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Natural Deduction System in Paraconsistent
Setting: Proof Search for PCont

Alexander Bolotov and Vasilyi Shangin

Abstract. This paper continues a systematic approach to build natural deduction calculi
and corresponding proof procedures for non-classical logics. Our attention is now paid to
the framework of paraconsistent logics. These logics are used, in particular, for reason-
ing about systems where paradoxes do not lead to the ‘deductive explosion’, i.e., where
formulae of the type ‘A follows from false’, for any A, are not valid. We formulate the
natural deduction system for the logic PCont, explain its main concepts, define a proof
searching technique and illustrate it by examples. The presentation is accompanied by
demonstrating the correctness of these developments.
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1 Introduction

When we speak about the reasoning tools related to modern computer systems we
must take into account that these systems are complex, dynamic and heterogenous.
Consider, for example, the problem of formation of heterogeneous resources into
networks or into clouds. Conflicts of various types are inevitable here and very
often a system functions quite well despite their present. This leads us to the
necessity of equipping the system with reasoning techniques capable of coping
with such conflicts. It is natural to think of a conflict as of an anomaly, some kind
of a paradox, or simply of a contradiction. Classical reasoning is not appropriate
here as it validates ex falso quodlibet the famous principle of deriving anything
from a contradiction. If we obtain a specification, S, of a system with conflicts,
and reason classically then S becomes trivial. Therefore, there is a need to develop
deductive methods which make it possible to reason about paradoxical statements
correctly, but at the same time without turning .S into trivial. We will enable then
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the system to identify, localise conflicts and to ‘live with them’ not violating its
essential functionalities.

Classical reasoning is based on the assumptions that possible worlds cannot
contain contradictions and are complete. If Prop stands for the set of propositions
and W for the set of possible worlds, then the former means that for every possible
world w € W, and any o € Prop, it is not possible that « € w and —« € w, while
the latter principle suggests that for every w € W, and any @ € Prop, we require
o € wor ~o € w. When the first principle is not required we are led to the
framework of paraconsistency.

This paper gives a revised and extended account of the developments of the nat-
ural deduction system for a system of paraconsistent logic originally published as
[7]. We concentrate on paraconsistent logic PCont, known under different abbre-
viations [1, 13, 16]. In our presentation of a natural deduction (abbreviated in this
paper by ‘ND’) formulation of PCont, which we call NPCont, we directly follow
the notation of the latter.

The particular approach to build an ND calculus we are interested in is described
in detail in [4]. It is a modification of Quine’s representation of subordinate proof
[15] developed for classical propositional and first-order logic. Recall that nat-
ural deduction calculi of this type were originally developed by Jaskowski [10].
Jaskowski-style natural deduction was improved by Fitch [8] and simplified by
Quine [15].

The ND technique initially defined for classical propositional logic was ex-
tended to first-order logic (see complete descriptions on the method and relevant
proof search techniques in [4, 5]) to the non-classical framework of propositional
intuitionistic logic [12]. In [3] it was further extended to capture propositional
linear-time temporal logic PLTL and in [6] the ND system was proposed for the
computation tree logic CTL.

The paper is organised as follows. In §2 we describe PCont reviewing its ax-
iomatics and semantics. In §3 we formulate the natural deduction calculus and
give examples of the construction of the proof. Subsequently, in §4, we intro-
duce the main proof-searching procedures, an algorithm NPContarg. Examples
of NPContay g proofs are in given in §5. Further, §6 is devoted to proving the cor-
rectness issues, i.e., that NPContay g terminates, is sound and complete. Finally,
in §7, we provide concluding remarks and identify future work.

2 Paraconsistent Logic PCont

Fixing a set Prop of propositions, we export the following axiomatics of PCont
from [16].
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PCont Axiomatics.

I. ADB)D((BDC)D(ADC(C))
2. AD(AVB)
3. AD(BVA
4. (ADC)D((BD2C)D((AvB)D(O))
5. (AAB)D A
6. (AAB)DB
7. (CDADWACDOB)D(CD(AAB)))
8. AD(BDA
9. AD>DBDC)DW(ADB)DADC0))
10. (A>DB)DA)DA
11. =(AV B) D> (—AA—B)
12. (wAA—=B)D—(AV B)
13. =(AAB)D(—AVv—B)
14. (=AV —=B) D (—=A A—B)
15. =(AD> B) D> (AA—B)
16. (AA—-B)>—(ADB)
17. ——A DA
18. AD——A
19. Av—-A.

Rule of inference: From A and A O B infer B.

Semantics. The axioms of PCont are adequate to the following matrix semantics
with three values 1, ¢, 0 and two designated values 1, 7.

S =~ =
o
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3 Natural Deduction System NPCont

Notation.

* By literal we understand a proposition or its negation. Let Lit abbreviate a
set of literals.

* We will use the symbols ‘F’ and ‘=’ as follows. By writing I' = B we mean
a task to establish a natural deduction derivation of a formula B from a set
of assumptions I". If ', in I" = B, is empty then the task is to prove that B
is a theorem, and in this case we will simply write = B. The abbreviation
I' = B stands for establishing that B is a logical consequence of a set of
assumptions I'. If I, in I |= B, is empty then the task is to show that B is a
valid formula and in this case we will simply write |= B.

