ГЕОЭЛЕКТРИЧЕСКАЯ МОДЕЛЬ КАСКАДНОЙ СУБДУКЦИОННОЙ ЗОНЫ

© 2002 г. Л. Л. Ваньян, М. Н. Бердичевский, П. Ю. Пушкарёв, Т. В. Романюк

1 Московский государственный университет им. М.В. Ломоносова
2 Институт океанологии им. П.П. Ширшова РАН, г. Москва
3 Институт физики Земли им. Г.А. Гамбурцева РАН, г. Москва

Поступила в редакцию 15.02.2002 г.

Обсуждаются результаты геоэлектрического эксперимента ЭМСЛАБ, проведенного с целью изучения Каскадной субдукционной зоны. Двумерная интерпретация магнитовariационных и магнитотеллурических данных вела в режиме проверки гипотез. Рассматривались три гипотезы: 1) гипотеза о флюидонасыщенности нижней континентальной коры и отсутствии континентальной астеносферы, 2) гипотеза о флюидонасыщенности нижней континентальной коры и развитии континентальной астеносферы, 3) гипотеза о субвертикальной зоне плавления, проявляющей континентальную литосферу.

На первом этапе интерпретации были проведены опыты с программой R2BOCC, выполняющей сглаженную инверсию. Эти опыты показали, что в сложных условиях Каскадной субдукции одно- временная инверсия TE и TM-мод даёт пригодные, геофизически несодержательные чередование проводящих и непроводящих зон при плохой минимизации невязки. Наиболее интересный результат был получен при автоматической инверсии TE модели (типерь и фазы продольного импеданса).

На разрезе сопротивлений выделяются три субвертикальные зоны, охватывающие мантийные глубины: океаническая (проводящая), береговая (непроводящая) и Каскадная (проводящая). При всей своей схематичности этот результат свидетельствует о развитии океанической и континентальной астеносферы.

На втором этапе интерпретации были применены программы P2DC и IGFMT2D, использующие модели с фиксируемой геометрией блоков. Инверсия вела на достаточно подробной сетке, которая в процессе минимизации невязки допускает свободный выбор коровых и мантийных структур, отвечающих различным гипотезам о строении Каскадной субдукционной зоны. Алгоритм интерпретации состоял из последовательности частичных, целенаправленных инверсий, учитывавших различную чувствительность и различную робастность компонент TE и TM-мод. По мнению авторов, такой алгоритм в условиях Каскадной субдукции даёт наиболее надёжный и наиболее детальный результат.

Интерпретация включала четыре последовательных уровня: 1) инверсию типеров, 2) инверсию фаз продольного импеданса, 3) инверсию поперечных кажущихся сопротивлений и фаз поперечного импеданса, 4) обобщение и геологическое истолкование. Ведущую роль играли типеры, так как с повышением частоты они освобождаются от искажающего влияния приповерхностных неоднородностей.

Была построена новая геоэлектрическая модель Каскадной субдукционной зоны. Её главные отличительные особенности: 1) в интервале глубин до 40 км отчётливо выделяется проводящая верхняя часть погружающейся плиты, несущая флюиды океанического и, возможно, дегидратационного происхождения, 2) континентальный разрез содержит проводящий коровый слой и проводящую астеносферу, соединённые субвертикальной проводящей зоной "влажного" плавления, приуроченной к вулканической дуге Высоких Каскад.

Надёжность построенной модели подтверждается тестами. Модель хорошо согласуется с современными представлениями о Каскадной субдукционной зоне.

Ключевые слова: магнитотеллурическое зондирование, магнитовариационное зондирование, субдукция, геоэлектрическая модель.

1. ВВЕДЕНИЕ

В 1978 г. по инициативе Л.Л. Ваньян в рамках Международной Ассоциации Геомагнетизма и Аэромагнетизма (IAGA) был организован всероссийский геоэлектрический проект, направленный на изучение глубинной электропроводности, характеризующей процессы плавления в астеносфере. Он получил название ELAS (ELectrical conductivity of the ASphere). Работы по проекту ELAS велись во всём мире. Задачи проекта расширились. Глубинная геоэлектрика стала применяться для изучения электропроводности литосферы и астеносферы с целью исследования флюидного режима и реологии земных недр [Ваньян, 1997]. Проект ELAS вывел геоэлектрику на передовые рубежи современной геодинамики.
Одним из самых ярких событий в истории проекта ELAS был эксперимент ENSLAB (Electro-Magnetic Study of the Lithosphere and Asthenosphere Beneath the Juan de Fuca plate), проведенный в 1985—1988 гг. геофизиками США, Канады и Мексики на Тихоокеанском побережье Северной Америки в Каскадной субдукционной зоне (зоне погружения микроплиты Хуан де Фука под северо-западную окраину континента).

На рис. 1 показана сеть электромагнитных наблюдений, выполненных в ходе эксперимента ENSLAB [Wannamaker et al., 1989а]. Почти вся плита Хуан де Фука покрыта магнитовариационными наблюдениями с шагом 50—100 км. Магнитотеллурические зондирования сосредоточены на субширотном профиле, проходящем вблизи г.Линкольна. Этот профиль получил название линии Линкольна. Шаг магнитотеллурических и магнитовариационных наблюдений по линии Линкольна составляет около 5 км (39 MTЗ в интервале периодов от 0.01с до 500 с) и 10 км (15 глубинных MTЗ в интервале периодов от 50 с до 10000 с).

Участники эксперимента ЭМСЛАБ надеялись получить новую информацию о строении и состоянии земной коры и верхней мантии в зоне субдукции. Однако возможности вычислительной геоэлектрики того времени были ограничены.

Первые геоэлектрические модели Каскадной субдукционной зоны были построены либо с помощью сглаживающего метода Бакуса-Гилберта [Jiracek et al., 1989], либо вручную, методом проб и ошибок [Wannamaker et al., 1989b; Vanyan et al.,1988]. Они навязли показали, что магнитотеллурика может явиться эффективным средством для изучения субдукционной зоны. Сегодня мы вспоминаем об этих моделях с пониманием той важной роли, которую они сыграли в истории глубинных геоэлектрических исследований.

В десятилетие годы ознаменовались быстрым развитием вычислительной геоэлектрики. Появление программ для расчета электромагнитного пола в сложно построенных средах и инверсии магнитотеллурических и магнитовариационных данных открыло путь к детализации и частичной реконструкции результатов эксперимента ЭМСЛАБ [Жданов, Спицын, 1992; Бердючевский и др., 1992; Варенцов и др., 1996]. В настоящее время мы возвращаемся к эксперименту ЭМСЛАБ и применяем интерпретационную технологию, основанную на приоритете магнитовариационного зондирования. Реализация этой технологии стала возможной благодаря недавним достижениям вычислительной геоэлектрики [Siripunvaraporn and Egbert, 2000; Varentsov, 1999; Новожинский и Пушкарев, 2001]. На этом пути мы строим новую геоэлектрическую модель Каскадной субдукционной зоны, которая заполняет пробелы в современных представлениях о субдукции плиты Хуан де Фука.

2. КРАТКИЕ ТЕКТОНО-ГЕОЛОГИЧЕСКИЕ СВЕДЕНИЯ О КАСКАДНОЙ СУБДУКЦИОННОЙ ЗОНЕ

Исследуемый район представляет собой участок активной Тихоокеанского орогенетического пояса, для которого характерен интенсивный третичный и четвертичный вулканизм. В континентальном разрезе доминирующую роль играют вулк аналоговые породы и структуры — лавовые платы, вулканические конусы, хребты, созданные накоплением или деформацией армитальных образований. Происхождение основных геологических структур региона связано с процессом субдукции и сопровождающим его вулканизмом [Khan et al., 1988; Хан, Ломоу, 1995]. Все эти структуры являются меридионального простирания. Их протяженность с севера на юг достигает 300—500 км. Меридиональное (х) и широтное (у) направления могут рассматриваться как главные тектоначеские направления региона, которым отвечают продольные “||” и поперечные “L” компоненты тензора импеданса.

Срединный хребет Хуан де Фука в котором зарождается плита Хуан де Фука, расположен на небольшом расстоянии от берега (около 500 км), поэтому возраст субдуктируемой плиты невелик (менее 10 млн лет). Современная скорость субдукции также сравнительно мала и составляет примерно 4 см/год.

Двигаясь от хребта Хуан де Фука на восток (рис. 1), мы пересекаем: (1) абсциссную котловину плиты Хуан де Фука, (2) сложенный уплотненными осадками аккреционной призмы континентальный склон, (3) покрытый рыхлыми осадками шельф, (4) Береговой хребет, сложенный вулканическими и осадочными породами комплекса Силец, (5) заполненную мощной толщей осадков и базальтовых интрузий пологую долину реки Уильямстет, (6) Западные (более древние) и (7) Восточные (более молодые) Каскадные горы, состоящие из вулканических и вулканически-осадочных пород, характерных для современной активной вулканической дуги, и (8) покрытое лавами плато Дешута.

