МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА ХИМИЧЕСКИЙ ФАКУЛЬТЕТ

На правах рукописи

БУГАКОВ МИРОН АЛЕКСАНДРОВИЧ

ФОТОУПРАВЛЯЕМЫЕ ЖИДКОКРИСТАЛЛИЧЕСКИЕ ТРИБЛОК-СОПОЛИМЕРЫ: СИНТЕЗ, ФАЗОВОЕ СОСТОЯНИЕ И ФОТООПТИЧЕСКИЕ СВОЙСТВА

02.00.06 – высокомолекулярные соединения, химические науки

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук Работа выполнена на кафедре высокомолекулярных соединений в лаборатории химических превращений полимеров Химического факультета МГУ имени М.В. Ломоносова.

Научный руководитель:

Бойко Наталья Ивановна

доктор химических наук, профессор

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В. Ломоносова», ведущий научный сотрудник кафедры высокомолекулярных соединений Химического факультета

Официальные оппоненты: Папков Владимир Сергеевич

доктор химических наук, профессор Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук, заведующий лабораторией физики полимеров

Билибин Александр Юрьевич

доктор химических наук, профессор, академик РАЕН, Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет», Институт химии, заведующий кафедрой химии высокомолекулярных соединений

Киреев Вячеслав Васильевич

доктор химических наук, профессор, Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский химико-технологический университет имени Д.И. Менделеева», заведующий кафедрой химической технологии пластических масс

Защита диссертации состоится «29» ноября 2017 г. в 14⁰⁰ часов на заседании диссертационного совета МГУ.02.10 Московского государственного университете имени М.В. Ломоносова по адресу: 119991, Москва, Ленинские горы, МГУ имени М.В. Ломоносова, д. 1, стр. 3, Химический факультет, Лабораторный корпус «А», кафедра высокомолекулярных соединений, аудитория 501.

E-mail: bugakov.miron@gmail.com

С диссертацией можно ознакомиться в отделе диссертаций научной библиотеки МГУ имени М.В. Ломоносова (Ломоносовский просп., д. 27) и на сайте ИАС «ИСТИНА»: https://istina.msu.ru/dissertations/79849017/

Автореферат разослан «____» октября 2017 г.

Ученый секретарь диссертационного совета, кандидат химических наук

Douge

Долгова Алла Анатольевна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность темы.</u> В последние десятилетия исследователи, работающие в области химии и физики высокомолекулярных соединений, уделяют повышенное внимание синтезу и изучению функционально-интегрированных полимеров с локально-регулируемой структурой и оптическими свойствами, что связано с поиском новых инновационных материалов для оптоэлектроники.

К числу таких «умных» материалов, несомненно, относятся фотохромные жидкокристаллические блок-сополимеры. Блочное строение (ЖК) таких соединений обеспечивает их способность к образованию микросегрегированных способных к спонтанной самосборке, формируя целый систем, набор периодических упорядоченных наноструктур, размер и морфология которых контролируется длиной, химической природой и взаимным расположением составляющих их блоков. Наличие мезогенных групп в макромолекулах определяет формирование определенного типа мезофаз, обеспечивая анизотропию группы физических свойств системы, a фотохромные предопределяют возможность управления оптическими свойствами и морфологией блоксополимеров за счет фотоиндуцированных ориентационных процессов.

Исследование таких «гибридных» блок-сополимеров, проявляющих необычное конкурентное поведение, обусловленное сочетанием светоуправляемой фазоворазделенной супрамолекулярной структуры, вызванной «несмешиваемостью» субблоков, и собственного, различного ЖК порядка внутри каждого блока, является актуальным с точки зрения расширения возможностей регулирования их физико-химических свойств, как за счет управления молекулярным строением, так и за счет светового воздействия.

Степень разработанности темы. На сегодняшний день наиболее изученными являются гребнеобразные фотохромные азобензолсодержащие блок-сополимеры, состоящие из аморфных блоков линейной структуры и гребнеобразных ЖК субблоков. Полученные результаты демонстрируют способность таких блоксополимеров К перестроению своей супрамолекулярной структуры пол воздействием электромагнитных полей, приводящих к изменению их физикохимических свойств, включая оптические характеристики. Однако, гребнеобразные фотохромные блок-сополимеры, построенные только из ЖК субблоков. содержащих различные по химической природе мезогенные боковые звенья, до момента постановки данной работы были представлены в литературе лишь единичными работами, посвященными диблок-сополимерам.

Дизайн фотохромных блок-сополимеров, содержащих мезогенные группы с определенной функциональной нагрузкой в каждом субблоке, открывает перспективы для создания фотоуправляемых материалов с локально (на уровне субблоков) регулируемыми оптическими свойствами, супрамолекулярной структурой и морфологией. Такие полимеры могут представлять практический интерес в качестве новых функциональных материалов для фотоники и электрооптики.

<u>Цель данной работы</u> заключалась в разработке подходов к получению новых гребнеобразных фотохромных ЖК триблок-сополимеров, содержащих мезогенные группы в каждом субблоке, и установлении взаимосвязи между их химическим строением, типом структурной организации, морфологией и характером

фотоориентационных процессов, происходящих в их тонких пленках под действием света, с целью получения информации о возможном раздельном или совместном управлении субблоками в процессе облучения.

В качестве объектов исследования были выбраны симметричные гребнеобразные А-Б-А типа ЖК триблок-сополимеры различного состава и молекулярной массы, в которых мезогенные метоксифенилбензоатные (**PhM**) группы (Б-субблок) были ковалентно связаны с основной полимерной цепью, а мезогенные азобензолсодержащие группы (А-субблоки) присоединялись через ковалентную (**AzoA** фрагменты) или водородную (**Azo** фрагменты) связи (Puc. 1).

Рис. 1. Схематическое изображение синтезированных в работе полимеров. Подстрочные индексы указывают на степень полимеризации субблоков.

Выбор мезогенных фенилбензоатных групп был обусловлен тем, что такие группы широко используются для получения ЖК полимеров. В тоже время, азобензолсодержащие фрагменты за счет анизометричной формы не только обеспечивают возможность формирования ЖК фазы, но и, являясь хромофорами, придают полимерам чувствительность к световому воздействию благодаря (обратимой транс-цис фотоиндуцированным процессам изомеризации И фотоориентации), протекающим в фотохромных группах. Для получения водородно-связанных ЖК полимеров, в качестве А-субблоков использовали поли-4-винилпиридин легко образующий водородные (\mathbf{pVP}) связи с азобензолсодержащим фенолом (АгоОН, Рис. 1).