Therefore, we might be given either of the following tasks: to find an ND deriva-
tion I' - B or to find an ND proof - B.

Specifically for an ND calculus, in constructing an ND derivation, we are al-
lowed to introduce arbitrary formulae as new assumptions. Consequently, any
formula in a derivation is either an assumption or a formula which is obtained as a
result of the application of one of the inference rules.

Further, the set of rules is divided into the two classes: elimination and intro-
duction rules. Rules of the first group allow us to simplify formulae to which they
are applied. These are rules for the ‘elimination’ of logical constants.

Rules of the second group are aimed at ‘building’ formulae, introducing new
logical constants. In the following we define sets of elimination and introduction
rules, where the prefixes ‘el’ and ‘in’ abbreviate an elimination and an introduction
rule, respectively.

Elimination Rules.

ANB AANB
Aely Aelp
—-(AAB AV B A B
g TAnB) Lo AVB. [AIC.[BIC
-AvVv —=B C
[4] C,[-A] C —(AV B)
PCont vel ——MM—— -vel] ————=
on e C ely )
—-(AV B
e, ZAVE)
-B
ADB, A

Del B
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—-(ADB

—136]1¥
1 _|_|A
—el ——
A

Introduction Rules.

= Aing

A
AV B
\/. _|A7_|B
- m-——-—-
—(AV B)

\ in1

A,—B

-Din —
" ZAoB)

- Dely

—(A A B)

—(4 D B)
-B
Al —B
- mn
> (AN B)
. B
V 1y B
S €] B
mn
CDOB
. B
—1n
_|_|B

Definition 1 (Inference). An inference in the system NPCont is a finite non-empty
sequence of formulae with the following conditions:

* Each formula is an assumption or is derived from the previous ones via a

NPCont-rule.

* By applying Dj, each formula starting from the last alive assumption C until
B, the result of the application of this rule, inclusively, is discarded from the

inference.

* By applying V. each formula starting from assumption A until formula C,
inclusively, as well as each formula starting from assumption B until formula
C, inclusively, is discarded from the inference.

* By applying PCont V¢ each formula starting from assumption A until for-
mula C, inclusively, as well as each formula starting from assumption —A
until formula C, inclusively, is discarded from the inference.

Definition 2 (Proof). A proof in the system NPCont is an inference from the empty

set of assumptions.
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Let us give three examples of ND proofs.

PCont Example 1. Proof of p v —p.

list_proof | annotation

1.p assumption

2.pV=p | Viny, 1

3.-p assumption

4. pV =p | Vin, 3

5.pVv —p | PConty,, 2,4 [1-2], [3-4]

PCont Example 2. Proof of Axiom 4.

list_proof annotation
I.pDr assumption
2.qDr assumption
3.pVvyq assumption

4. p assumption
5.r Dels 1,4

6.q assumption
7.r Del, 2,6

8.r vel, 3, 4, 6, [4-5], [6-7]
9.(pvg)Dr Din, 8, [3-8]
10. (¢4 2r)>UpVvg) Dr) Din, 9, [2-9]
1. (pD>r)D>2WgD>r)D>((pVvq) Dr)) | Din, 10,[1-10]

PCont Example 3. Proof of ((p D ¢) D p) D p.

list_proof annotation

l.(pDg)Dp assumption

2.pDgq assumption

3.p Del, 1,2

4.=(p D ¢q) assumption

5.p = Doy, 4

6. p PCont Vg, 3, 5, [2-3], [4-5]
7.((p2>29)Dp)Dp | D, 6,[1-6]
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Note that the rule PCont V| makes it possible to prove the Pierce law and there-
fore there is no need for a specific rule associated with this formula.

It also implies an interesting (and, seemingly, new) fact that Axiom 10 (see
§2) is derivable via the other PCont axioms. The proof isn’t difficult. The reader
should use the following instance of Axiom 4:

(pD29)>p)D((=(p2>¢9)D>p)D((pD9)V—(pDq)DPp)

and the standard deduction theorem. From the philosophical point of view, it
shows that the positive intuitionistic fragment is already sufficient to serve as a
base for PCont and, therefore, PCont is a neighbour to Nelson’s paraconsistent
logic [14].

NPCont has been shown to be sound and complete, i.e., the following theorem
holds:

Theorem 1 ([17]). I" Fnpeont 4 & T = A

4 Proof Searching Techniques for NPCont

We preserve the goal-directed nature of the proof searching strategy creating two
sequences: list_proof and list_goals. The first sequence represents formulae
which form a proof. In the second sequence we keep track of the list of goals.
An algo-derivation, NDys, as previously, is a pair (list_proof, list_goals) whose
construction is determined by the searching procedure outlined below. On each
step of constructing an NDyy,, a specific goal is chosen, which we aim to reach at
the current stage, we call this goal a current_goal. The first goal of list_goals is
extracted from the given task, we will refer to this goal as to the initial goal.

Definition 3 (Current goal reachability). Current goal, G,, 0 < n, occurring in
list_goals = (Gy, G1,...,Gp), is reached if there is a formula A in list_proof
such that A is not discarded and A = Gy, or if there are formulae A, B in the
list_proof such that A is the last alive assumption, then both A, B are not discarded
and G, = [A]B.