Океаническая кора в пределах глубоководной абсциссной котловины плиты Хуан де Фука имеет строение, типичное для Тихого и других океанов. В ней выделяются три слоя: 1) слой осадков, мощность которых 1 — 2 км, 2) слой базальтов (пилоло-лаб) и базальтовых потоков с дайками долеритов, его мощность составляет 1.5—2 км, 3) слой поликристаллических магматических пород типа габбро и ультраамфиболов, его мощность достигает 3—4 км.

В пределах Каскадных гор расположены высохшие пики и резко очерченные горные гребни. Высочайшие вершины представляют собой вулканические конусы, образовавшиеся на древнем фундаменте. Горные сооружения сложены оплощен-плюценовыми вулканическими породами,
Рис. 1. Сеть электромагнитных зондирований в эксперименте ЭМСЛАБ [Wannamaker et al., 1989a]: (а) — общая схема: 1 — границы штатов, 2 — вулканы, 3 — магнитотеллурические зондирования площадной съемки, 4 — магнитотеллурические зондирования на линии Линкольна, 5 — магнитотеллурические зондирования на линии Линкольна; (б) — схема континентальных магнитотеллурических зондирований: 1 — города, 2 — вулканы, 3 — магнитотеллурические зондирования, 4 — глубинные магнитотеллурические зондирования.

ФИЗИКА ЗЕМЛИ № 10 2002
которые, помимо лавовых потоков, включают значительный объём брекчий, туфов и отложений грязевых потоков. Структура Каскадных гор осложнена внедрением интрузивных массивов.

Расположенное восточнее плато также преимущественно сложено вулканогенными породами с преобладанием плиоценовых и плейстоценовых лав.

3. ГЕОФИЗИЧЕСКИЕ ИССЛЕДОВАНИЯ В КАСКАДНОЙ СУБДУКЦИОННОЙ ЗОНЕ

На рис. 2 приведена схема Каскадной субдукционной зоны, на которой отражены основные проявления современных тектонических процессов: коровая сейсмичность, вулканизм, формирование аккреционного комплекса. Очаги землетрясений сосредоточены в северной и южной частях зоны субдукции, в то время как в её центральном сегменте, на территории штата Орегон, субдукция асейсмична: зона Беньюфа уверенно прослеживается лишь на территории штатов Вашингтон и Калифорния [Kelly and Crosson, 1984]. По данным сейсмологии в этих районах океаническая плита субдуктирует полого, её наклон постепенно нарастает до 45°. В районе штата Орегон плита также начинает погружаться полого, однако по
данным сейсмической томографии на глубинах порядка 40–80 км она резко изгибаются и далее погружается под углом около 70° [Weaver and Michaelson, 1985].

Наиболее полная сейсмическая модель центральной части Каскадной субдукционной зоны представлена в работе [Trehu et al., 1994]. Она построена по данным МОВ и наблюдений естественной сейсмичности. На рис. 3 показан скоростной разрез по субширотному профилю, близкому к линии Линкольн. Здесь отчётливо виделась погружающаяся океаническая плита со скоростями, которые по мере погружения плавно возрастают от 6.5 км/с до 8 км/с. Для континентальной части разрез характерна более или менее пологая слоистость — с монотонным возрастанием скоростей от 5 км/с на глубинах 1–2 км до 7 км/с на глубинах порядка 20 км. Инерция продольных скоростей в пределах земной коры не обнаружена.

По данным МПВ приповерхностные скорости продольных волн составляют 2.9–5.2 км/с, верхняя и средняя кора на глубинах от 3 до 30 км характеризуется скоростями 6.4–6.5 км/с. Под Высокими Каскадами нижняя кора на глубине до 45 км имеет скорость около 7 км/с (Leaver et al., 1984), поверхность Мохов фиксируется на глубине 45 км. Здесь важно отметить, что в средней коре выделен, хотя и не очень надёжно, слой пониженных скоростей [Stanley et al., 1989].

На рис. 5 показана прогнозная геотермическая и петрологическая модель Каскадной субдукционной зоны (далее упоминаемая как CASCADEIA), обобщающая современные представления о структуре региона и его флюидном режиме [Романюк и др., 2001б]. Прогноз выполнен по тепловому потоку, оценкам глубины изотермы Кюри (~500°), петрологическому анализу магмы и ряду других данных. Континентальная кора над погружающейся плитой Хуан де Фук в прибрежной области характеризуется пониженными температурами. Под Высокими Каскадами оконтурена субвертикальная область повышенных температур, дости-
Рис. 4. Плотностная модель по субширотному профилю через центральную часть штата Орегон [Романюк и др., 2001а]: 1 – модель, 2 – наблюдения. Цифрами показаны плотности, г/см³.

гающих температур плавления увлажнённого пе- ридотита на границе M (−900°).

Выделение флюидов из верхней части субду- шируемой плиты, по-видимому, связано с несколь- кими механизмами. Сначала до глубин 30 км под

dействием возрастающего литостатического дав- ления выделяется свободная вода, содержащаяся в микропорах и микротрешинах. Затем на глуби-
нах 30–50 км, где температура превышает 400°,
начинается дегидратация минералов, таких как

ФИЗИКА ЗЕМЛИ № 10 2002
тальк, серпентин, хлорит. Наконец, на глубинах свыше 75 км может начинаться переход базальта в эклогит, а на глубинах свыше 90 км может происходить разложение амфиболитов. Все эти процессы сопровождаются выделением флюидов. Можно предполагать, что флюиды, выделяемые на небольших глубинах, мигрируют по зоне контакта между субдуктирующей океанической и континентальной плитами. На больших глубинах при низких температурах флюиды могут поглощаться гранулированными мантии (серпентинизацией), а при высоких — нарушать равновесное состояние вещества и вызывать "мокрое" плавление. Расплавы мигрируют вверх к земной поверхности, в результате чего образуется вулканическая дуга.

В заключение остановимся на результатах зонных частотных электромагнитных зондирований, проведенных на Тихоокеанской плате [Ванькин, 1997]. Верхняя часть океанической коры, представленная осадками и базальтовыми пиллуэ-лампами, характеризуется повышенной пористостью. Она имеет сопротивление 3—10 Ом·м. Ниже сопротивление резко возрастает, достигая по крайней мере 10000 Ом·м.

Такова та априорная геологическая и геофизическая информация, на основе которой мы провели интерпретацию геоэлектрических данных, полученных на линии Линкольна.

4. МАГНИТОТЕЛЛУРИЧЕСКИЕ И МАГНИТОВАРИАЦИОННЫЕ ЗОНДИРОВАНИЯ НА БЕРЕГУ Океана (АНАЛИЗ ДВУМЕРНЫХ МОДЕЛЕЙ)

Контраст сопротивлений на берегу океана, достигающий трёх и даже четырёх порядков, вызывает сильную магнитотеллурическую аномалию, которая получила название берегового эффекта. Эта аномалия имеет гальваническую и индукционную компоненты.

Гальваническая (кондуктивная) аномалия возникает при течении электрического тока перпендикулярно к берегу (TM-мода магнитотеллурического поля). Направленный к берегу океанический
кий ток развивается. Одна часть тока втекает в осадочный чехол. Осадки захватывают океанический ток и канализируют его на большое расстояние от берега с медленным просачиванием в кристаллический фундамент и глубинные проводящие зоны. Этот эффект можно назвать эффектом континентальной ловушки. Размер континентальной ловушки имеет порядок расстояния нормализации \(\sqrt{S_1 R_2} \), где \(S_1 = h_1/p_1 \) есть средняя интегральная проводимость осадочного чехла, а \(R_2 = h_2/p_2 \) есть среднее интегральное сопротивление высокоморской коры, отделяющей осадочный чехол от глубинной проводящей зоны. Другая часть океанического тока минует континентальную ловушку. Ток просачивается в дно океана и распределяется в глубинных проводящих зонах континента. Соотношение между током, попавшим в континентальную ловушку, и током, проникшим в глубинные проводники, определяет степень низкочастотного приповерхностного искажения по перечных МТ-кривых и их чувствительность к аномалиям коровой и мантийной электропроводности.

Индукционная аномалия проявляется при течении электрического тока вдоль берега (ТЕ-мода). Она связана с индуцированным взаимодействием океанических и континентальных продольных токов. Ёе можно назвать горизонтальным скин-эффектом (на высоких частотах продольный избыточный ток концентрируется в прибрежной зоне). Индукционные искажения продольных МТ-кривых наблюдаются вдоль берега и затухают на расстояниях, имеющих порядок глубины до хорошо проводящей мантии. Анизометрия продольных токов порождает вертикальную компоненту магнитного поля, которая в прибрежной зоне может превышать горизонтальную магнитную компоненту.