Для достижения поставленной цели требовалось решить следующие конкретные задачи:

- Разработать методы получения и осуществить синтез новых симметричных фотохромных ЖК триблок-сополимеров, содержащих мезогенные группы в каждом субблоке, присоединенные к полимерной цепи через ковалентную или водородную связь.
- Синтезировать гомополимеры, соответствующие индивидуальным субблокам триблок-сополимеров, а также статистические сополимеры, являющиеся модельными соединениями по отношению к триблок-сополимерам.
- Изучить фазовое поведение, структуру мезофаз и морфологию всех синтезированных блок-сополимеров и модельных соединений.
- Исследовать фотохимические и фотооптические свойства азобензолсодержащих блок-сополимеров, включая фотоориентационные процессы, проходящие в их тонких пленках под действием поляризованного излучения, а также влияние термической предыстории на данные процессы с целью получения информации о возможном раздельном или совместном управлении субблоками в процессе облучения. Провести сравнительный анализ фотооптических свойств в ряду гомополимер, статистический сополимер и блок-сополимер.
- Изучить возможность записи голографических дифракционных решеток и латентной записи информации на пленках синтезированных азобензолсодержащих триблок-сополимеров.

Научная новизна.

- впервые работе разработан В подход к получению нового класса фотохромных симметричных ЖК гребнеобразных триблок-сополимеров акрилового ряда, содержащих мезогенные группы в каждом из субблоков. Он основан на получении методом радикальной полимеризации с обратимой цепи по механизму присоединение-фрагментация (ОПЦдеактивацией полимеризация) так называемых «базовых» блок-сополимеров, содержащих мезогенные фенилбензоатные группы и реакционно-способные анилиновые или пиридиновые группы, способные в дальнейшем вступать В реакцию азосочетания или образовывать водородную связь с низкомолекулярным фотохромным прекурсором, соответственно.
- Впервые синтезированы новые фотохромные ЖК триблок-сополимеры, содержащие мезогенные группы в каждом субблоке, при этом фотохромные азобензолсодержащие мезогенные группы присоединялись к полимерной цепи через ковалентную или водородную связи.
- Обнаружено формирование микрофазово-разделенных структур в полученных триблок-сополимерах, показаны критерии их образования и установлен характер распределения субблоков макромолекул в микросегрегированных структурах.
- Впервые продемонстрированно влияние природы связывания фотохромных групп в триблок-сополимерах (ковалентная или водородная связь) на характер их фотоориентации под действием линейно-поляризованного света. Облучение свежеприготовленных пленок триблок-сополимеров с ковалентно-связанными азобензольными группами приводит к процессу ориентации только этих групп в то время как фенилбензоатные группы остаются разупорядоченными. В триблок-сополимерах с водородно-связанными азобензольными группами

наблюдается кооперативный процесс фотоориентации фотохромных и нефотохромных групп.

- Впервые показано, что, используя последовательно стадии облучения линейнополяризованным светом и термического отжига пленок триблок-сополимера с ковалентно-связанными мезогенными азобензольными группами, можно получать образцы с взаимно перпендикулярной ориентацией мезогенных групп разной химической природы.
- Впервые проведено сравнительное исследование процесса записи голографических дифракционных решеток ряду гомополимер В статистический сополимер – триблок-сополимер, и показано, что в случае ориентационной триблок-сополимера возможна запись исключительно дифракционной решетки отсутствии изменений рельефа при полном поверхности.

Теоретическая значимость работы обоснована тем, что установлено влияние молекулярного строения фоточувствительных триблок-сополимеров (химическая структура мономерных звеньев субблоков, характер связи между полимерной цепью и фотохромной мезогенной группой, степень полимеризации субблоков) на их физико-химические свойства. Полученные результаты важны для развития представлений о характере фотоориентационных процессов, проходящих в пленках фотохромных ЖК блок-сополимеров под действием светового облучения, а также для разработки теоретических основ предсказания свойств таких блок-сополимеров в массе и тонких пленках.

Практическая значимость работы. Предложенные в работе подходы к получению симметричных фотохромных ЖК триблок-сополимеров, содержащих мезогенные группы в каждом субблоке, позволяют существенно расширить возможности синтеза фотохромных ЖК блок-сополимеров. Это открывает широкие перспективы для создания новых полимерных систем, способных к периодически самопроизвольному образованию сложных упорядоченных надмолекулярных структур, внутренняя организация которых регулируется с помощью света и термического отжига. Такие блок-сополимеры с управляемой модуляцией показателя преломления на нанометровом масштабе могут служить основой для разработки нового поколения перспективных материалов, применяемых в фотооптике, фотонике, голографии.

Методология и методы исследования базировались на комплексном подходе к решению поставленных в диссертации задач, заключающемся в синтетическом дизайне фотохромных ЖК блок-сополимеров и использовании современных экспериментальных и теоретических методов исследования их физико-химических свойств, включая синтезированные модельные полимеры: гомополимеры и статистические применяли сополимеры. В работе следующие методы хроматография гель-проникающая **(ΓΠΧ)**, поляризационная исследования: микроскопия (**ПОМ**), рентгеноструктурный (PCA), оптическая анализ просвечивающая электронная микроскопия (ПЭМ), атомно-силовая микроскопия (АСМ), дифференциальная сканирующая калориметрия (ДСК), поляризационная УФ-видимая спектроскопия, а так же ИК- и ЯМР-спектроскопии.

Положения, выносимые на защиту:

- Подход к синтезу новых фотохромных симметричных ЖК триблоксополимеров, содержащих мезогенные группы в каждом субблоке и доказательство строения синтезированных блок-сополимеров.
- Структурно-фазовые модели упаковки боковых мезогенных групп в синтезированных фотохромных ЖК триблок-сополимерах.
- Влияние природы связывания фотохромных групп (ковалентная или водородная связь) с основной полимерной цепью на характер фотоориентационных процессов, протекающих в их пленках под действием поляризованного света.
- Раздельное управление мезогенными группами разной химической природы, расположенных в разных субблоках фотохромного ЖК триблок-сополимера путем облучения светом и отжигом.
- Голографическая и латентная запись информации в пленках изученных триблок-сополимеров.

<u>Личное участие автора</u> являлось основополагающим и заключалось в непосредственном участии во всех этапах работы – от постановки задачи, планирования и выполнения экспериментов до обсуждения и оформления полученных результатов.

<u>Степень</u> достоверности и апробация результатов. Достоверность полученных результатов подтверждена тем, что работа выполнена на высоком экспериментальном уровне с использованием современных подходов и методов: ГПХ, УФ-видимая и ИК спектроскопия, ПОМ, ПЭМ, АСМ, РСА, ДСК. Результаты работы были представлены на Первой всероссийской конференции по жидким кристаллам (Иваново, 17-21 сентября, 2012), Международной конференции аспирантов и студентов «Ломоносов-2013» (Москва, 8-13 апреля, 2013), Всероссийской Каргинской Конференции «Полимеры-2014» и «Полимеры-2017» (Москва, 27-31 января, 2014 и 13-17 июня, 2017), XII Международной конференции по наноструктурированным материалам NANO 2014 (Москва, 13-18 июля, 2014), 6-й Международной Коллоидной Конференции (Берлин, 19-22 июня, 2016), Х Международной конференции молодых ученых по химии «МЕНДЕЛЕЕВ-2017» (Санкт-Петербург, 4-7 апреля 2017), 14-й Европейской конференции по жидким кристаллам (Москва, 25-30 июня, 2017).

