is not accidental. The 
deviation of statistics from the allowable rate (for a given 
probability-level of significance) is exceeded. Uniformity 
test P-value is considered passed if P-value from P-value 

Figure 3.  (a) A histogram of the values νj (P-value) for all tests falling into 10 intervals j = 0, ...9. Interval [0.0.0.1] corresponds to the 
value j = 0 along the abscissa. The value j = 1 corresponds to the interval [0.1, 0.2] along the abscissa, etc. The histogram was constructed 
for 2000 random sequences 4 · 106 bit each. (b) The y-axis is the proportion of sequences that passed the tests for the values of P-value. On 
the abscissa axis, the numbers correspond to different tests for the NIST nomenclature [14]. The red horizontal lines show the upper and 
lower bounds (‘three sigma’) according to all tests except the 12—Random Excursions Test and 13—Random Excursions Variant Test. For 
these two tests, the number of test sequences N  is not defined in advance, but is determined in the testing process. The upper and lower 
bounds (‘three sigma’) for these two tests are shown by the blue horizontal lines. For the remaining tests, the number of test sequences is 
N = 2000 each with a length of 4 · 106 bits.
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P̂ =

∫ ∞
X2

K
dxe−x/2xK/2−1

2K/2Γ(K/2) , K = N − 1, not less than P̂ > 0.0001, 

the homogeneity test is considered passed, and a H0 hypoth-
esis is adopted.

Figure 3 shows the results of the uniformity test of P-value 
(figure 3(a))). The value of P-value from P-value is equal 
to P̂ > 0.997 852 53, which must be greater than the critical 
P̂c > 0.0001. The test for the uniformity of P-value with a 
margin passed. The proportion of the sequences that passed 
the test is shown in figure 3(b)) for all tests (the NIST test 
numbers [14] are shown horizontally). For all tests, the pro-
portion of sequences that passed tests for P-value lies within 
‘three sigma’, which means a successful passing of tests—
the hypothesis of randomness of the sequence is accepted.
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