Сравнивая модели A и S, видим, что на континентальном профиле поперечные кривые кажутся сопротивления \(\rho_A^\perp \) и \(\rho_S^\perp \) полученными в этих разных моделях, близки друг к другу, а продольные кривые кажутся сопротивления \(\rho_A^\parallel \) и \(\rho_S^\parallel \) расходятся. В прибрежной полосе шириной 85 км кривые \(\rho_A^\perp \) и \(\rho_S^\perp \) практически совпадают (их расхождение во всем интервале периодов не превышает 3%), а расхождение кривых \(\rho_A^\parallel \) и \(\rho_S^\parallel \) достигает 300%.

Характерно поведение кривых кажущегося сопротивления. Вблизи берега высокочастотные ветви поперечных кривых \(\rho_A^\perp \) и \(\rho_S^\perp \) сходятся с нормальной кривой \(\rho_n^\perp \). Однако с понижением частоты кривые \(\rho_A^\perp \) и \(\rho_S^\perp \) отрываются от кривой \(\rho_n^\perp \) — восходящие ветви уваливаются, а нисходящие ветви смещаются вверх на 2,5 декады. Какие-либо признаки корового или коро-мантийного проводящего слоя здесь отсутствуют. При удалении от океана форма кривых \(\rho_A^\perp \) и \(\rho_S^\perp \) медленно меняется. Появляются слабые перегибы, затем образуются минимумы и, наконец, на расстоянии порядка 700 км (шесть расстояний нормализации) кривые \(\rho_A^\perp \) и \(\rho_S^\perp \) сходятся с нормальной кривой \(\rho_n^\perp \).

Поведение поперечных кривых кажущегося сопротивления легко объяснить эффектом континентальной ловушки. Иначе выглядят продольные кривые \(\rho_A^\parallel \) и \(\rho_S^\parallel \). Их поведение определяется индукционным эффектом. Даже в прибрежной зоне они имеют отчётливые перегибы и минимумы, отражающие коровый или коро-мантийный проводящий слой. При удалении от берега на расстояние порядка 100 км кривые \(\rho_A^\parallel \) и \(\rho_S^\parallel \) сходятся с нормальной кривой \(\rho_n^\parallel \).

Продолжая анализ ТЕ-моды, рассмотрим поведение тимпера \(|W_n| \). На рис. 7 показаны кривые \(|W_n| \). Береговой эффект вызывает общирную аномалию \(|W_n| \), которая на низких частотах распространяется на расстояние порядка 100 км в океане и 300 км на континенте. На периодах \(T = 100, 1000 \) с различении моделей A и S отчётливо проявляется в прибрежной зоне.

Кажется очевидным, что на побережье океана ТЕ-мода (продольные МТ-кривые, тимпер) имеет более высокую чувствительность к мантийным проводящим зонам, чем ТМ-мода (поперечные МТ-кривые).

Это утверждение, выведенное из анализа простейших моделей, нуждается в детализации, учитывающей структуру субдукционной зоны. На рис. 8 представлена блочная модель субдукционной зоны, состоящая из следующих элементов: 1) A — океан, 2) B — континентальный осадочный чехол, 3) C-литосфера, 4) D1, D2 — верхняя часть субдукционной океанической плиты, 5) E1, E2 — континентальный коровый проводящий слой, 6) F1 — океаническая астеносфера, 7) F2, F3, F4 — континентальная астеносфера, 8) G1 — океаническая
Рис. 6. Кривые кажущегося сопротивления в моделях стабильной (S) и активной (A) тектонических зон (Бердицевский и др., 1992): 1 – нормальные кривые \(\rho_n^s \) (для континента) и \(\rho_n^o \) (для океана), 2 – поперечные кривые \(\rho_i^s \), 3 – продольные кривые \(\rho_i^o \). Параметр кривых – расстояние до берега, км. На разрезах моделей S и A цифрами показаны сопротивления слоев (Ом \(\times \) м) и мощности слоев (км): (a) – модель S; (b) – модель A.

мания 9) G2, G3, G4 – континентальная мантия, 8) N-мания. Меняя сопротивления блоков \(D_1, D_2, E_1, E_2, E_3 \), \(F_1, F_2, F_3, F_4, G_2, G_3 \) и \(G_4 \), мы строим модельный ряд, позволяющий оценить чувствительность продольных и поперечных кажущихся сопротивлений к субдуктирующей плите, континентальным коровым проводникам и континentalной астеносфере. Базисной является модель с континentalным разрезом без коровых проводников и проводящей астеносферы. Она последовательно усложняется путём добавления в континentalный разрез 1) корового проводящего слоя (как бесконечно протяжённого, так и шириной 300 км), 2) погружающейся проводящей плиты, несочленённой и сочленённой с коровым проводящим слоем, 3) проводящей астеносферы (как бесконечно протяжённой, так и шириной 300 км), несочленённой и сочленённой с океанической астеносферой. Модельный ряд включает следующие модели:
модель I — коровый проводящий слой, погружающийся проводящая плита и проводящая астеносфера отсутствуют;

модель II — в модель I введён коровый проводящий слой бесконечной протяжённости;

модель III — в модель I введён коровый проводящий слой конечной протяжённости;

модель IV — в модель II введена погружающаяся проводящая плита;

модель V — в модель III введена погружающаяся проводящая плита;

модель VI — в модели IV погружающаяся проводящая плита сочлена с коровым проводящим слоем бесконечной протяжённости;

модель VII — в модели V погружающаяся проводящая плита сочлена с коровым проводящим слоем шириной 300 км;

модель VIII — в модель VI введена континентальная астеносфера бесконечной протяжённости;

модель IX — в модель VI введена континентальная астеносфера шириной 300 км;

модель X — в модели VIII континентальная астеносфера бесконечной протяжённости сочлена с океанической астеносферой;

модель XI — в модели IX континентальная астеносфера шириной 300 км сочлена с океанической астеносферой;

модель XII — в модель VII введена континентальная астеносфера бесконечной протяжённости;

модель XIII — в модели XII континентальная астеносфера бесконечной протяжённости сочлена с океанической астеносферой;

модель XIV — в модель VII введена континентальная астеносфера шириной 300 км;

модель XV — в модели XIV континентальная астеносфера шириной 300 км сочлена с океанической астеносферой.

Параметры этих моделей сведены в табл. 1.

Чувствительность $\eta(U)$ МТ-зондирования к элементу U рассматриваемой модели оценивается в трёх зонах континентального профиля Y: прибрежной зоне ΔY_1, $0 < Y < 40$ км, центральной зоне ΔY_2 (40 км $< Y < 130$ км) и дально зоне ΔY_3 (130 км $< Y < 300$ км). Оценки приведены в табл. 2 и табл. 3. Они выполнены по формуле

$$\eta(U) = \max_{T, Y} \frac{\rho_s(L) - \rho_s(M)}{\min[\rho_s(L), \rho_s(M)]} \times 100\%,$$

где M — модель, в которой элемент U отсутствует, а L — та же модель после введения в неё элемента U.

Из анализа полученных результатов вытекают следующие очевидные выводы:

1. Коровый проводящий слой лучше всего проявляется в ТЕ-моде. Чувствительности продольных и поперечных кажущихся сопротивлений ρ_s^l и ρ_s^t к коровому проводнику бесконечной и конечной протяжённости в прибрежной и центральной зонах различаются почти на порядок.