Публикации. По теме диссертации опубликовано 10 печатных работ, включая 3 оригинальные статьи, из которых 1 статья опубликована в рецензируемом научном журнале из списка, определенного Минобрнауки РФ, входящим в международные базы данных, 2 статьи опубликованы в рецензируемых научных журналах, индексируемых по базе Web of Science, а также 7 тезисов докладов на всероссийских и международных конференциях.

<u>Структура и объем работы.</u> Диссертационная работа состоит из введения, обзора литературы, экспериментальной части, обсуждения результатов, заключения, выводов и списка цитируемой литературы (160 наименований). Работа изложена на 205 страницах, содержит 111 рисунков, 18 таблиц.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении дана общая характеристика работы, обоснована актуальность научного направления, практическая и теоретическая значимость и новизна полученных результатов, сформулирована основная цель исследования.

Обзор литературы посвящен рассмотрению современного состояния исследований в области синтеза блок-сополимеров методами радикальной полимеризации с обратимой деактивации цепи и свойств фотохромных ЖК блок-сополимеров с ковалентно- и водородно-связанными азобензольными группами.

На основании рассмотренных литературных данных подводится краткий итог имеющихся в литературе данных по синтезу и исследованию гребнеобразных фотохромных ЖК блок-сополимеров и формулируются задачи работы.

В экспериментальной части представлены методики синтеза низкомолекулярных прекурсоров, акрилового анилинсодержащего мономера, гомополимеров, статистических сополимеров и триблок-сополимеров, а также приведено описание использованных в работе физико-химических методов исследования.

Полученные автором **результаты и их обсуждение** представлены в виде трех основных частей, посвященных рассмотрению подходов к синтезу фотохромных ЖК гребнеобразных триблок-сополимеров различного строения, их фазовому состоянию и фотооптическим свойствам.

1. Синтез ЖК триблок-сополимеров, содержащих мезогенные группы в каждом субблоке

Известно, что при радикальной полимеризации азобензолсодержащих акриловых мономеров протекает передача цепи растущих макрорадикалов на азобензольный фрагмент из-за чего теряется контроль над молекулярно-массовыми характеристиками получаемого продукта. Нами был предложен альтернативный двухэтапный подход к макромолекулярному дизайну фотохромных ЖК блоксополимеров по принципу контролируемая полимеризация – контролируемая функционализация. Этот подход основан на введении азобензольных фрагментов через ковалентную или водородную связи в синтезированные на первом этапе методом ОПЦ-полимеризации макромолекулы блочного строения, содержащие фенилбензоатные мезогенные группы и группы с реакционноспособными фрагментами, такими, как например пиридиновый или анилиновый фрагменты.

Рассмотрим более подробно, на конкретных примерах, синтетические схемы получения фотохромных симметричных ЖК триблок-сополимеров.

1.1. Синтез фотохромных ЖК триблок-сополимеров с ковалентно-связанными азобензолсодержащими группами

Разработанная нами схема синтеза таких блок-сополимеров представлена на Рис. 2.

Рис. 2. Схема синтеза симметричных ЖК триблок-сополимеров с ковалентносвязанными мезогенными фотохромными группами.

На первом этапе предложенного подхода доказана реализация механизма ОПЦ-полимеризации для анилинсодержащего мономера **A** (Рис. 2), проведена оптимизация условий полимеризации (оптимальные концентрация ОПЦ-агента, инициатора ДАК и глубина конверсии), а также доказано, что тритиокарбонатная группа находится в центре макромолекул полученных полимеров. На основании полученных результатов были синтезированы полиОПЦ-агенты pA_8 и pA_{20} (подстрочный индекс указывает на степень полимеризации), молекулярномассовые характеристики которых приведены на Рис. 2.

Последней стадией данного этапа была блок-сополимеризация полиОПЦагентов **pA**₈ и **pA**₂₀ с мономером **PhM**, результатом которой стали два триблоксополимера **pA**₁₀-*b*-**pPhM**₈₀-*b*-**pA**₁₀ и **pA**₄-*b*-**pPhM**₈₀-*b*-**pA**₄ (Рис. 2) типа А-Б-А, где центральный субблок, содержащий **PhM** группы, в обоих триблок-сополимерах имеет одинаковую степень полимеризации, а для периферийных субблоков данная величина равна либо 10, либо 4.

На втором этапе проводили полимераналогичную реакцию азосочетания между триблок-сополимерами и солью диазония (Рис. 2). Наличие в анилиновом фрагменте заместителя с сильными электродонорными свойствами обеспечило протекание реакции азосочетания с 100% выходом по данным ¹Н ЯМР-спектроскопии.

Аналогичный подход, основанный ОПЦ-полимеризации на И полимераналогичной реакции азосочетания, был использован для синтеза фотохромного гомополимера pAzoA₂₀ статистического И сополимера р(AzoA₇-ran-PhM₃₀) (Рис. 1), который содержит, как и триблок-сополимер рАzoA₁₀-*b*-рPhM₈₀-*b*-рAzoA₁₀, 20% (мольн.) азобензольных групп (Рис. 2).

1.2. Синтез ЖК триблок-сополимеров с водородно-связанными фотохромными группами

Первый этап синтеза ЖК триблок-сополимеров с водородно-связанными азобензольными группами заключался в проведении ОПЦ-полимеризации в присутствии ММАТК с целью получения двух полиОПЦ-агентов: поливинилпиридинов **pVP**₄₀ и **pVP**₁₂₀. Далее полученные полиОПЦ-агенты вводили в блок-сополимеризацию с мономером **PhM**, в результате которой получены триблок-сополимеры **pVP**₂₀-*b*-**pPhM**₄₀-*b*-**pVP**₂₀ и **pVP**₆₀ (Puc. 3).

Рис. 3. Схема синтеза ЖК триблок-сополимеров с водородно-связанными фотохромными группами.

В случае рассматриваемых триблок-сополимеров связь между азобензольным макромолекулой фрагментом осуществлялась через И нековалентное взаимодействие, а именно через водородную связь (Рис. 3). Поскольку есть вероятность неполного связывания азобензольного производного АгоОН с пиридиновым фрагментом макромолекулы блок-сополимера, сначала была изучена серия модельных водородно-связанных полимеров на основе гомополимера рVP₅₀ и АгоОН. Методом ИК-спектроскопии установлено, что при доли азобензольного производного АгоОН равной 75% (мольн.) и ниже по отношению к звеньям поливинилпиридина наблюдается их полное связывание. Так как пленки, полученные из полимеров с содержанием АгоОН более 50%, обладали заметным рассеянием света, то для изучения фазового поведения и фотооптических свойств доля АгоОН выбрана равной 50%. Такое содержание фотохромов в полимере обеспечивает полное связывание низкомолекулярного компонента и высокую прозрачность получаемых пленок. Исходя из полученных данных, для блоксополимеров доля АгоОН по отношению к звеньям винилпиридина также выбрана равной 50%.