When we construct a derivation, we check whether the current_goal has been
reached. If it has been reached then we apply the appropriate introduction rule,
and this is the only reason for the application of introduction rules. Alternatively,
(if the current_goal has not been reached), we continue searching how to update
list_proof and list_goals.
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4.1 Proof-Searching Procedures

Procedure 1. This procedure updates a sequence list_proof by searching for an
applicable elimination ND-rule. If it finds in list_proof a formula, or two formu-
lae, which can serve as premises of an elimination ND-rule, this rule is enforced
and the sequence list_proof is updated by the conclusion of this rule.

Procedure 2. This procedure is invoked when Procedure 1 terminates and the
current goal is not reached.

Procedure 2.1. Here we update sequences list_proof and list_goals analysing
the structure of G,. Let list_proof = Pq,..., P, and list_goals = G1,...,Gy,
where Gy, is the current goal. Given that G, is not reached, then looking at its
structure, we derive a new goal G, 41 and set the latter as the current goal. Below
we identify various cases of applying sub-Procedure 2.1, where

Gp = AAB|AV B|AD B|~(A A B)|~(AV B)|~(A D B)|F|-—A4,

where A, B are any formulae and F € Lit.

211 T + AAAB — I v A,AAB,B.A
2121 T F A,AVB — I' v AAVB. Ax
2122 T F A,AVB — I' v AAVB.,Bx
213 T + AADB — T,A+ AADB.,B

214 T + A —=(ADB) — I' v A,—~(ADB), A —B
215 T + A,=(AvB) — I - A,—~(AV B),—~A,—B
2161 T +F A, —~(AAB) —> I' b A, —~(AAB),—Ax
2162 T + A, —~(AAB) —s I' b A,—~(AAB),—Bx*
217 T F A,F —s T,=F + A,[F]F,[~F].F %%
218 T + A,——4 — I b A4 A

219 T + A,[A]B — T.,A - AB

*  searching rule 2.1.2.2 applies when rule 2.1.2.1 fails, i.e., when applying rule
2.1.2.1, we have not managed to reach A, the left disjunct of the goal AV B, in
which case the subroutine invoked into this attempt is deleted and rule 2.1.2.2
is fired. In both cases we require to terminate the subroutine if it fails to derive
a goal A or B straightforwardly using the elimination rules.

Similarly, searching rule 2.1.6.2 applies when rule 2.1.6.1 fails, i.e., when
applying rule 2.1.6.1, we have not managed to reach —A, in which case the
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subroutine invoked into this attempt is deleted and rule 2.1.6.2 is fired. In both
cases we require to terminate the subroutine if it fails to derive a goal =4 or
— B straightforwardly using the elimination rules.

** where F € Litor F = AV Bor F = —(A A B).

Applying Procedure 2.1 we mark literals and formulae of the type A v B and
—(A A B) if we start proof by refutation. The mark means that in reaching these
goals we cannot any longer apply reasoning by refutation.

Let us explain Procedure 2.1.7 which deals with an unreached goal, F', which is
either a literal or AV B or —=(A A B). When we cannot current goal, F', and Proce-
dures 2.1.1-2.1.4 are not applicable, we follow similar to the classical refutation.
However, now, in the setting of paraconsistent logic, we deal with this situation
differently. Namely, once we assumed —F we aim at achieving the goal F. If this
can be done then we can always add to list_proof a proof of F from F. These
two inferences would give us the required basis to apply PCont Vv rule, namely,
[—F], F and [F], F which would enable us to derive the desired F.

Procedure 2.2. This procedure is invoked when the current goal is not reached
and Procedure 2.1 has been terminated. It searches for those compound formulae
in list_proof which can serve as sources for new goals. Unlike in classical case,
here only two types of compound formulae in list_proof can serve as sources for
new goals, namely disjunctive and implicative formulae. If one of these formulae
is found then its structure will determine the new goal to be generated.

221 T,AVB F A,C — T F A,A]C TFA,[B]C
222 T,ADB F A C — T F A,JAIC TFA,[-4C

Let us clarify how Procedure 2.2.1 applies.

221 TAVB + AC — T + A[B]C,[4]C

2.2.1.1 I - A[B]C.[A]IC — T F A,[B]C.[A]C.[~B]C *
2.2.1.2 I + A,[B]C.[A]IC — T F A,[B]C.[A]C,[B]C **
2.2.1.3 r + [BIC — T F A,[B]C,[A]C *#
2.2.1.4 r + [B]C — Tk A,[B]C.[A]C %%x*

* when 2.2.1 fails.
* % when 2.2.2.1 is successful, i.e., we manage to derive C from —B.

*x* when both 2.2.1.1 and 2.2.1.2 are successful, i.e., we have managed to de-
rive C from A.

*x*x* when 2.2.1.3 is successful, i.e., we have managed to derive C from —A.
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222. T,ADB, F A,C — T F AA4]C,[-4]C
Let us clarify how Procedure 2.2.2 applies.

2221. T + AAC.[~4C — T F A,[A]C «

* when 2.2.2. is successful, i.e., we have managed to derive C from —A.

Procedure 3. This procedure checks reachability of the current goal in the se-
quence list_goals. If, according to Definition 3, the current goal G, is reached
then the sequence list_goals is updated by deleting G, and setting G,—; as the
current goal.