2. Если погружающаяся под континент проводящая океаническая плита не сочлена с коровым проводящим слоем, то она отчётливо видна.
Таблица 1. Параметры моделей, характеризующих чувствительность МТ-зондирования (приведены удельные сопротивления блоков в Ом×м)

<table>
<thead>
<tr>
<th>Модель</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D₁</th>
<th>D₂</th>
<th>E₁</th>
<th>E₂</th>
<th>F₁</th>
<th>F₂</th>
<th>F₃</th>
<th>F₄</th>
<th>G₁</th>
<th>G₂</th>
<th>G₃</th>
<th>G₄</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.3</td>
<td>10</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10³</td>
<td>10³</td>
<td>10³</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>3</td>
</tr>
<tr>
<td>II</td>
<td>0.3</td>
<td>10</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10³</td>
<td>10³</td>
<td>10³</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>3</td>
</tr>
<tr>
<td>III</td>
<td>0.3</td>
<td>10</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10³</td>
<td>10³</td>
<td>10³</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>3</td>
</tr>
<tr>
<td>IV</td>
<td>0.3</td>
<td>10</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10³</td>
<td>10³</td>
<td>10³</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>3</td>
</tr>
<tr>
<td>V</td>
<td>0.3</td>
<td>10</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10³</td>
<td>10³</td>
<td>10³</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>3</td>
</tr>
<tr>
<td>VI</td>
<td>0.3</td>
<td>10</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10³</td>
<td>10³</td>
<td>10³</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>3</td>
</tr>
<tr>
<td>VII</td>
<td>0.3</td>
<td>10</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10³</td>
<td>10³</td>
<td>10³</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>3</td>
</tr>
<tr>
<td>VIII</td>
<td>0.3</td>
<td>10</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10³</td>
<td>10³</td>
<td>10³</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>3</td>
</tr>
<tr>
<td>IX</td>
<td>0.3</td>
<td>10</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10³</td>
<td>10³</td>
<td>10³</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>3</td>
</tr>
<tr>
<td>X</td>
<td>0.3</td>
<td>10</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10³</td>
<td>10³</td>
<td>10³</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>3</td>
</tr>
<tr>
<td>XI</td>
<td>0.3</td>
<td>10</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10³</td>
<td>10³</td>
<td>10³</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>3</td>
</tr>
<tr>
<td>XII</td>
<td>0.3</td>
<td>10</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10³</td>
<td>10³</td>
<td>10³</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>3</td>
</tr>
<tr>
<td>XIII</td>
<td>0.3</td>
<td>10</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10³</td>
<td>10³</td>
<td>10³</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>3</td>
</tr>
<tr>
<td>XIV</td>
<td>0.3</td>
<td>10</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10³</td>
<td>10³</td>
<td>10³</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>3</td>
</tr>
<tr>
<td>XV</td>
<td>0.3</td>
<td>10</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10⁴</td>
<td>10³</td>
<td>10³</td>
<td>10³</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>10²</td>
<td>3</td>
</tr>
</tbody>
</table>

Таблица 2. Чувствительность МТ-зондирования к элементам континентальной коры

<table>
<thead>
<tr>
<th>Элемент модели</th>
<th>Сравниваемые модели</th>
<th>Зона</th>
<th>Чувствительность η</th>
<th>ТЕ-мода p₁</th>
<th>TM-мода p₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Проводящий коровый слой бесконечной протяженности</td>
<td>I, II</td>
<td>ΔY₁</td>
<td>221%</td>
<td>214%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔY₂</td>
<td>1285%</td>
<td>200%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔY₃</td>
<td>1729%</td>
<td>950%</td>
<td></td>
</tr>
<tr>
<td>Коровый проводящий слой шириной 300 км</td>
<td>I, III</td>
<td>ΔY₁</td>
<td>230%</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔY₂</td>
<td>1333%</td>
<td>77%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔY₃</td>
<td>1605%</td>
<td>109%</td>
<td></td>
</tr>
<tr>
<td>Погружающаяся океаническая плита</td>
<td>IV, II</td>
<td>ΔY₁</td>
<td>442%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Коровый проводящий слой бесконечной протяженности</td>
<td></td>
<td>ΔY₂</td>
<td>34%</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔY₃</td>
<td>2%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V, III</td>
<td>ΔY₁</td>
<td>441%</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>Коровый проводящий слой шириной 300 км</td>
<td></td>
<td>ΔY₂</td>
<td>34%</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔY₃</td>
<td>2%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Сочленение погружающейся плиты с коровым проводящим слоем</td>
<td>VI, IV</td>
<td>ΔY₁</td>
<td>433%</td>
<td>2978%</td>
<td></td>
</tr>
<tr>
<td>Коровый проводящий слой бесконечной протяженности</td>
<td></td>
<td>ΔY₂</td>
<td>104%</td>
<td>2646%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔY₃</td>
<td>4%</td>
<td>674%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VII, V</td>
<td>ΔY₁</td>
<td>433%</td>
<td>1506%</td>
<td></td>
</tr>
<tr>
<td>Коровый проводящий слой шириной 300 км</td>
<td></td>
<td>ΔY₂</td>
<td>103%</td>
<td>1184%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔY₃</td>
<td>4%</td>
<td>192%</td>
<td></td>
</tr>
</tbody>
</table>

Чувствительности продольных и поперечных кажущихся сопротивлений p₁ и p₂ к астеносфере бесконечного простирания различаются в 1,5–2 раза. При ширине астеносферы 300 км это различие достигает 5–10 раз.

3 ФИЗИКА ЗЕМЛИ № 10 2002
4. Кондуктивное сочленение континентальной астеносферы с океанической астеносферой слабо сказывается на обеих модах.

5. Различие между континентальными проводниками бесконечной и конечной протяжённости проявляется в TM-моде отчётливей, чем в TE-моде.

Эти выводы хорошо согласуются с результатами пробных инверсий синтетических данных, полученных в прибрежной и центральной зонах. Инверсии выполнены с помощью программ Inv2D-FG [Golubev and Varentsov, 1994] и IGFM-T2D [Новожилов и Пушкарёв, 2001], которые обеспечивают регуляризованное решение обратной магнитотеллурической задачи в классе кусочно-однородных (блочных) сред с закреплённой геометрией границ. Инверсия TE-моды (продольных кажущихся сопротивлений, фаз продольного импеданса, компонент тицера) успешно восстанавливает коровый проводящий слой и проводящую континентальную астеносферу. При переходе к TM-моде (к поперечным кажущимся сопротивлениям и фазам поперечного импеданса) решение этой задачи заметно ухудшается (смещаются границы проводящих слоёв, их сопротивления существенно отклоняются от истинных). Однако TM-мода надёжнее определяет сопротивление верхней континентальной коры и уверенней фиксирует сочленение погружающейся плиты с коровым проводящим слоем.

Важным результатом модельного эксперимента является демонстрация возможности определения геоэлектрической структуры земной коры и верхней мантии по зависимости компонент тицера от частоты. Эта возможность естественно вытекает из теоремы единства, доказанной В.И. Дмитриевым для двумерной магнитогидродинамической инверсии [Бердичевский и др., 2000].

5. ДВУМЕРНАЯ ИЛИ ТРЕХМЕРНАЯ ИНТЕРПРЕТАЦИЯ?

Для ответа на этот вопрос мы рассмотрим трёхмерные региональные приповерхностные не-
однородности, пересекаемые линией Линкольн, и вычислим, как они влияют на результаты магнитотеллурического и магнитовариационного зондирования.

На рис. 9 показан график интегральной проводимости S верхнего слоя вдоль линии Линкольн. Он построен по батиметрическим данным с учётом донных МГТ-зондирований (в океанической части профиля) и результатам наземных МГТ-зондирований (в континентальной части профиля). Интегральная проводимость S в глубоководном океане имеет порядок 10000 См. Береговой хребет, сложенный раннетретичными и вулканогенными породами, характеризуется значениями S около 100–150 См. Вулканогенно-осадочным комплексом западной части Западных Каскад и мощной толще третичных отложений, слагающих долину Уилламет, отвечают значения S, достигающие 250–300 См. В восточной части Западных Каскад, где эти отложения выклиниваются, значения S высокие и до 10 См. В области Высоких Каскад и западного плато значения S снова возрастают, отражая развитие вулканогенно-осадочных пород, слагающих под позднетретичными и четвертичными вулканами.

На рис. 10 изображена карта интегральной проводимости S верхнего слоя, охватывающая хребет и путь Хуан де Фука с прилегающими территориями штатов Орегон и Вашингтон. При построении этой карты использованы данные о мощности осадков [Comard et al., 1984b] и оценки их среднего сопротивления. В океанической части карты S отчетливо выделяются хребет Хуан де Фука (I) и абиссальную котловину платы Хуан де Фука (II). На континенте прослеживаются структуры субмеридионального простирания: Береговой хребет (III), долина Уилламет (IV) и её продолжение — низменность Пьюджет (V), восточная часть Западных Каскад (VI), Высокие Каскады (VII). Эта карта достаточно детальная, включая в меньшую детальную карту [Пальшин и др., 1999], охватывающую весь северо-запад Соединенных штатов (1280 км × 1280 км), которая наполнена на однородный фон $S = 10000$ См. Оценены показывают, что при моделировании магнитотеллурического поля в центральной части такой карты влиянием её краёв можно пренебречь.

Трёхмерное магнитотеллурическое поле вдоль линии Линкольн рассчитано в приближении неоднородного тонкого слоя $S(x, y)$, подстилаемого геологически слоистой средой. В качестве разрезов этой среды взят средний разрез континента в модели Каскадной субдукционной зоны из работы [Вернеш и др., 1996]. Расчеты выполнены с помощью программы SLPLOG [Зингер, Файнберг, 1985; Singer and Fainberg, 1995].