2. Фазовое поведение и структура фотохромных ЖК триблок-сополимеров

В данном разделе рассмотрено фазовое поведение синтезированных ЖК триблок-сополимеров на основе методов ДСК, ПОМ, РСА, ПЭМ и АСМ, а также проведено сопоставление их структурно-фазового поведения с соответствующими образцами сравнения.

2.1. Триблок-сополимеры с ковалентно-связанными фотохромными группами

Чтобы разобраться в фазовом поведении триблок-сополимеров, необходимо обсудить фазовое состояние образующих их субблоков (в данном случае гомополимеров). По данным ДСК и ПОМ полимер **pPhM**₈₀ образует нематическую (N) мезофазу с характерной мраморной текстурой. Для полимера **pAzoA**₂₀ наблюдается веерная текстура, характерная для смектической A (SmA) мезофазы, что подтверждается данными PCA (Puc. 4).

Рис. 4. Рентгенограмма (а) и дифрактограмма (б) гомополимера **pAzoA**₂₀; схема упаковки азобензолсодержащих групп в SmA фазе (в).

На рентгенограмме его ориентированного волокна (Рис. 4а,б) присутствуют три малоугловых рефлекса, индексируемых как $d_{001} = 24.51$, $d_{002} = 12.27$ и $d_{003} = 8.17$ Å и являющихся порядками отражения от смектических слоев и один диффузный рефлекс 4.32 Å в больших углах рассеяния, соответствующий неупорядоченному расположению мезогенных групп в слое. Учитывая, что длина боковой мезогенной группы со спейсером равна 21.19 Å, можно предположить, что в мезофазе азобензольные группы упаковываются с их полным перекрыванием, как это показано на Рис. 4в. Характер расщепления рефлексов свидетельствует о реализации в полимере SmA мезофазы, в которой мезогенные группы вдоль оси вытяжки волокна.

образце ЖК триблок-сополимера pAzoA₁₀-b-pPhM₈₀-b-pAzoA₁₀ В на макроскопическом масштабе методом ПОМ наблюдается образование нематической ЖК фазы с характерной шлирен текстурой. Однако на его рентгенограмме присутствуют те же малоугловые рефлексы от SmA фазы, что и на рентгенограмме гомополимера рАгоА₂₀ (Рис. 5а). С другой стороны, на рентгенограмме статистического сополимера p(AzoA₇-ran-PhM₃₀), который имеет соотношение мезогенных групп, но их распределение вдоль аналогичное полимерной цепи случайно, смектические рефлексы отсутствуют. Данный результат косвенно указывает на образование микрофазово-разделенной структуры в триблок-сополимере **pAzoA**₁₀-*b*-**pPhM**₈₀-*b*-**pAzoA**₁₀.

Исследование методом ACM поверхности отожженной пленки данного триблок-сополимера выявило наличие микрофазово-разделенной структуры с характерным размером структурных элементов 10-15 нм (Рис. 5б).

Рис. 5. Рентгенограмма (а) ЖК триблок-сополимера **pAzoA₁₀-b-pPhM₈₀-b-pAzoA₁₀,** топографическое изображение (б) его отожженной пленки, полученное методом ACM и модель микрофазово-разделенной структуры (в), предложенной для триблок-сополимера **pAzoA₁₀-b-pPhM₈₀-b-pAzoA**10.

Площадь, занимаемая темными участками на Рис. 5б, составляет порядка 20%, что соответствует мольному содержанию азобензольных групп в триблоксополимере **pAzoA**₁₀-*b*-**pPhM**₈₀-*b*-**pAzoA**₁₀. На основе полученных данных была предложена структурная модель, в которой азобензольные субблоки образуют дискретные домены, расположенные в непрерывной нематической матрице, состоящие из фенилбензоатных звеньев (Рис. 5в).

Таблица	1.	Температуры	и	теплоты	фазовых	переходов	фотохромных	ЖК	
триблок-сополимеров и соответствующих образцов сравнения									

Полимер	T _{ст} , °С	Температуры плавления ЖК фаз, °С	Теплота плавления ЖК фазы, Дж/г
pAzoA ₂₀	75	SmA* 155 I**	2.2
pPhM ₈₀	25	N** 125 I	0.9
p(AzoA7- <i>ran</i> -PhM30)	37	N 108 I	0.7
pAzoA4- <i>b</i> -pPhM80- <i>b</i> -pAzoA4	33	N 122 I	0.9
pAzoA ₁₀ - <i>b</i> -pPhM ₈₀ - <i>b</i> -pAzoA ₁₀	33	LC**** 136 I	1.4

*SmA – смектическая ЖК фаза. **I – изотропный расплав. ***N – нематическая ЖК фаза. ****LC – микрофазово-разделенная структура, в которой дискретные смектические азобензосодержащие микрофазы окружены нематической матрицей, состоящей из **PhM** групп.

На рентгенограмме триблок-сополимера **pAzoA4-***b***-***p***PhM80-***b***-pAzoA4** присутствует только диффузное гало, при отсутствии малоугловых рефлексов, что свидетельствует о реализации только нематической ЖК фазы в полимере. Методом ACM в пленке данного триблок-сополимера не обнаружены какие-либо признаки микрофазово-разделенной структуры. Полученные результаты указывают, что в данном случае наблюдается смешение субблоков разной химической природы и образование единой нематической ЖК фазы, как и в случае статистического сополимера **p**(**AzoA7***-ran***-PhM30**). По всей видимости, такое поведение триблок-сополимера **pAzoA4***-b-p***PhM80***-b-***pAzoA4** связано со слишком низкой степенью полимеризации азобензольных субблоков.

Фазовое состояние и температуры фазовых переходов полимеров с ковалентно присоединенными азобензольными группами представлены в таблице 1.

2.2. Триблок-сополимеры с водородно-связанными фотохромными группами

Поскольку исследование фазового поведения водородно-связанных ЖК блоксополимеров представляет непростую задачу, рассмотрим сначала свойства составляющих их компонентов. Для триблок-сополимеров **pVP**₂₀-*b*-**pPhM**₄₀-*b***pVP**₂₀ и **pVP**₆₀-*b*-**pPhM**₄₀-*b*-**pVP**₆₀ характерно образование нематической ЖК фазы, обусловленной наличием нематогенных фенилбензоатных групп в центральном субблоке. Это выражается в образовании характерной мраморной текстуры, наблюдаемой методом ПОМ (Рис. ба).