Procedure 4. Procedure 4 indicates that one of the introduction ND-rules, i.e.,
a rule which introduces a logical connective, must be applied. Procedures 2.1.1—
2.1.8 are associated with correspondent introduction rules. Recall that Procedure
2.1 splits a conjunctive goal and is associated with the Aj, rule, i.e., given both
goals A and B by applying this rule we would obtain the desired goal A A B. Sim-
ilarly, Procedure 2.2 looks for goals A or B, etc.; so the following table represents
the association of the procedures with the introduction rules as follows:

Procedure 2.1.1 — Aj, Procedure 2.1.5 — —Vj,
Procedure 2.1.2.1 — Vijy, Procedure 2.1.6.1 — —Ajp,
Procedure 2.1.2.2 — Vip, Procedure 2.1.6.2 — —Ajp,
Procedure 2.1.3 —Dj, Procedure 2.1.7 — PCont V¢
Procedure 2.1.4 — =Dy, Procedure 2.1.8 — —y,

Note that although Procedure 2.1.7 invokes an elimination rule, PCont Vg, it
has a special role in our heuristic and we consider this rule here in line with other
introduction rules involved into the searching technique.

We will see below that any application of the introduction rule is completely
determined by the current goal of the sequence of goals. This property of our proof
searching technique protects us from inferring an infinite number of formulae in
list_proof.

Now we are ready to describe a searching algorithm, specifying the application
of the procedures above.

4.2 Proof-Searching Algorithm NPCont,y g

Let us explain, schematically, the performance of the proof-searching algorithm
by describing its major components. These components correspond to the search-
ing procedures presented in §4.1. Given a task G, we commence the algorithm
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by setting the initial goal, Go = G. Then for any goal G; (0 < i), we apply
Procedure 3, to check if G; is reached. If G; is not reached we apply Procedure
1, obtaining all possible conclusions of the elimination rules to obtain G;. If we
fail, then Procedure 2 is invoked, and, dependent on the structure of the goal G;,
the sequence list_proof is updated by adding new assumptions and the sequence
list_goals by adding new goals. If the current goal is reached, then we determine
which introduction rules are to be applied (Procedure 4). Otherwise, we update
list_goals looking for possible sources of new goals in list_proof. We continue
searching until either we reach the initial goal, Gg, in which case we terminate
having found the desired proof, or until list_proof and list_goals cannot be up-
dated any further. In the latter case we terminate, and no proof has been found and
a counterexample can be extracted.

Before formulating the main stages of the proof-searching algorithm we have to
describe our marking technique which introduces and eliminates special marks for
formulae in list_proof and list_goals. Most of these marks are devoted to prevent
looping either in the application of elimination rules or in searching. Thus, we
mark:

 formulae that have been used as premises of the rules invoked in Procedure 1;

* those formulae in list_proof which were considered as sources of new goals
in Procedure 2.2 and these new goals themselves to prevent looping in Pro-
cedure 2.1.2 — see » comments to this procedure. Note that if a formula A
has generated a goal B in this way, but later B has been reached, hence dis-
carded, from the proof, we get rid of the mark for A allowing to consider this
formula again as a source of new goals.

Now we are ready to formulate a searching algorithm.

Algorithm NPContyy .

(1) Given atask I' - G, we consider G as the initial goal of the proof and write
G into list_goals. If the set of given assumptions in I" is not empty then these
assumptions are written in a list_proof. Let G, abbreviate a current goal.
Gor = G, goto (2).

(2) Apply Procedure 3 (analysis of the reachability of the current goal, G¢y,).

(2a) If Gy, is reached then go to (3) else
(2b) if elimination rules are applicable go to (4) else (5).

(3) Based on the structure of the goal reached.

(3a) If Gy (reached) is the initial goal then go to (6a) else
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(3b) (Gey is reached and it is not the initial goal) apply Procedure 4 (which
invokes introduction rules), go to (2).

(4) Apply Procedure 1, go to (2).
(5) Apply Procedure 2.
(5a) Apply Procedure 2.1 (analysis of the structure of G;), go to (2) else

(5b) apply Procedure 2.2 (searching for the sources of new goals in
list_proof), go to (2) else

(5¢) (if all formulae in list_proof are marked, i.e., have been considered as
sources for new goals) go to (6b).

(6) Apply Procedure 2.

(6a) The desired ND proof has been found. EXIT.
(6b) No ND proof has been found. EXIT.

5 Algo-Proof Examples

We will give three examples of ND proofs following the algorithm NPContaj g.
The first example is an NPContay g proof of p Vv —p, previously proved without the
application of the searching technique. The second example deals with Axiom 4
while the third example shows how the procedure terminates without finding a
proof. An interested reader may want to compare algo-proofs Examples 1 and 2
with the ‘manual’ proofs of these theorems given above, PCont Example 1 and
PCont Example 2.

NPContayc Example1. p Vv —p

list_proof ‘ annotation ‘ list_goals

Neither p nor —p are in the list_proof. We apply a proof search rule 2.5 delet-
ing G and increasing list_goals by new goals

Go=pV-p
G1 = pl-p

Gii=[~(pVv-p)lpV-p, Gi2=[pV—-plpV-p.