На рис. 11 показаны континентальные 3D-кривые магнитотеллурического и магнитовариационного зондирования, полученные в характерных точках линии Линкольн. Для сравнения на этом же рисунке приведены соответствующие локально-нормальные 1D-кривые и 2D-кривые, рассчитанные для двумерной модели, в которой значения $S(y)$, заданные на линии Линкольн, продолжены по направлению x на север и на юг. В прибрежной и центральной зонах (Береговой хребет, долина Уилламет, Западные Каскады, $y = 15–138$ км) кривые p_3^{1D}, p_3^{2D} и $Re W_{3y}^{1D}$ близки к кривым p_2^{1D}, p_2^{2D} и $Re W_{2y}^{1D}$ (расхождения колеблются на уровне 10% и во всяком случае не превышают 25%). Кривые p_3^{1D} и $Im W_{2y}^{1D}$ практически сливаются с кривыми p_3^{1D} и $Im W_{2y}^{1D}$. В дальней зоне (в области Высоких Каскад и плато Дешута, $y = 158$ км–178 км) расхождения между кривыми p_3^{1D} и p_3^{2D} достигают 100–200% (сильно статистическое смещение, вызванное трёхмерными осадочно-вулканогенными структурами), кривые $Re W_{3y}^{1D}$ и $Im W_{2y}^{1D}$ практически сливаются с кривыми $Re W_{2y}^{1D}$ и $Im W_{2y}^{1D}$, а кривые p_3^{1D} и p_3^{2D} расходятся лишь на высоких частотах. Примечательно, что почти на всей линии Линкольн кривые p_3^{1D} близки к локально-нормальным (одномерным) кривым p_3. Очевидно, что региональная структура приповерхностных образований в окрестности линии Линкольн благоприятствует двумерной интерпретации магнитотеллурических и магнитовариационных зондирований. Этот важный результат находится в полном согласии с оценками из работ [Жданов, Сничак, 1992; Сничак, 1999].
6. ГЕОЭЛЕКТРИЧЕСКИЕ МОДЕЛИ ЭМСЛАБ-І І ЄМСЛАБ-ІІ

В геофизической литературе чаще всего обсуждаются две двумерные модели Каскадной субдукционной зоны: модель ЭМСЛАБ-І, предложенная в работе [Wannamaker et al., 1989b], и модель ЭМСЛАБ-ІІ, предложенная в работе [Варенцов и др., 1996].

Модель ЭМСЛАБ-І показана на рис. 12. Она построена методом проб и ошибок сильным приоритетом ТМ-моды, которая, как утверждают авторы, наиболее устойчива к отклонениям от двумерности. Эта модель минимизирует невязку кривых ρ і, φ і и игнорирует кривые ρ і, φ . Главными элементами модели ЭМСЛАБ-І являются: 1) верхняя проводящая часть плиты, полого погружающаяся под Береговой хребет, 2) субгоризонтальный проводящий слой в средней континентальной коре с расширением в области Высоких Каскад и 3) хорошо развитая проводящая атмосфера под океаном. Вопрос о сочленении погружающейся плиты с коровым проводником в модели ЭМСЛАБ-І оставлен открытым. Континентальная астеносфера в этой модели не присутствует, хотя форма экспериментальных кривых ρ і і φ і свидетельствует о низком сопротивлении верхней мантии. Отсутствие грубых разногласий между модельными значениями ReW, ImW і экспериментальными данными авторы рассматривают как показатель достоверности модели.

Модель ЭМСЛАБ-І уязвима для критики. Холодная континентальная мантия противоречит современным представлениям о геодинамике Каскадной субдукционной зоны (сравните модель ЭМСЛАБ-І с прогнозной моделью CASCADIA, изображённой на рис. 5). Последующий анализ модели ЭМСЛАБ-І показал, что ТМ-мода имеет низкую чувствительность к изменениям мантийной электропроводности и что только бимодальная инверсия, использующая обе моды, ТЕ+ТМ, может дать ключ к изучению астеносферы [Бердичевский и др., 1992]. В этой работе был описан бимodalный алгоритм Дмитриева, основанный...
Рис. 11. 3D-кривые ρ_{xy}, φ_{xy}, ϕ_{xy}, Re W_{xy}, Im W_{xy} в точках, отмеченных крестиками на рис. 10 (континентальная часть линии Линкольна). Здесь же приведены соответствующие 2D-кривые, рассчитанные для двухмерной модели, и локально-нормальными 1D-кривые, рассчитанные для одномерных моделей.

Приводимые на последовательной инверсии TE- и TM-моды. Этот алгоритм обеспечивает лучшие условия для целенаправленной интерпретации МТ-данных, учитывающей различную интегральность TE- и TM-моды.

Опыты по бимodalной интерпретации МТ-данных, полученных в Каскадной субдукционной зоне, привели к построению двухмерной модели ЭМСЛАБ-II (рис. 13). Она построена с помощью программы автоматизированной инверсии INV2D-FG, обеспечивающей оптимизацию сопоставления 20 блоков с фиксированной геометрией. Был применен алгоритм Дмитриева, состоящий из трёх последовательных уровней: 1) инверсии Φ и Re W_{xy} (максимальный вес), 2) инверсии Φ и φ (нормальный вес) и 3) инверсии ρ (минимальный вес). Модель ЭМСЛАБ-II имеет много обобщения с моделью ЭМСЛАБ-I. Здесь же океанская астеносфера, та же линиальная (плита, тот же коровый проводящий слой. Однако плита сочлена с коровым проводником, а в континентальной мантии выделена проводящая астеносфера (!), отделяющаяся от океанской астеносферы. Таким образом, было получено новое свидетельство процессов частичного плавления в континентальной мантии. Главным недостатком модели ЭМСЛАБ-II является её схематичность, обусловленная ограниченными возможностями программы INV2D-FG.

Сегодня на смену программе INV2D-FG пришли более мощные программы для двухмерной автоматизированной инверсии магнитотеллурических и магнитовариационных данных. Это — специально разработанные программы REBOCC, реализующие "бритьевского" [Srirupvaraporn and Egbert, 2000], и программы IGF-MT2D [Новожинский, Пушкин, 2001] и INDC [Varentsov, 1999], которые позволяют оптимизировать модели, содержащие "бритьевское" был сформулирован французским математиком Вильгельмом Оккамом в XIV столетии. В современной формулировке он звучит примерно так: "Не множьте сложных объяснений там, где достаточно простого объяснения".
жацию 512 и более блоков фиксированной геометрии. Таким образом, открылись новые возможности для интерпретации данных эксперимента ЭМСЛАБ. Используя эти возможности, мы строим модель ЭМСЛАБ-III.

6. АНАЛИЗ НАБЛЮДЕНИЙ, ВЫПОЛНЕННЫХ НА ЛИНИИ ЛИНКОЛЬН

В результате наблюдений, выполненных вдоль континентальной части линии Линкольн, определены частотные характеристики магнитотеллурического тензора $[\mathbf{Z}]$ и магнитовариационного тензора $[\mathbf{W}]$:

$$
[Z] = \begin{bmatrix}
Z_{xx} & Z_{xy} \\
Z_{yx} & Z_{yy}
\end{bmatrix}, \quad [W] = \begin{bmatrix}
W_{xx} & W_{xy} \\
W_{yx} & W_{yy}
\end{bmatrix}.
$$

Магнитотеллурический тензор (импеданс) и магнитовариационный тензор (типпер) преобразуют горизонтальное магнитное поле \mathbf{H} в горизонтальное электрическое поле \mathbf{E} и вертикальное магнитное поле \mathbf{H}:

$$
\mathbf{E} = [\mathbf{Z}] \mathbf{H}, \quad \mathbf{H} = [\mathbf{W}] \mathbf{H}.
$$

Аналisis $[\mathbf{Z}]$ и $[\mathbf{W}]$ позволяет оценить степень горизонтальной неоднородности среды, распознать искажения поля, вызванные неоднородностью среды, идентифицировать геоэлектрические структуры, определить их размерность и простирание. Таким образом, мы получаем основу, обеспечивающую построение интерпретационной модели (определение класса сред, в котором ищется решение обратной задачи).

На рис. 14а показаны кривые поперечных кажущихся сопротивлений в интервале периодов 0.01-10000 с. Кривые ρ^t состоят из двух восходящих ветвей, разделённых перегибом или минимумом. Правые восходящие ветви этих кривых имеют одинаковый наклон и занимают почти две декады. Для лучшего понимания наблюдаемых явлений мы нормализуем кривые ρ^t, сдвигая их по вертикали так, чтобы их левые восходящие ветви наилучшим образом совместились с линией средней...

Рис. 14. Кривые поперечного кажущегося сопротивления ρ^\perp в континентальной части линии Линкольн: (а) — наблюденные кривые ρ^\perp, (б) — нормализованные кривые ρ^\perp. Параметр кривых — расстояние до берега.

Рис. 15. Кривые продольного кажущегося сопротивления ρ^\parallel в континентальной части линии Линкольн. Параметр кривых — расстояние до берега.