Puc. 6. Микрофотография текстуры мраморной триблок-сополимера $pVP_{20}-b-pPhM_{40}-b-pVP_{20}$, полученная методом ПОМ (а), микрофотография микрофазово-разделенной триблок-сополимера структуры *pVP*₆₀-*b*-*pPhM*₄₀-*b*-*pVP*₆₀ (б) триблок-сополимера и *pVP*₃₀*Azo*₃₀*-b-pPhM*₄₀*-b-pVP*₃₀*Azo*₃₀ (в), полученные методом ПЭМ. Образцы для метода ПЭМ контрастировали в парах йода. На врезках приведены изображения, рассчитанные основе на изображений ПЭМ алгоритмом быстрого преобразования Фурье.

Периферийные поливинилпиридиновые субблоки аморфны. Экспериментально удалось определить только температуру стеклования ЖК субблока, в то время как сигнал от расстекловывания периферийных субблоков перекрывался с более интенсивным пиком от плавления ЖК фазы центрального субблока.

Методом ПЭМ показано, что для триблок-сополимеров **pVP₂₀-b-pPhM₄₀-b-pVP₂₀** и **pVP₆₀-b-pPhM₄₀-b-pVP₆₀** характерно образование ламеллярной микрофазово-разделенной структуры (Рис. 6б). Периодичность наблюдаемой структуры составляет около 17 нм.

Теперь рассмотрим фазовое состояние полимеров, содержащих водородносвязанные азобензольные группы. Водородно-связанный полимер **pVP**₂₅**Azo**₂₅ не образует ЖК фазы т.е. является аморфным. Температура стеклования данного полимера заметно ниже, чем у исходного гомополимера **pVP**₅₀ (Таблица 2), вследствие пластифицирующего действия введенного низкомолекулярного производного **AzoOH**.

Таблица 2. Температуры и теплоты фазовых переходов ЖК триблок-сополимеров, содержащих винилпиридиновые звенья и соответствующих образцов сравнения

Полимер	<i>Т</i> _{ст} , °С	Температуры плавления ЖК фазы, °С	Теплоты плавления ЖК фаз, Дж/г
pVP ₅₀ *	110	-	-
pVP ₂₅ Azo ₂₅ *	85	-	-
pVP ₂₀ - <i>b</i> -pPhM ₄₀ - <i>b</i> -pVP ₂₀	36	N** 111 I***	0.5
pVP ₆₀ - <i>b</i> -pPhM ₄₀ - <i>b</i> -pVP ₆₀	34	N 110 I	0.4

*Полимер является аморфным. **N – нематическая ЖК фаза. ***I – изотропный расплав.

Исходя из вышесказанного, можно утверждать, что периферийные субблоки триблок-сополимеров **pVP30Az030-b-pPhM40-b-pVP30Az030** и **pVP10Az010-b-pPhM40-b-pVP10Az010** аморфны, а для центрального фенилбензоатного субблока характерно образование нематической ЖК фазы.

Введение в триблок-сополимеры **pVP**₆₀-*b*-**pPhM**₄₀-*b*-**pVP**₆₀ и **pVP**₂₀-*b*-**pPhM**₄₀-*b*-**pVP**₂₀ фотохромного производного **AzoOH** приводит к изменению типа микрофазово-разделенной структуры, образуемой триблок-сополимером, с ламеллярной на цилиндрическую вследствие изменения соотношения объемных долей субблоков (Рис. 6в).

Таким образом, введение низкомолекулярного азобензольного производного AzoOH в ЖК триблок-сополимеры **pVP**₂₀-*b*-**pPhM**₄₀-*b*-**pVP**₂₀ и **pVP**₆₀-*b*-**pPhM**₄₀-*b*-**pVP**₆₀ приводит к изменению температуры стеклования субблока, содержащего звенья винилпиридина, а также может изменять тип образуемой триблок-сополимером микрофазово-разделенной структуры.

3. Фотоориентационные процессы в тонких пленках ЖК триблоксополимеров

Известно, что при облучении пленок азобензолсодержащих полимеров линейно-поляризованным светом наблюдается наведение фотоиндуцированной ориентации (дихроизма) азобензольных групп. Это явление связано с циклическим процессом *транс-цис-транс* фотоизомеризации азобензольных групп (Рис. 7а), эффективность протекания которого зависит от угла между азобензольным фрагментом и плоскостью поляризации света, сопровождающегося вращательной диффузией хромофоров, что приводит к ориентации азобензольных групп

перпендикулярно плоскости поляризации света (фотоориентации, Рис. 7б). Для оценки степени ориентации мезогенных групп использовалась величина линейного дихроизма *D*:

$$D = \frac{A_{\perp} - A_{\parallel}}{A_{\perp} + A_{\parallel}},$$

где A_{\parallel} и A_{\perp} – поляризованное поглощение, измеренное при параллельной и взаимно перпендикулярной ориентации плоскости поляризации сканирующего луча спектрометра и облучающего света, соответственно. Поскольку все синтезированные полимеры образовывали различные типы мезофаз, то для изучения фотоориентационных процессов, протекающих в них под действием линейно-поляризованного света, все образцы «приводили» к одному и тому же исходному состоянию путем аморфизации пленок, используя метод spin-coating.

3.1. Фотоориентационные процессы в пленках ЖК триблок-сополимеров с ковалентно присоединенными азобензольными группами

ЖК Облучение аморфизованных пленок полимеров $pAzoA_{20}$, р(AzoA₇-*ran*-PhM₃₀) и pAzoA₁₀-*b*-pPhM₈₀-*b*-pAzoA₁₀ линейно-поляризованным светом вызывает наведение фотоиндуцированного дихроизма (D) азобензольных групп (Рис. 8a). При этом уменьшению величины A_{II} соответствует примерно равное увеличение A_{\perp} (A_{\parallel} и A_{\perp} – поглощение пленкой полимера света, поляризованного параллельно и перпендикулярно плоскости поляризации сканирующего луча спектрометра, соответственно) (Рис. 8б). Это указывает, что при облучении пленок линейно-поляризованным светом происходит ориентация АгоА групп. Характер роста и предельное значение фотоиндуцированного дихроизма для триблок-сополимера **pAzoA**₁₀-*b*-**pPhM**₈₀-*b*-**pAzoA**₁₀ практически совпадают с данными, полученными для гомополимера рАгоА20 и существенно отличаются от результатов для сополимера p(AzoA7-ran-PhM30), имеющего тот же состав, что и триблок-сополимер. Такое поведение указывает на практически идентичное окружение хромофоров в гомополимере **pAzoA**₂₀ и триблоксополимере

pAzoA₁₀-*b*-**pPhM**₈₀-*b*-**pAzoA**₁₀, что согласуется с данным о микрофазовом разделении в триблок-сополимере **pAzoA**₁₀-*b*-**pPhM**₈₀-*b*-**pAzoA**₁₀.