When reaching goals G1.1 and G1.2 we do not have any priority, so in the example
below we first reach G1.1 and then G 5.
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list_proof annotation list_goals
Go=pV-—p

1. =(p v —p) | assumption Go,Gi1=[pV-plpVv-—p
Go,G1.1,G12 =[~(pV —=p)lpV —p
Go,G1.1,G1.2,G2 = p|—p
Go,G1.1,G12,G2=p

2.—p —Vel;, 1

3.—=p Vel 1

4. p —el, 3 G is reached

5.pv-—p Vin, .4 G1.2 is reached

6.pVv-—p assumption G1.1 is reached

7.pV —p PCont,, Gy is reached

5,6, [1-5], [6]
NPContarg Example2. (p Dr)D((g2>r)D((pVvg) Dr))

We will see where an automated proof differs from the manual one given in the
previous section. We set the initial goal as Axiom 4. As its main symbol is D and
the goal is not reached we apply Procedure 2.4 which gives us a new assumption
A D C (step 1) and anew goal (B D C) D ((AVv B) D C). Again, the current
goal is not reached, and analysing its structure, we apply Procedure 2.4 to give
us a new assumption B O C (step 2) and a new goal (4 v B) D C. Similar
reasoning gives us step 3. Now, the current goal is C, it is not reached, hence we
apply Procedure 2.5 to give us new assumption —C at step 4. This latter technique
is the one which distinguishes automated proof from the manual one given in the
previous section. In the analysis, in list_goals we explicitly show that C must be
obtained from the assumption [—C] which should later be discarded.

list_proof | annotation | list_goals
Go=(p>r)D>(gD>r)D>(pVvq) Dr)

l.pDr | assumption | Go,G; =(@Dr)D((pVvg)Dr))

2.qDr assumption | Go— G, =(pVgq)Dr

3.pVvyq assumption | Go — G2, Gz =r

G 3 cannot be reached, hence we try to obtain it via the PCont,) rule by assuming

—r and then r.
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list_proof ‘ annotation ‘ list_goals
Go — G3,Ga.1 = [r]r,Gao = [r]r
Go—G42,G5 =7

assumption

4. —=r assumption

The current goal, r, isn’t reached. We start analysing complex formulae from
the list_proof and, as in the classical case, analysing complex formulae from the
list_proof and consider the first, p D r. The specific of PCont is that we want to
obtain the current goal, r, from both —p and then p.

list_proof ‘ annotation ‘ list_goals
Go — Gs,Ge.1 = [p]r, G2 = [—-p]r
Go—Ge62,G7 =7

5.—p assumption

The current goal, r, isn’t reached. So, we try to obtain it, on contrary, via the
PCont,; rule by assuming —r and then r.

list_proof ‘ annotation ‘ list_goals
Go — G7,Gg.1 = [r]r,Gs.o = [—r]r
Go—Gga,Go =71

6. —r assumption

The current goal is not reached, we pick up the second complex formula from
the list_proof (Procedure 1 in the old draft), i.e., ¢ D r. The specific of PCont is
that we want to obtain the current goal, r, from both —¢q and then g.

list_proof ‘ annotation ‘ list_goals
Go — Go,Gro.1 = [q]r, G102 = [—q]r
Go—G10,.G11 =71

7. —q assumption

The current goal, r, cannot be reached. So, we try to obtain it, via the PCont,
rule by assuming —r and then r.

list_proof ‘ annotation ‘ list_goals
Go— G11.Gi2.1 = [r]r, G122 = [-r]r
Go—G122,G13=r

8. —r assumption

Having, still, no luck, we pick up the third complex formula from the list_proof
(Procedure 1 in the old draft), i.e., we take p Vv g. The specific of PCont is that we
want to obtain the current goal, r, from both p and then q.
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list_proof ‘ annotation | [list_goals

Go — G13.G14.1 = [p]r. G1a2 = [q]r
Go—G14.2.Gi5 =71

G142, G15 = r are reached

assumption
:>Cls 93 1

9.p
10. r

By saying that G14.» = r and G5 = p are reached we mean that after proving
a goal r from an assumption p we immediately reach a goal to obtain a proof of
r from p. At this stage the list of goals is G; — G14.1. Since our goals G4 ]
and G4 were coupled, and G14.» has been reached, leaving G14.1 as the current

goal, we update list_goals with G15 = r and set it as a new current goal.

list_proof | annotation list_goals
Go—Giaa = [plr.Gi15 =71
11. ¢ assumption Go— G141 =[plr.G15 =7
12.r =, 11,2 Gi14.1 = [p]r, G15 = r are reached
13.r Vel, 3, 10, 12 G122 = [—r]r and G13 = r are reached
[9-10], [11-12]
Go—G11,Gr21 = [r]r
14.r assumption G1— Gy =1rlr,Giz=r

G13 and G151 are reached (a goal A is trivially reachable if A is an assumption
in the list_proof).

list_proof | annotation list_goals
15.r PCont,, 14, 13 | G171 and G2 are reached
[14], [8-13]
16. ¢ assumption Gi—Gi1=1[qlr.G11 =71
17.r =.1,16,2 G11 = r and Gyo.1 = [q]r are reached
18. r PCont, 17,15 | Ggo = [—r]r and Gg = r are reached
[16-17], [7-15]
Go —G7,Gg.1 = [r]r
19.r assumption Gy —Gg1,Gg =7
Gy = r and Gg.1 = [r]r are reached
Go — Geo = [~plr,G7 =71
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list_proof | annotation list_goals
20. r PCont,, 19, 18 | G7 and Gg.2 are reached
[6-18], [19]
Go — Gs,Ge.1 = [p]r
21. p assumption G1—Ge61.G7 =71
22.r =a.21,1 G7 = r and Gg.1 = [p]r are reached
Go—Gs=r
23.r PCont,, 20,22 | G5 and G4, are reached
[21-22], [5-21]
Go— Ga1 =[r]r
24.r assumption G1—G41,G5=r
25.r PCont,, 24,23 | G5 and G4.1 are reached
[24], [4-23]