эффект континентальной ловушки и что именно этот эффект, а не влияние глубинных литосфер- ных и астеносферных структур, формирует попер- речные кривые ρ^\perp, полученные на различном расстоянии от берега.

Кривые продольных кажущихся сопротивле- ний, полученные в этом же интервале периодов, показаны на рис. 15. При удалении от берега форма кривых ρ^\parallel меняется. Здесь встречаются кри- вые ρ^\parallel с колокообразными и чапеобразными ветвями. Характерной особенностью кривых ρ^\parallel яв- ляются низкочастотные полого-нисходящие ветви, расположенные на различных уровнях. В точках 2, 3, 4, 12 эти нисходящие ветви замыкаются бо- лее или менее крутым подъёмом. Можно думать, что продольные кривые ρ^\parallel отражают изменения геоэлектрического разреза литосферы и астено- сферы, однако искажены статическим смещени- ем и эффектами трёхмерного канализирования.

Отметим, что во всех точках линии Линкольн кривые ρ^\perp связаны дисперсионными соотношени-

ями с кривыми ϕ^\perp [Бердицевский и др., 1997]. Однако кривые ρ^\parallel, ϕ^\parallel в отличие от кривых ρ^\perp, ϕ^\perp эпизодически нарушают дисперсионные со- отношения (точки 3, 4, 10, 13). Примеры наруше- ния дисперсионных соотношений даны на рис. 16.

ФИЗИКА ЗЕМЛИ № 10 2002
ГЕОЭЛЕКТРИЧЕСКАЯ МОДЕЛЬ КАСКАДНОЙ СУБДУКЦИОННОЙ ЗОНЫ

Рис. 16. Дисперсионные соотношения между кривыми кажущегося сопротивления ρ_h и фазовыми кривыми ϕ: 1 — наблюдение, 2 — дисперсионное преобразование.

асимметрии η [Bahr, 1988]. Значения N, skew и η находятся по формулам:

$N = \left| \frac{1}{N-1} \sum^n \left(\frac{Z_{xy} - Z_{y|x}}{Z_{y|x} - Z_{x|y}} \right)^2 \right|$

$\text{skew} = \frac{Z_{xx} + Z_{yy}}{Z_{xy} - Z_{yx}}$

$\eta = \frac{\sqrt{0.5 \text{Im}(Z_{xy}^* Z_{y|x} + Z_{x|y}^* Z_{xy})}}{|Z_{xy} - Z_{yx}|}$,

где звёздочка * означает комплексную сопряжённость. В однородной (горизонтально-однородной) модели $N = \text{skew} = \eta = 0$. Отклонение N от 0 есть мера горизонтальной неоднородности среды. В двумерной модели $N \neq 0$ и skew = $\eta = 0$. В трёхмерной модели $N \neq 0$ и skew $\neq 0$, $\eta \neq 0$. Если модель имеет двумерную структуру, осложнённую мелкими приповерхностными трёхмерными включениями, то на низких частотах $\eta = 0$ при $N \neq 0$ и skew $\neq 0$. Таким образом, совместный анализ параметров N, skew и η позволяет распознать структуры и определить их разомерность.

На рис. 17 представлены частотные разрезы N, skew и η. На высоких частотах ($T \ll 1$ c) параметр неоднородности N почти повсеместно не превышает 0,1–0,2, что свидетельствует о возможности однородных оценок сопротивления приповерхностных образований. При $T = 1$ с значениями N меняются от 0,1–0,2 в долине Уилламет и на Высоких Каскадах до 0,4 на Береговом хребте и Западных Каскадах. С понижением частоты ($T > 100$ c) значения N возрастают до 0,4 в долине Уилламет и 0,5–0,8 на Береговом хребте и Каскадах. Высоким значениям параметра N, как правило, отвечают повышенные значения skew = 0,3–0,7 и небольшие значения $\eta < 0,1–0,15$. Таким образом, следуя Бару [Bahr, 1988], мы можем рассматривать исследуемую среду как регионально двумерную структуру с локальными трёхмерными неоднородностями в её верхних горизонтах. Глубинные трёхмерные эффекты возможны лишь в области Высоких Каскад, где низкочастотные значения η превышают 0,3. Анизотропия регионального простирания глубинных двумерных неоднородностей, определённый с помощью разложения Бара, колеблется в пределах 7,5–10°. Во многих точках линии Лишкольы это согласуется с ориентацией низкочастотных полярных диаграмм магнитного тензора и индукционных стрелок. На рис. 18 в качестве примера показаны магнитные полярные диаграммы для $T = 2500$ c и вещественные индукционные стрелки для $T = 6400$ c. В пределах Берегового хребта магнитные диаграммы имеют вид восьмёрок с субшипиральной ориентацией их большой оси. Такие же диаграммы характерны для долины Уилламет и Западных Каскад. На Высоких Каскадах магнитные диаграммы вырождаются в овалы, однако сохраняют субшипиральную ориентацию. При этом вещественные индукционные стрелки повсеместно направлены к западу из восток.

Очевидно, что в эксперименте ЭМСЛАБ мы можем искать решение обратной геоэлектрическ...
Рис. 17. Частотные разрезы параметров N, skew и η. БХ – Береговой хребет, ДУ – долина Уилламет, ЗК – Западные Каскады, ВК – Высокие Каскады, ПД – плато Дешутс: (a) – разрез параметра не однородности N; (b) – разрез параметра асимметрии skew; (в) – разрез фазочувствительного параметра асимметрии η.

ФИЗИКА ЗЕМЛИ № 10 2002
7. НОВАЯ ГЕОЭЛЕКТРИЧЕСКАЯ МОДЕЛЬ КАСКАДНОЙ СУБДУКЦИОННОЙ ЗОНЫ – МОДЕЛЬ ЭМСЛАБ-III

Двумерная инверсия магнитотеллурических и магнитовариационных данных представляет собой многокомпонентную обратную задачу, использующую 1) вещественные и мнимые тищерпы, Re W_{xy} и Im W_{xy}, 2) продольные и поперечные кажущиеся сопротивления, ρ‖ и ρ⊥, 3) фазы продольных и поперечных импедансов, φ‖ и φ⊥. Эти компоненты имеют различную информативность, различную устойчивость к искажающему влиянию приповерхностных неоднородностей и различную чувствительность к изучаемым структурам.

Мы выделяем Re W_{xy} и Im W_{xy} как компоненты, которые, во-первых, чувствительны к проводящим структурам и, во-вторых, с понижением частоты освобождаются от приповерхностных влияний. К этому надо добавить, что В.И.Зимриев недавно доказал теорему единственности для двумерной инверсии компонент тищерпы [Зимриев и др., 2000]. Очевидно, что интерпретация частотных характеристик Re W_{xy} и Im W_{xy} может дать надёжную информацию о проводящих зонах в коре и мантии Земли.

Продольные кажущиеся сопротивления ρ‖ и фазы φ‖ также чувствительны к проводящим структурам. Однако если кривые ρ‖ подвержены искажающему влиянию трёхмерных приповерхностных неоднородностей, то при их интерпретации возникает проблема статистических смещений. Коррекция статистических смещений кривых ρ‖ соединяется с риском серьёзных ошибок. Это ставит продольное кажущееся сопротивление ρ‖ в положение компоненты, менее надёжной, чем компоненты тищерпы. Продольная фаза φ‖ находится в лучшем положении, так как с понижением частоты она подобно тищерпе освобождается от приповерхностных влияний. Однако уже из анализа одномерных кривых МТЗ следует, что инверсия фаз даёт распределение электропроводности с точностью до неизвестных масштабных множителей. Очевидно, что фазы φ‖ менее информативны, чем кажущиеся сопротивления ρ‖ и что интерпретация кривых ρ‖ имеет смысл лишь в сочетании с интерпретацией кривых ρ‖ или Re W_{xy}, Im W_{xy}.

Поперечные кажущиеся сопротивления ρ⊥ и фазы φ⊥ характеризуются пониженной (если не нулевой) чувствительностью к проводящим структурам, перекрытым плохо проводящей средой (эффект гальванического экранирования). Однако они позволяют оценить сопротивление плохо проводящих слоев литосферы и, если повезёт, могут обнаружить связи, существующие между проводящими структурами (например, выявить разломы, достигающие осадочного чехла, или ответить на вопрос, соединена ли субдукционная проводящая плита с коровым проводящим слоем). При интерпретации кривых ρ⊥ очевидно, возникает проблема статистических смещений, однако здесь возможна автоматическая коррекция, выполняемая в процессе инверсии.

ФИЗИКА ЗЕМЛИ № 10 2002
Существует два подхода к решению многокомпонентной обратной задачи.