Для триблок-сополимера **pAzoA**₄-*b***-pPhM**₈₀-*b***-pAzoA**₄ наблюдается наименьшее предельное значение фотоиндуцированного дихроизма (Рис. 8а), что, по всей видимости, связано с низкой долей **AzoA** групп, которые равномерно распределены в фенилбензоатной матрице т.к. триблок-сополимер не образует микрофазоворазделенной структуры (раздела 2.1).

Рис. 8. Кинетика роста дихроизма (D_{Azo}) **АzoA** групп (a) и изменение компонент поляризованного поглощения **AzoA** групп A_1 и A_{\perp} отнесенные к значению до облучения (б) при облучении аморфизованных пленок полимеров линейнополяризованным светом; поляризационные спектры поглощения пленки статистического сополимера **p**(**AzoA**₇-**ran-PhM**₃₀) (в) и триблок-сополимера **pAzoA**₁₀-**b**-**pPhM**₈₀-**b**-**pAzoA**₁₀ (г) после облучения линейно-поляризованным светом. Условия облучения: $\lambda = 546$ нм, I = 1.5 мBm/см².

В ходе облучения пленок статистического сополимера **p**(AzoA₇-ran-PhM₃₀) вместе с AzoA фрагментами ориентируются и PhM группы т.е. наблюдается кооперативный процесс фотоориентации фотохромных и нефотохромных групп. Это приводит к равным значениям дихроизма, рассчитанным на длинах волн поглощения азобензольных и фенилбензоатных групп (Рис. 8в, Таблица 3). Противоположная ситуация наблюдается для триблок-сополимера **pAzoA₁₀-b-pPhM₈₀-b-pAzoA₁₀**, где при облучении пленок дихроизм **PhM** групп равен практически нулю т.е. кооперативный эффект отсутствует (Рис. 8г, Таблица 3)

Повторное облучение фотоориентированного образца азобензолсодержащего полимера линейно-поляризованным светом, но с другой ориентацией плоскости поляризации может привести к фотопереориентации азобензольных групп. Для фотохромного гомополимера pAzoA₂₀ триблок-сополимера И **pAzoA**₁₀-*b*-**pPhM**₈₀-*b*-**pAzoA**₁₀ значение дихроизма при фотопереориентации равно аналогичному значению, достигаемому при фотоориентации, что указывает на фотоориентации обратимость процессов (Таблица 3). Для сополимера р(AzoA₇-ran-PhM₃₀) при фотопереориентации значение дихроизма существенно ниже, чем при фотоориентации. Как было установлено, такое поведение связанно с образованием гомеотропной ориентации мезогенных групп (т.е. с выстраиванием длинных осей мезогенных групп перпендикулярно плоскости подложки).

Таблица 3. Предельные значения дихроизма азобензольных и фенилбензоатных групп, достигаемых при фотоориентации и фотопереориентации пленок азобензолсодержащих полимеров (T = 25 °C)

Полинор	Фотоори	ентация	Фотопереориентация		
полимер	DAzoA	DPhM	DAzoA	D_{PhM}	
pAzoA ₂₀	0.22	0	-0.22	0	
p(AzoA7-ran-PhM30)	0.57	0.55	-0.15	-0.17	
pAzoA ₁₀ - <i>b</i> -pPhM ₈₀ - <i>b</i> -pAzoA ₁₀	0.24	0.05	-0.21	-0.05	
pAzoA ₄ - <i>b</i> -pPhM ₈₀ - <i>b</i> -pAzoA ₄	0.08	0	-	-	

Известно, что отжиг фотоориентированных пленок ЖК полимеров может приводит к росту дихроизма. Для пленки сополимера **p**(**AzoA**₇-*ran*-**PhM**₃₀) отжиг вызывает лишь незначительное увеличение дихроизма (с 0.57 до 0.67) как **AzoA**, так и **PhM** групп, а нагрев выше температуры изотропизации приводит к разупорядочиванию мезогенных групп и падению дихроизма до нуля. В случае триблок-сополимера **pAzoA**₁₀-*b*-**pPhM**₈₀-*b*-**pAzoA**₁₀ отжиг фотоориентированной пленки при температуре около 50°С приводит к подстраиванию **PhM** групп под ориентацию **AzoA** фрагментов т.е. наблюдается кооперативный эффект (Puc. 9).

Отжиг при температурах выше 60°С вызывает рост величины дихроизма AzoA и PhM групп. Если предположить, что температура стеклования AzoA субблока приблизительно равна 60°С, то нагрев выше этой температуры будет приводить к

образованию SmA фазы в азобензольных микрофазах. Это в свою очередь приведет к увеличению дихроизма **AzoA** фрагментов и, вследствие кооперативного эффекта, вызовет рост упорядоченности **PhM** групп. Такое объяснение полностью согласуется с результатами по фазовому поведению триблок-сополимера.

Кроме того, в пленке данного триблок-сополимера можно индуцировать взаимно перпендикулярную ориентацию мезогенных групп разной химической природы. Для этого необходимо провести фотоориентацию (Рис. 10, состояние II), затем отжечь пленку при температуре 50°С, вызвав тем самым ориентацию **PhM** групп, но сохранив **AzoA** микрофазы в аморфизованном состоянии (состояние III) и, наконец, провести фотопереориентацию **AzoA** групп (состояние IV).

Рис. 10. Схематическое изображение ориентационных процессов, протекающих при облучении линейно-поляризованным светом и отжиге в пленках триблоксополимера **pAzoA**10-**b-pPhM**80-**b-pAzoA**10.

3.2. Запись голографических дифракционных решеток в пленках ЖК триблоксополимера **pAzoA**10-**b-pPhM**80-**b-pAzoA**10

Описанные выше особенности кооперативного поведения азобензольных и фенилбензоатных групп при фотоориентации и отжиге пленок триблок-сополимера **pAzoA₁₀-b-pPhM₈₀-b-pAzoA₁₀** наблюдались на масштабах всего образца. Однако, весьма интересным и важным с практической точки зрения является случай, когда разные участки образца облучаются светом с разной поляризацией, что приводит к модуляции фотоиндуцируемой ориентации азобензольных групп. Для проведения такого эксперимента был использован подход, широко применяемый для записи

голографических поляризационных дифракционных решеток и заключающийся в пленки триблок-сополимера результатом интерференции облучении ДВУХ лучей лазера с противоположной циркулярной поляризацией. когерентных интерференционная картина характеризуется Получаемая постоянной интенсивностью света, но периодически меняющейся ориентацией плоскости поляризации линейно-поляризованного света. После облучения в течение 30 с дифракционная эффективность записанной решетки составила примерно 0.025% (Рис. 11а). Однако, при отжиге наблюдается значительный рост дифракционной эффективности (Рис. 11б). Дифракционная эффективность при отжиге увеличивается примерно в 70 раз, достигая значения 2%. Низкое значение дифракционной эффективности, полученное при записи решетки на аморфизованной пленке триблок-сополимера, по всей видимости, связано с относительно низкой долей и низким значением дихроизма AzoA групп. Кроме того, в аморфизованной пленке вследствие отсутствия кооперативного эффекта в ходе записи могут участвовать только АгоА группы т.е. в процессе участвует только 1/5 материала пленки.