Go—Gsz=r

Now the following final steps complete the proof.

list_proof annotation list_goals
26.(pVvq)Dr 25, =i, [3-25] | Go—-G2
27.(q2r)D((pVvg)Dr)) | 26, =, [2-26] | Go,Gq
28.(pD>r)>((gor)=

((pvgq)Dr)) 27, =in, [1-27] | G reached

Finally we will give an example of a formula for which the proof is not found.

NPContarg Example3. (p D —¢) D (¢ D —p).
list_proof | annotation | list_goals
1. p D —q | assumption | ¢ D —p
2.q assumption | —p
3.p assumption | [p] —p,[—p] —p
4. g Del, 1,3

Goal [p]—p cannot be reached. The algorithm terminates failing finding the
proof. Let us show how from the above list_proof we can construct a counter-
model (M, ) for (p D —q) D (¢ D —p). Namely, considering a set of literals in
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list_proof, we define ¢ as follows:
* Since p € list_proof, we define ¢ (p) = 1.
* Since both g € list_proof and —q € list_proof, we define ¥ (q) = t.

It is easy to see that under these conditions ¥ (p D —¢) = 1 while we have
¥ (¢ O —p) = 0,and hence ¥ ((p O —¢) D (¢ > —p)) = 0.

6 Correctness

There are three necessary conditions that a proof search procedure for a decidable
logic should have: termination, soundness and completeness. Being decidable,
PCont encourages researchers to look for algorithms that effectively tell us if any
given input formula is a theorem building up a desired proof or there is an assign-
ment falsifying it, providing a counter-model. Below we will sketch proofs of all
these properties of NPContyj G-

Theorem 2. NPContay g terminates for any input formula.

Proof. For the termination we need to establish that both main sequences,
list_proof and list_goals, that constitute NPContay g, are finite, and also that
there are no loops in the searching procedure. Two observations are important
here. Firstly, the marking technique guarantees the finite number of application
of rules in Procedure 1, and the finite number of formulae that are introduced into
list_proof and list_ goals by Procedure 2. Note that our special procedures to deal
with the most difficult for the natural deduction cases related to disjunctive goals,
namely, with the goals of the type A vV B, —=(A A B) reflected in the Procedure
2.1.7, prevent us of being involved into loops.

Secondly, any application of an introduction rule is completely determined by
the algorithm. Namely, if the current goal is reached we consider the previous goal
and the corresponding introduction rule is fired. Thus, for example, if the current
goal (reached) is A or B and the previous goal is A v B, see Procedure 2.1.2, then
we apply the Vi, or Vi, rule to either A or B reaching the previous goal, A v B
by simply adding the missing component of disjunction. o

Theorem 3. NPContay g is sound.

Proof. Soundness of NPConty g follows immediately from the fact that list_ proof
obtained following the steps of the algorithm is a proof in the calculus NPCont.
Hence, if there is an algo-proof of F then a list_proof of this algo-proof is a
proof of F in the system NPCont. By Theorem 1, NPCont is sound. Therefore,
NPContay g is sound, too. O
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Lemma 1. A PCont-model truth-value assignment \ for a formula F,  (F), is as
follows:

1. Y (——A):

1.1. Ify(——A4)=1 then Y(A) = 1.

1.2. Ify(——A) =t then Y (A) =t.

2. V(A A B):

2.1. Ify(AAB)=1 then Y(A)=land¢(B)=1.

22. IfYy(AAB)=t then
22.1. Y(A) =t,¥(B)=1;o0r
222, Y(A)=t,¢¥(B)=t;or
223. yY(A)=1,¢¥(B)=t.

w(AV B):

3.1. Ify(AvB)=1 then
3.1.1 ¥(A)=1l;0r
3.1.2. ¥(B)=1.
32. Ify(AvB)=t then
32.1. Y(A) =t,¥(B)=0;or
322, Y(A)=t,¢y(B)=t;or
323. ¥ (A)=0,¥(B)=t.
4. Y(A D B):
4.1. Ify(ADB)=1 then
411 ¢ (A) =0;o0r
4.12. ¥(B)=1.
42. IfYy(ADB)=t then
42.1. ¢Y(A) =1,(B)=t;or
422. Y(A) =t (B)=t.
5. Y (—(A A B)):
51. Ify(=(AAB))y=1 then Y(—=Av-B)=1.
52. Ify(—=(AAB))=t then Y(—AvV-B)=t.
6. Y (—(AV B)):
6.1. Ify(—=(AvB))y=1 then Y(—=AA-B)=1.
62. IfYy(—=(AvB))=t then Y(—AA-B)=t.
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7. Y (=(4 D B)):
71. Iy(=(AD>B))=1 then y(AA-B)=1L.
72. Ify(—~(ADB))=t then WY(AA—-B)=t.