I. Параллельная (совместная) инверсия всех компонент, которые вводятся в Тихоновский функционал с различными весами в зависимости от их информативности, устойчивости, чувствительности.

II. Последовательные (частичные) инверсии каждой компоненты с передачей взвешенных результатов инверсии от одной компоненты к другой.

В пользу второго подхода говорят следующие соображения. Частичные инверсии наиболее удобны для интерактивной, диалоговой интерпретации геоэлектрических данных. Каждая частичная инверсия решает определённую частную задачу и с помощью пространственных и частотных весов может быть сфокусирована на определённой структуре. Результаты каждой частичной инверсии могут быть переданы последующей инверсии с весами, которые определяются путём информационного анализа и выражают степень доверия к определённым структурам. Частичные инверсии допускают коррекцию получаемых результатов непосредственно в процессе интерпретации. При частичных инверсиях уменьшается вероятность сглаживания невязки в локальный минимум. Весь опыт отечественной глубинной геоэлектрики показывает, что именно этот подход, основанный на последовательности частичных инверсий и легко реализуемый с помощью многоуровневого алгоритма Дмитриева, обеспечивает наиболее содержательную интерпретацию электромагнитных зондирований.

Мы применили метод частичных инверсий для интерпретации данных, полученных на линии Линкольна.

Интерпретация состояла из трёх этапов.

На первом этапе выполнена одномерная инверсия короткопериодных МТ-кривых (Т = 0.01–100 с) и построен приближённый геоэлектрический разрез вулканогенно-осадочного чехла до глубины 3.5 км (рис. 19). Он согласуется с приповерхностной частью модели ЭМСЛАБ-1 (Wannamaker et al., 1989b). Этот разрез включен в стартовую модель двумерной интерпретации.

На втором этапе использована оккамовская программа REBOCC и проведены опыты по сглаженной двумерной инверсии. В сложных условиях Каскадной субдукционной зоны совместная инверсия ТЕ- и ТМ-мод даёт причудливое чередование низкоомных и высокоомных пластов при плохой минимизации невязки. В этих пяти тяжело распознать реальные структуры зоны субдукции. Наиболее интересный результат получен при частичной инверсии ТЕ-моды (рис. 20). Здесь выде-
являются западная и восточная проводящие зоны, разделённые Т-образным промежутком повышенного сопротивления, который можно связать с погружающейся плитой. В западной проводящей зоне узнаётся океаническая астеносфера, кровлю которой можно отнести к глубине порядка 20 км. Восточная проводящая зона приурочена к окраинной области влажного планирования из прогнозной модели CASCADIA, изображённой на рис. 5. Показательно, что верхняя граница восточной проводящей зоны повторяет рельеф корового проводящего слоя из моделей ЭМСЛАБ-1 и ЭМСЛАБ-2, изображённых на рис. 12 и 13.

На третьем, завершающем этапе применён метод частичных инверсий и построена новая двумерная геоэлектрическая модель Каскадной субдукционной зоны, названная моделью ЭМСЛАБ-III. Для интерпретации длиннопериодных МВ- и МТ-кривых (Т = 1–10000 с) использованы программы IGF-MT2D [Новожицкий, Пушкирев, 2001] и П2ДС [Varenskov, 1999], позволяющие минимизировать модельную невязку в классе с фиксированной геометрией блоков.

Интерпретация проведена в режиме проверки гипотез. Рассматривались три гипотезы о строении Каскадной субдукционной зоны: 1) гипотеза модели ЭМСЛАБ-1 (рис. 12), 2) гипотеза модели ЭМСЛАБ-II (рис. 13), 3) гипотеза прогнозной модели CASCADIA (рис. 5).

Стартовая интерпретационная модель (модель START) изображена на рис. 2. Рельеф дна океана и мощность донных осадков, а также осадков в аккреционной призме и на шельфе, заданы по батиметрической карте и карте мощности осадков [Conner et al., 1984a,b]. Удельное сопротивление воды, осадков и океанической коры принято равным 0,3 Ом × м, 2 Ом × м и 10000 Ом × м соответственно. Глубина до океанической мантии и её удельные сопротивления согласованы с моделями CASCADIA, ЭМСЛАБ-1 и ЭМСЛАБ-2. Пограничный субдукционный фронт континента определён по результатам одномерной инверсии короткопериодных МТ-кривых. Кора и мантия континента разбита на однородные блоки с удельным сопротивлением 1000 Ом × м. Плотность разбиения и геометрии блоков допускает свободный выбор коровых и мантийных структур, отвечающих трём рассматриваемым гипотезам. Гипотеза, которая в наибольшей степени удовлетворяет наблюдённым данным, выбирается автоматически в про-
цессе оптимизации сопротивлений и минимизации невязок. Интервалы неопределенности для оптимизируемых сопротивлений назначаются в зависимости от надежности стартового задания. Минимальные интервалы приданы блокам, составляющим вулканогенно-осадочный чехол континента и дно океана (донные осадки и океаническую кору), а максимальные интервалы - блокам, составляющим нижнюю кору и мантию континента.

В традиционной схеме глубинного электромагнитного зондирования метод МТЗ играет ведущую роль, а магнитовариационные данные используются для контроля и детализации результатов МТЗ. Эта схема широкова и в многом успешно применяется во всем мире. Ее слабым местом является то, что магнитотеллурический импеданс во всем интервале низких частот подвержен сильному искажающему влиянию приповерхностных неоднородностей. В настоящей работе мы применяем схему глубинного электромагнитного зондирования, в которой ведущим методом является магнитовариационное зондирование, МВЗ, а метод МТЗ служит для контроля и детализации результатов МВЗ. Главное преимущество такой схемы заключается в том, что магнитовариационный типпир с понижением частоты освобождается от искажающего влияния приповерхностных неоднородностей. Очевидно, что на этом пути мы существенно повышаем надежность геоэлектрической информации.

Магнитовариационные и магнитотеллурические данные, полученные в 15 точках линии Ли洛克ов (T = 1–10000 с), интерпретировались после-
ГЕОЭЛЕКТРИЧЕСКАЯ МОДЕЛЬ КАСКАДНОЙ СУБДУКЦИОННОЙ ЗОНЫ

Рис. 23. Модель ТР, построенная по результатам инверсии типперов. Обозначения – те же, что на рис. 21.

Важно отметить на четырех уровнях. Алгоритм интерпретации представлен на рис. 22.

Рассмотрим инверсию, выполненные на каждом уровне.

Уровень I – инверсия ReW_{xy} и ImW_{xy}. В качестве стартовой взята модель START. В результате инверсии получена модель ТР, показанная на рис. 23. Модельные невязки сведены в табл. 4. Здесь ReW_{xy} и ImW_{xy} – невязки вещественных и мнимых типперов (среднеквадратические уклонения модельных значений от наблюдённых), а ΔReW_{xy} = \max Re$W_{xy} - \min$ ReW_{xy} и ΔImW_{xy} = \max Im$W_{xy} - \min$ ImW_{xy} характеризуют максимальную вариацию наблюдённых значений вещественных и мнимых типперов. Видно, что модель ТР хорошо согласуется с результатами наблюдений: в большинстве точек невязки ΔReW_{xy} и ΔImW_{xy} по крайней мере в 5–10 меньше максимальных вариаций типперов. Примечательной особенностью этой модели является проводящая континентальная астеносфера, от которой отвечаются вертикальная зона низких сопротивлений, пронизывающая континентальную кору в области Высоких Каскад. Эта особенность модели ТР отличает её от моделей ЭМСЛАБ-I и ЭМСЛАБ-II и сближает с прогнозной моделью CASCADIA, которая в области Высоких Каскад оконтуривает вертикальную высокооборотную зону влажного и сухого плывения, очевидно, характеризующую низкими сопротивлениями. Тестируя модель ТР, мы исключаем континентальную астеносферу и коровую вертикальную зону низких сопротивлений и убеждаемся в том, что это приводит к возрастанию модельных невязок в 1,5–2,5 раза. Таким образом, мы приходим к выводу, что инверсия типперов разрешает спор между тремя гипотезами в пользу гипотезы модели CASCADIA.