Рис. 11. Рост дифракционной эффективности (η) в ходе обучения (а) и усиление дифракционной эффективности (G) в ходе отжига при различных температурах (б) облученных пленок триблок-сополимера **pAzoA10-b-pPhM80-b-pAzoA10**. На врезке приведены фотографии дифракционной картины луча He-Ne лазера, прошедшего через пленку триблок-сополимера (до и после отжига).*

Рост дифракционной эффективности при отжиге объясняется, во-первых, ростом дихроизма **AzoA** групп (вследствие образования SmA фазы), а также «подстройкой» **PhM** групп, которые составляют 4/5 от общего количества мезогенных групп в образце, под ориентацию фотохромных фрагментов (кооперативный эффект между группами разной химической природы).

Таким образом, для записи голографических поляризационных дифракционных решеток и последующего отжига характерны те же особенности изменения ориентации фотохромных и нефотохромных групп, что и при фотоориентации в пленках триблок-сополимера.

^{*}Измерения выполнены к.х.н Рябчуном А.В. в Fraunhofer Institute for Applied Polymer Research, (Потсдам-Гольм, Германия).

3.3. Фотоориентационные процессы в пленках ЖК триблок-сополимеров с водородно-связанными азобензольными группами

Как и в случае полимеров с ковалентно присоединёнными азобензольными группами, облучение аморфизованных пленок полимеров pVP₂₅Azo₂₅, рVP₁₀Azo₁₀-*b*-pPhM₄₀-*b*-pVP₁₀Azo₁₀ и pVP₃₀Azo₃₀-*b*-pPhM₄₀-*b*-pVP₃₀Azo₃₀ линейноориентацию поляризованным светом вызывает азобензольных групп перпендикулярно плоскости поляризации света. Однако, в данном случае величина фотоиндуцированного дихроизма Аго групп для триблок-сополимеров оказывается несколько выше, чем для модельного полимера **pVP**₂₅Azo₂₅ (Рис. 12а).

Рис. 12. Кинетика роста дихроизма **Azo** групп (D_{Azo}) в аморфизованных пленках полимеров (a) и кинетика роста дихроизма **Azo** (D_{Azo}) и **PhM** (D_{PhM}) групп в аморфизованной пленке триблок-сополимера **pVP₃₀Azo₃₀-b-pPhM₄₀-b-pVP₃₀Azo₃₀** (б) при облучении линейно-поляризованным светом ($\lambda = 457$ нм, I = 70 мBm/см²).

Кроме того, при облучении линейно-поляризованным светом аморфизованных пленок триблок-сополимеров **pVP**₁₀Azo₁₀-*b*-**pPhM**₄₀-*b*-**pVP**₁₀Azo₁₀ и **pVP**₃₀Azo₃₀-*b***pPhM**₄₀-*b*-**pVP**₃₀Azo₃₀ вместе с ориентацией Azo фрагментов наблюдается также и ориентация нефотохромных PhM групп т.е. фотоориентация сопровождается кооперативным эффектом между фотохромными и нефотохромными группами (Рис. 12б). Интересно, что рост дихроизма PhM групп происходит несколько медленнее, чем рост дихроизма Аго групп. Как было указано выше, данные триблок-сополимеры характеризуются наличием микрофазово-разделенной структуры и, по всей видимости, «передача» ориентации от Azo групп к PhM группам через границу раздела микрофаз требует дополнительного времени. Также следует отметить, что фотопереориентация в случае триблок-сополимеров с группами водородно-связанными Azo приводит к меньшим значениям фотоиндуцированного дихроизма (Рис. 12б). Это связано с накоплением в ходе облучения гомеотропно ориентированных Аго групп.

Отжиг фотоориентированных триблок-сополимеров пленок рVP10Az010-b-pPhM40-b-pVP10Az010 и pVP30Az030-b-pPhM40-b-pVP30Az030 выше температуры стеклования приводит к росту дихроизма Аго групп: с 0.37 до 0.56 и с 0.29 до 0.47, соответственно. В тоже время дихроизм PhM групп меняется незначительно: с 0.28 до 0.33 для **рVP₃₀Azo₃₀-b-pPhM₄₀-b-pVP₃₀Azo₃₀** и с 0.41 до 0.48 для **рVP₁₀Azo₁₀-b-pPhM₄₀-b-pVP₁₀Azo₁₀**. С другой стороны, при отжиге фотоориентированной пленки модельного полимера pVP₂₅Azo₂₅ рост дихроизма незначителен (0.25)против 0.27). Рост дихроизма В ходе отжига фотоориентированных пленок мезогенсодержащих полимеров обычно связывают с

образованием ЖК фазы. Следовательно, низкое значение дихроизма полимера **pVP**₂₅Azo₂₅ обусловлено его аморфным состоянием, а триблок-сополимеров – образованием нематической ЖК фазы **PhM** субблоком в ходе отжига пленки. Таким образом, наличие нематогенного **PhM** субблока в триблок-сополимерах способствует наведению большей величины дихроизма Azo групп как в ходе фотоориентации, так и при отжиге.

3.4. Особенности записи изображений на пленках триблок-сополимеров с водородно-связанными азобензольными группами

Интересной особенностью блок-сополимеров c водородно-связанными азобензольными группами является возможность удаления фотохромных групп под действием селективного растворителя. Выбор растворителя задается его способностью растворять азобензольное производное и не растворять полимер. Для рассматриваемых систем таким растворителем оказался диэтиловый эфир. Экстракция АгоОН из фотоориентированной пленки триблок-сополимера **рVP₃₀Azo₃₀-b-pPhM₄₀-b-pVP₃₀Azo₃₀** диэтиловым эфиром позволила полностью удалить хромофор и получить бесцветные пленки. При этом ориентация PhM групп, наведенная вследствие кооперативного эффекта между фотохромными и нефотохромными группами при облучении пленок триблок-сополимера линейнополяризованным светом, полностью сохраняется (Рис. 13а, б). Если исходный процесс фотоориентации проводить через маску т.е. записать изображение, то после удаления фотохромных групп это изображение сохранится (Рис. 13в-е).

Рис. 13. Поляризационные спектры поглощения в УФ-видимой области (а, б), фотографии (в, д) и микрофотографии, полученные методом ПОМ (г, е) до (а, в, г) и после (б, д, е) экстракции соединения **АzoOH** диэтиловым эфиром из пленки триблок-сополимера **pVP**30**Azo30-b-pPhM40-b-pVP**30**Azo**30.