Proof. The proof immediately follows from the matrix definitions of PCont con-
nectives. o

Lemma 2. From an exhausted non-successful algo-proof G for a PCont formula
F we can extract a model which falsifies F.

Proof. 1t is sufficient to show that a set G for a formula F satisfies the following
properties:

1. If =—A € G then
1.1. A € G;or
12. A€ G,—A €G.
2.If AN B € G then
21.AeG,BeG;or
22. A€ G,—mAe€G,BeG;or
23.Ae€G,—-A€G,BeG,-BeG;or
24. A€ G,BeG,—B €.
3.If Av B € G then
3.1. Ae G;or
32.BeG;or
33.A€G,—mAe€G,—-B eG;or
34.A€G,~A€G,BeG,—BeGjor
35.-A€G,BeG,—BegG.
4. 1f A D B € G then
4.1. =A € G;or
42. B e G;or
43. A€ G,B e G,—BeG;or
44. A€ G,~A€G,BeG,—BeG.
5.If =(AA B) € Gthen—AV —-B Q.
6. If ~(AV B) € G then A A —B €G.
7.If -(AD B)e Gthen A € Gand =B € G.
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We generalise Hintikka set technique [9]. In an exhausted non-successful algo-
proof for F the algorithm terminates without finding a proof, having applied all
its procedures and with the final goal which is not reached. We can show that
in this case list_proof contains a set of literals sufficient to construct a model
M = (M,v¥) and Y(F) = 0. Let us recall that Y (p) = 1if p € G and
-p € G;¥(p) =0if p & G and —p € G; and, at last, y(p) = tif pe G
and —p € G. Under this convention, cases 1-7 of Lemma 1 correspond to cases
1-7 below. Since all of these cases of Lemma 1 are conditional statements, it
is sufficient to show that both parts of conditions hold. We will show complete
reasoning for the very first situation and similar arguments will apply to all other
situations considered.

Case 1. If =——A € G then — is applied and A is derived, so A € G holds.
If also =4 € G we have both =4 € G and A € G. Therefore, ¥ (A) = t
and ¥ (——A) = ¢, hence Y (——A) = ¢ implies ¥ (A) = ¢ holds (case 1.2 of
Lemma 1). If -4 ¢ G we have =4 ¢ G and A € G. Therefore, ¥ (A4) = 1
and Y (——A) = 1, hence Y (——A) = 1 implies (4) = 1 holds (case 1.1 of
Lemma 1).

Case 2. If ANB € G then both A, , Acl, are applied (Procedure 2.2.1) and both
A, B are derived. There are four possible situations concerning whether =4 € G
or—B € G:

e If -4 € G,—B € G wehave 4 € G,B € G,—-A—~ € G,—-B € G.
Therefore, ¥ (4) = ¥(B) =t and (A A B) = ¢ (case 2.2.2 of Lemma 1).

e If-Ae€G,~-B¢Z€Gwehave A € G,B € G,—A € G,—~B ¢ G. Therefore,
Y(A) =t,¥(B)=1and Yy (A A B) =t (case 2.2.1 of Lemma 1).

e If-A&G,—-BeGwehave A € G,—B € G,—A € G, B € G. Therefore,
Y(B) =t and Y (A) = 1 (case 2.2.3 of Lemma 1).

e If-A¢G,~-B¢Z€Gwehave A € G,B € G,—~A ¢ G,—~B ¢ G. Therefore,
Y(A) = ¥(B) = y(A A B) = 1(case 2.1 of Lemma 1).

Case 3. If Av B € G then the proof searching rule for Vv in the list_proof
is applied. According to this rule, four situations are possible. The first situation
happens if we assume both A and —B. The second situation happens if we assume
both A and B. It happens when we are lucky to derive C from —B. The third
situation happens if we assume both B and —A. It happens when we are lucky to
derive C from A. (In turn, it happens when we are lucky to derive C from —B as
well as to derive C from B.) At last, the forth situation happens if we assume B
and A. It happens when we are lucky to derive C from A.

First, we assume A and — B via the proof searching rule for V in the list_proof.
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There are four possible situations concerning whether =4 € G or B € G:

e If-4Ae€G,BeGwehave A € G,B € G,—A € G,—B € G. Therefore,
Y (A) =y (B) =tand Y (A V B) =t (case 3.2.2 of Lemma 1).

e If-4A€G,B<g€Gwehave A € G,—A € G,B ¢ G,—~B € G. Therefore,
Y(A) =tand Y (B) =0and ¥ (A Vv B) =t (case 3.2.1 of Lemma 1).

e If-A€G,BeGwehave A € G,—A & G,B € G,—B € G. Therefore,
Y(A) =1land ¥ (B) =t and ¥y (AV B) = 1 (case 3.1.1 of Lemma 1).

e If-A¢G,B&€Gwehave A € G,—A € G,B € G,—~B € G. Therefore,
Y(A) =1andy(B) =0and Y (A Vv B) = 1 (case 3.1.1 of Lemma 1).