Таблица 4. Невязки ReW_{xy} и ImW_{xy}

<table>
<thead>
<tr>
<th>Точка</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>δReW_{xy}</td>
<td>0.07</td>
<td>0.04</td>
<td>0.03</td>
<td>0.06</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.05</td>
<td>0.02</td>
<td>0.04</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>δImW_{xy}</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>0.04</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>ΔReW_{xy}</td>
<td>0.39</td>
<td>0.37</td>
<td>0.3</td>
<td>0.47</td>
<td>0.59</td>
<td>0.51</td>
<td>0.24</td>
<td>0.25</td>
<td>0.27</td>
<td>0.23</td>
<td>0.41</td>
<td>0.48</td>
<td>0.42</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>ΔImW_{xy}</td>
<td>0.37</td>
<td>0.26</td>
<td>0.27</td>
<td>0.23</td>
<td>0.31</td>
<td>0.29</td>
<td>0.1</td>
<td>0.11</td>
<td>0.16</td>
<td>0.17</td>
<td>0.26</td>
<td>0.18</td>
<td>0.26</td>
<td>0.17</td>
<td>0.12</td>
</tr>
</tbody>
</table>

ФИЗИКА ЗЕМЛИ № 10 2002
Уровень II – инверсия \(\rho^0 \). На этом уровне мы контролируем результаты инверсии типперов, не выходя за пределы \(TE \)-моды. Инверсия кривых \(\rho^0 \), искаженных приповерхностными трёхмерными неоднородностями, требует предварительной нормализации кажущихся сопротивлений, которая почти всегда сопряжена с опасностью ошибок (особенно, в горах). Поэтому при интерпретации данных эксперимента ЭМСЛАБ мы ограничиваемся инверсией кривых \(\rho^0 \), низкочастотные ветви которых в большинстве точек искажены слабо. Если кривые \(\rho^0 \) и \(\phi^0 \) связаны дисперсионными соотношениями, то при этом мы едва ли теряем существенную информацию. Нормализация кривых \(\phi^0 \) сводится к исключению участков, на которых грубо нарушаются дисперсионные соотношения, и удалению коротких низкочастотных ветвей, которые, по-видимому, связаны с локальными эффектами трёхмерного канализирования. В качестве стартовой модели мы используем модель \(TR \), полученную при инверсии типперов. Инверсия продольных фаз даёт модель \(TE \), которая показана на рис. 24. Невязки фазовой инверсии приведены в табл. 5.

Здесь \(\delta_0^0 \) – невязка фаз (среднеквадратическое уклонение модельных значений от наблюдае-
ГЕОЭЛЕКТРИЧЕСКАЯ МОДЕЛЬ КАСКАДНОЙ СУБДУКЦИОННОЙ ЗОНЫ

Рис. 25. Модель ТМ, построенная по результатам инверсии поперечных кажущихся сопротивлений и фаз поперечного вохетанса. Обозначения — те же, что на рис. 21.

На рисунках значения сопротивления отмечены цветом и значком, а Δ = max φ - min φ характеризуют максимальную вариацию наблюдаемых значений фазы. В большинстве точек невязка фазы в 5-10 раз меньше её максимальной вариации, что говорит о хорошем согласии модели с наблюдениями. Сравнение моделей ТЕ и моделей ТР свидетельствует о том, что в коре континента, в интервале глубин 25-45 км, отчётливой оконтур
Рис. 27. Сопоставление наблюдаемых MT- и МВ-кривых с кривыми, рассчитанными для модели ЭМСЛАБ-III: 1 — наблюдение, 2 — модель ЭМСЛАБ-III.

риается проводящий слой (ρ = 14–46 Ом·м), а в интервале глубин 45–110 км контрастной выде-ляется субвертикальная проводящая зона (ρ = 12–46 Ом·м), ограниченная слоями с сопротивле-нием 147–1260 Ом·м на западе и 215–612 Ом·м на востоке. Можно сказать, что модель ТЕ фор-мируется в результате редакции модели ТР.

Отметим, что если в качестве стартовой моде-ли берётся исходная модель START, то инверсия ϕ даёт модель, которая (независимо от модели ТР!) содержит континентальную астеносферу и ответвляющуюся от неё субвертикальную зону низких сопротивлений. Таким образом, ещё раз подтверждается достоверность этих структур.

Уровень III — инверсия ρ и ϕ. На этом уровне мы переходим к TM-модели, которая имеет пониженную чувствительность к проводящим зонам в коре и мантии, однако лучше проявляет характер сочленения погружающейся проводящей плиты с коровым проводящим слоем и обеспечивает луч-шую оценку сопротивления верхней консолидированной коры. При инверсии TM-модели в качест-ве стартовой модели взята модель ТЕ, полученная при инверсии фаз ϕ.

Невязки инверсии TM-модели приведены в табл. 6. Здесь δρ и δϕ — невязки кажущихся сопротивле-ний и фаз (среднее-квадратические уклонения модельных значений от наблюдаемых), а Δϕ = |max ϕ − min ϕ| — максимальная вариация наблю-даемых значений фазы. Невязки кажущегося сопротивления в большинстве точек колеблются в пределах 6–12%, а невязки фазы в 7–10 раз меньше максимальной вариации фазы. В результате инверсии получена модель TM, которая показана на рис. 25. Она наследует основные черты стартовой модели ТЕ (праздна, с некоторыми от-клонениями). О чём же говорит модель TM? Во-первых, об отсутствии проводящего сочленения, соединяющего погружающуюся проводящую плиту с коровым проводящим слоем. Во-вторых, о том, что верхняя консолидированная кора континента имеет сопротивление порядка 2000 Ом·м.

Отметим, что инверсия TM-модели существенно зависит от выбора стартовой модели. Если в ка-
ЗАКЛЮЧЕНИЕ

В результате интерпретации магнитоварационных и магнитотеллурических зондирований, выполненных на линии Линкольн, построена новая геоэлектрическая модель Каскадной субдукционной зоны — модель ЭМСЛАБ-III.

В своей океанической части модель ЭМСЛАБ-III близка к моделям ЭМСЛАБ-Ⅰ и ЭМСЛАБ-Ⅱ. Она выделяет мощную океаническую астеносферу в интервале глубин 37,5—110 км. В структуре континентальной части модели ЭМСЛАБ-III важно отметить три особенности:

1) отчётливо выделяются коровый проводящий слой (ρ = 20 Ом·м, интервал глубин 25—40 км) и проводящая астеносфера (ρ = 30 Ом·м, интервал глубин 100—155 км).

2) коровый и астеносферный проводники соединены столбовидным проводящим телом (ρ = 20—30 Ом·м), которое произывает литосферу и в вулканической зоне Высоких Каскад достигает глубин порядка 7 км.
3) погружающаяся океаническая плита в интервале глубин 4–40 км содержит тонкий наклонный проводник (ρ = 20 Ом × м), который отдельён от корового проводящего слоя промежутком повышенного сопротивления (ρ = 60 Ом × м); по-видимому, коровый проводящий слой не связан с флюидами субдукционной плиты и имеет глубинное происхождение.

Эти особенности континентального разреза сближают модель ЭМСЛАБ-III с прогнозной моделью CASCADEIA. Здесь наглядно проявлен флюидный режим субдукционной зоны. Погружающаяся плита затягивает низкоомные водонасыщенные породы океанического дна. По мере погружения плиты происходит вытеснение свободной воды, которая мигрирует по свидовой зоне (зоне контакта между субдукционной океанической и стабильной континентальной плитами). На глубинах порядка 30–40 км в погружающейся плите начинается дегидратация (высвобождение связанной воды), которая доставляет флюиды в мантию и вызывает "мокрое" плавление астеносферного вещества. Низкоомные расплавы мигрируют вверх, пронизывают литосферу и образуют вулканическую дугу. Разогрев литосферы активизирует дегидратацию в нижней коре, формируя коровой проводящий слой.

Таким образом, мы подтверждаем реальность прогнозов, на основе которых построена модель CASCADEIA.

Мы сердечно благодарим А.Ф. Грачёва, М.Г. Ломизе, В.И. Макарова, В.В. Спичака, В.И. Дмитриева и И.М. Варенщова за обсуждение результатов работы и полезную критику. Работа была выполнена при поддержке РФФИ, проекты 99-05-64758, 00-05-64660 и 02-05-64079.

СПИСОК ЛИТЕРАТУРЫ

Варенцов И.М., Головев Н.Г., Гордиенко В.В., Соколова Е.Ю. Исследование глубинной геоэлектрической структуры вдоль линии Линкольн (экспеектив ЭМСЛАБ) // Физика Земли. 1996. № 4. С. 124–144.

Варенцов И.М., Гордиенко В.В., Климов А.Н., Рогожников В.Б., Соколова Е.Ю. Исследование глубинной геоэлектрической структуры вдоль линии Линкольн (эксперимент ЭМСЛАБ) // Физика Земли. 1996. № 4. С. 124–144.

Варенцов И.М. Общий подход к решению обратных задач магнитотеллуровики в условиях неравномерных слоёв // Физика Земли. 2002. № 11.

Пальцов Н.А., Ваньян Л.Л., Егоров И.В., Лебедев К.Н. Электрические поля, индуцируемые глубинной циркуляцией Мирового океана // Физика Земли. 1999. № 11. С. 31–43.

Спичак В.В. Магнитотеллуровые поля в трёхмерных моделях геолокаторы. М.: Научный мир. 1999. 204 с.

ФИЗИКА ЗЕМЛИ № 10 2002