Таким образом, облучение линейно-поляризованным светом через маску и последующее воздействие растворителя на пленку триблок-сополимера **pVP**₃₀**Azo**₃₀-*b*-**pPhM**₄₀-*b*-**pVP**₃₀**Azo**₃₀ позволяет получить бесцветный и прозрачный образец с записанным фазовым изображением, которое можно наблюдать только в скрещенных поляризаторах (так называемая латентная запись).

выводы

- 1. Впервые методом радикальной полимеризации с обратимой деактивацией цепи синтезированы симметричные жидкокристаллические фотохромные триблоксополимеры типа А-Б-А, содержащие мезогенные группы в каждом из субблоков. Центральный субблок триблок-сополимеров (Б) содержит ковалентно присоединенные к основной полимерной цепи фенилбензоатные периферийные субблоки (A) ковалентно или водородно группы, a присоединенные фотохромные азобензольные группы.
- 2. Определены термодинамические параметры фазовых переходов и структурные типы мезофаз триблок-сополимеров и модельных полимеров. Изучены особенности формирования микрофазово-разделенных структур в пленках фотохромных ЖК триблок-сополимеров и предложены структурно-фазовые модели упаковки в них мезогенных групп.
- 3. На примере ЖК триблок-сополимеров с ковалентно присоединенными азобензольными группами впервые продемонстрирована возможность независимого фотоуправления ориентацией фотохромных и нефотохромных групп путем облучения линейно-поляризованным светом с последующим отжигом пленок блок-сополимеров. Установлено, что для триблок-сополимеров с водородно-связанными азобензольными группами при облучении линейно-поляризованным светом возможно лишь кооперативное изменение ориентации фотохромных и нефотохромных групп.
- 4. Впервые осуществлена запись голографических поляризационных дифракционных решеток на пленках триблок-сополимеров с ковалентно присоединенными азобензольными группами и показано, что отжиг приводит к увеличению дифракционной эффективности приблизительно на два порядка.
- 5. Впервые показана возможность сохранения оптически записанной информации на пленках триблок-сополимеров с водородно-связанными азобензольными группами даже после удаления фотохромного низкомолекулярного азобензольного производного, благодаря наличию мезогенных групп в нефотохромном субблоке. Это открывает перспективы для создания новых материалов не поглощающих излучение видимого диапазона света для латентной записи информации.

Список печатных работ по теме диссертации

<u>Статьи, опубликованные в рецензируемых научных журналах, включенных в перечень</u> <u>Минобрнауки РФ, а также индексируемых по базе Web of Science:</u>

<u>Bugakov M. A.</u>, Boiko N. I., Chernikova E. V., and Shibaev V. P. / Synthesis of photochromic liquid-crystalline triblock copolymers by pseudoliving reversible addition-fragmentation chain-transfer polymerization. // Polym. Sci. Ser. B. – 2013. – V. 55. – № 5–6. – Р. 294–303. (IF = 0.621).
(Русская версия: <u>Бугаков М. А.</u>, Бойко Н. И., Черникова Е. В., Шибаев В. П. / Синтез фотохромных жидкокристаллических триблок-сополимеров методом псевдоживой

радикальной полимеризации с обратимой передачей цепи. // Высок. Соед. Сер. Б. – 2013. – Т. 55. – № 5. – С. 591–600).

- Boiko N. I., <u>Bugakov M. A.</u>, Chernikova E. V., Piryazev A. A., Odarchenko Y. I., Ivanov D. A., and Shibaev V. P. / Liquid crystalline side-chain triblock copolymers consisting of a nematic central subblock edged by photochromic azobenzene-containing fragments: their synthesis, structure and photooptical behaviour. // Polym. Chem. 2015. V. 6. № 35. P. 6358–6371. (IF = 5.375).
- Bugakov M., Boiko N., and Shibaev V. / Functionally integrated liquid crystalline photochromic triple block copolymer with locally light- and thermal-controllable sub-blocks. // J. Polym. Sci. Part B Polym. Phys. 2016. V. 54. № 16. P. 1602–1611. (IF = 3.318).

Тезисы докладов на научных конференциях:

- 1. <u>Бугаков М.А.</u>, Бойко Н.И., Шибаев В.П. Жидкокристаллические фоточувствительные триблок-сополимеры: фазовое поведение, фотохимические и фотоориентационные свойства. Первая всероссийская конференция по жидким кристаллам, 17 21 сентября 2012, Иваново. Сборник тезисов докладов, с 142.
- Бугаков М.А. Взаимосвязь молекулярной архитектуры, фотохимических и фотооптических свойств азобензолсодержащих полимеров различного строения. Международная конференция аспирантов и студентов «Ломоносов-2013», 8 — 13 апреля 2013 года, Москва. Сборник тезисов докладов, с 88
- 3. <u>Бугаков М.А.</u>, Бойко Н.И., Черникова Е.В., Шибаев В.П. Дизайн и синтез жидкокристаллических фотохромных триблок-сополимеров. VI Всероссийская Каргинская Конференция «Полимеры 2014», 27 31 января 2014, Москва. Сборник тезисов докладов, с 99.
- 4. Бойко Н.И., <u>Бугаков М.А.</u>, Иванов М.Г., Шибаев В.П. Жидкокристаллические гребнеобразные триблок-сополимеры: взаимосвязь молекулярной архитектуры, фазового поведения, морфологии и оптических свойств. VI Всероссийская Каргинская Конференция «Полимеры 2014», 27 31 января 2014, Москва, Сборник тезисов докладов, с 155.
- 5. <u>Bugakov M.A.</u>, Boiko N.I., Shibaev V.P. Effect of molecular architecture of azobenzenecontaining LC copolymers on photoinduced orientation processes. XII International Conference on Nanostructured Materials (NANO 2014), July 13-18, 2014, Moscow, Russia. Abstr., p. 198.
- 6. <u>Bugakov M.A.</u>, Boiko N.I., Shibaev V.P. Photoorientation processes in thin films of photochromic block and random liquid crystalline copolymers. 6th International Colloids Conference, June 19-22, 2016, Berlin, Germany (электронная версия).
- Бойко Н.И., <u>Бугаков М.А.</u>, Шибаев В.П. Жидкокристаллические полимеры с ковалентно- и водородно-связанными азобензолсодержащими группами: влияние молекулярной архитектуры на фотооптические свойства. VII Всероссийская Каргинская Конференция «Полимеры – 2017», 13 – 17 июня, 2017, Москва. Сборник тезисов докладов, с 387.
- 8. Boiko N., <u>Bugakov M.</u>, Shibaev V. Light-controllable orientation processes in side-chain azobenzene-containing LC copolymers and triblock copolymers. 14th European Conference on Liquid Crystals, June 25-30, 2017, Moscow, Russia (электронная версия).