Second, we assume A and B via the proof searching rule for V in the list_proof.
There are four possible situations concerning whether =4 € G or =B € G:

e If-4e€G,—wBeGwehave A € G,B € G,—A € G,—B € G. Therefore,
Y (A) =y (B) =tand Y (A V B) =t (case 3.2.2 of Lemma 1).

e If-4Ae€G,-B &G wehave A € G,—A € G, B € G,—~B ¢ G. Therefore,
Y(A) =tand y(B) = land ¥ (A V B) = 1 (case 3.1.2 of Lemma 1).

c If-A&G,—-BeGwehave A € G,—-A ¢ G,B € G,—B € G. Therefore,
Y(A) =1land Y (B) =t and ¥ (A Vv B) = 1 (case 3.1 of Lemma 1).

e If-A¢G,—-B&€Gwehave A € G,—A € G, B € G,—~B & G. Therefore,
Y(A) =y (B) =1and Y (A v B) =1 (cases 3.1 of Lemma 1).

Third, we assume B and —A via the proof searching rule for V in the list_proof.
There are four possible situations concerning whether A € G or =B € G:

e IfAe G,—mB e Gwehave A € G,B € G,—A € G,—B € G. Therefore,
Y (A) =Y (B)=tand Y (A Vv B) =t (case 3.2.2 of Lemma 1).

*IfAe G,—B ¢ G wehave A € G,—A € G,B € G,—B € G. Therefore,
Y(B) =1and ¥ (A) =t and ¥ (A Vv B) = 1 (case 3.2 of Lemma 1).

cIfAZG,—BeGwehave A ¢ G,—A € G,B € G,—B € G. Therefore,
Y(A) =0and ¥ (B) =t and Y (A VvV B) =t (case 3.2.3 of Lemma 1).

cIfA¢ZG,—-B <& Gwehave A ¢ G,—A € G,B € G,—~B ¢ G. Therefore,
Y(A) =0and ¥ (B) =1and ¥ (A Vv B) = 1 (case 3.2 of Lemma 1).

At last, forth, we assume B and A via the proof searching rule for Vv in the
list_proof. We treat it analogously to the way we assumed A and B (the second
situation).
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Case 4. If A D B € G then the proof searching rule for D in the list_proof
is applied as follows (Procedure 2.2.2). According to this rule, three situations
are possible. The first situation happens if we have A in the list_proof. By an
application of el, we immediately derive B. The second situation happens if we
assume —A. It happens when we don’t have A in the list_proof. The third situation
happens if we assume A. It happens if we are lucky to derive C from —A.

First, we have A in the list_proof. By an application of D], we immediately
derive B. There are four possible situations concerning whether =4 € G or
—-B e G:

e If-Ae€G,—m-BeGwehave A € G,B € G,—A € G,—B € G. Therefore,
Y (A) € y(B) =¥ (A D B) =t (case 4.4 of Lemma 1).

cIf-A€G,—-B¢Gwehave A € G,—A € G,B € G,—B ¢ G. Therefore,
Y (B) =v(AD B)=1and y(A) = ¢ (case 4.2 of Lemma 1).

e If-A&G,~BeGwehave A € G,—~A & G,B € G,—B € G. Therefore,
Y (A D B)=v(B) =tand {(A) = 1 (case 4.3 of Lemma 1).

e If-A¢G,~B¢&€Gwehave A € G,—A &€ G, B € G,—B ¢ G. Therefore,
Y(A) = ¥(B) = ¥ (A D B) = 1 (case 4.2 of Lemma 1).

Second, we assume —A via the proof searching rule for D in the /list_proof.
Without loss of generality, we can stick ourselves to the case A ¢ G. (Otherwise,
see the first situation.) There are four possible situations concerning whether B €
G or—B € G:

*If BeG,mBeGwehave A € G,—A € G,B € G,—B € G. Therefore,
Y(ADB)=1,9(4) =0and y(B) =t (case 4.1 of Lemma 1).

cIfBeG,~BgGwehave A € G,—A € G,B € G,—B & G. Therefore,
Y (B) =v(A D B)=1and ¥(A) = 0 (cases 4.1-4.2 of Lemma 1).

*If B G,~BeGwehave A € G,—A € G,B & G,—B € G. Therefore,
Y (A D B)=1and y(A4) = ¥(B) = 0 (case 4.1 of Lemma 1).

*IfBZG,—-B¢gGwehave A € G,—A € G,B &G,—~B ¢ G. Therefore,
Y (A= B)=1and y(A) = 0 (case 4.1 of Lemma 1).

Third, we assume A via the proof searching rule for D in the list_proof. We
treat it analogously to the way we have A in the list_proof (the first situation). O

Theorem 4. NPConty; g is complete.

Proof. We must show that for every valid formula A, NPConta g finds a NPCont
proof. This is a simple consequence (by contraposition) of Lemma 2. |
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Termination, soundness and completeness results imply the fundamental prop-
erty of our algorithm reflected in the following theorem.

Theorem 5. For any input formula A, the NPContay g terminates either building
up a NPCont-proof for A or providing a counter-model.

In §5 we have illustrated how the algorithm works with non-provable formulae.

7 Conclusion and Future Work

We have presented a proof search technique in natural deduction system for para-
consistent logic PCont and proved its correctness. To the best of our knowledge,
there is no other similar work.

While our proof-searching technique preserves many of the strategies developed
earlier it also introduces new methods that are specific for PCont. Our next task
is to adapt the proposed technique to Avron’s paracomplete logic as well as to
Nelson’s paraconsistent logic [11, 14] and the other neighbours of the former.
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