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Abstract—The radial distributions of proton and neutron densities in the even–even isotopes 40−70Cа
and 48−78Ni and the analogous distributions of neutron densities in the even–even isotopes 92−138Mo were
calculated on the basis of the mean-field model involving a dispersive optical potential. The respective root-
mean-square radii and neutron-skin thicknesses were determined for the nuclei under study. In N > 40
calcium isotopes, the calculated neutron root-mean-square radius exhibits a fast growth with increasing
N , and this is consistent with the prediction of the neutron-halo structure in calcium isotopes near the
neutron drip line.
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1. INTRODUCTION
The nuclear density is one of the fundamental

quantities that characterize the structure of nuclei. In
the case of stable nuclei, charge densities and charge
root-mean-square radii were measured in electron-
scattering experiments to a fairly high degree of pre-
cision. Neutron densities and root-mean-square radii
were measured in reactions induced by strongly inter-
acting particles, such as protons and alpha particles,
and in experiments that studied nuclear effects in
exotic atoms. The uncertainties in those experiments
were an order of magnitude larger than those in the
case of protons. The development of techniques for
producing and accelerating beams of radioactive nu-
clei opened the possibility of studying a new region of
nuclei—those remote from the beta-stability valley—
and put to the fore nuclear-physics branches associ-
ated with studying them. In the past few decades, un-
expected properties have been discovered in precisely
these nuclei. Among other things, we would like
to mention here the existence of a skin and neutron
and proton halos, as well as the disappearance of
traditional magic numbers and the emergence of new
ones.

Investigation of the structure of unstable medium-
mass and heavy nuclei is of importance for the de-
velopment of neutron-star physics [1]. However,
experimental data on the distribution of nucleons in
such nuclei are scanty. In calcium isotopes lying
near the neutron drip line, the relativistic contin-
uum Hartree–Fock model [2] and the nonrelativis-
tic Hartree–Fock–Bogolyubov model [3] predict a
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neutron-halo structure. According to the relativis-
tic Hartree–Bogolyubov model [4], a neutron-halo
structure is also formed in zirconium isotopes near the
neutron drip line.

The dispersive optical model (DOM) [5] makes
it possible to calculate single-particle properties of
unstable nuclei via a physically validated extrapola-
tion of the parameters of this model to the region of
such nuclei [6]. In the present study, the distribu-
tions of the proton (charge) and neutron densities
in calcium and nickel isotopes and of the neutron
density in molybdenum isotopes are calculated on the
basis of the mean-field model involving a dispersive
optical potential (DOP). In addition, the ability of the
dispersive optical model to predict the formation of a
neutron-halo structure in calcium isotopes near the
neutron drip line (predictive power of the model) is
explored.

2. FUNDAMENTALS OF THE MODEL

In the dispersive optical model [5], the mean field is
complex-valued, its locally equivalent real, V (r,E),
and imaginary, WI(r,E), parts being related by a
dispersive equation; that is,

V (r,E) = VHF(r,E) (1)

+
P

π

∞∫

−∞

WI(r,E
′)

(
1

(E′ − E)
− 1

(E′ − EF)

)
dE′.

Thus, one represents the real part of the dispersive
optical potential as the sum of a component VHF(r,E)
that belongs to the Hartree–Fock type and which
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changes smoothly with energy and a dispersive com-
ponent ΔV (r,E), which depends sharply on E in
the vicinity of the Fermi energy EF. The surface,
ΔVd(r,E), and volume, ΔVs(r,E), parts of the dis-
persive component take effectively into account nu-
cleon correlations that are, respectively, concentrated
at the surface and distributed over the volume. The
fundamentals of the model used in the present study
were outlined in [6].

The nucleon single-particle energies, Enlj , and
wave functions, Φnlj(r), were calculated by employ-
ing the iteration method to solve the Schrödinger
equation[

−∇2

2m
+ V (r,Enlj)

]
Φnlj(r) = EnljΦnlj(r), (2)

where V (r,Enlj) is the real part of the dispersive
optical potential and has the form

−V (r,Enlj) = VHF(r,Enlj) + ΔVs(r,Enlj) (3)

+ΔVd(r,Enlj) + Uso(r,Enlj)− VC(r).

The radial dependence of the components VHF and
ΔVs(d) was specified by the Woods–Saxon function
and its derivative. The single-particle wave functions,
which are solutions of the Schrödinger equation, can
be represented as the product of the real and angular
components; that is,

Φnlj(r) =
unlj(r)

r
Ylm(Ω). (4)

In calculating quantities that characterize the single-
particle motion of a nucleon in the nucleus being
considered, the effect of a nonlocal character of the
dispersive optical potential was taken into account via
the wave function

ūnlj(r) = CnljPnlj(r)unlj(r), (5)

where the Perey factor Pnlj(r) is given by

Pnlj(r) =

[
1− d

dE
VHF(r,E)

]1/2
(6)

and the normalization factor Cnlj was found from the
condition

∞∫

0

ū2nlj(r)dr
3 = 1. (7)

In just the same way as in [7], the proton and neutron
matter densities were calculated within the single-
particle approach on the basis of the expression

ρp(n)(r) =
1

4π

∑
nlj

(2j + 1)Nnlj ū
2
nlj(r). (8)

A transition from the proton density to the charge
density was performed via employing the relation

ρch(r) = (πa2)−3/2

∫
ρp(r

′) exp
[
−(r − r′)2/a2

]
dr′,

(9)

where a2 = 0.4 fm2 takes approximately into account
the proton charge form factor and the center-of-mass
motion for the nucleus being considered.

Within the dispersive optical model, one deter-
mines the occupation probabilities for single-particle
states, Nnlj , according to approximate expressions.
In particular, we employ the expression

Nnlj = 1−
∞∫

0

ū2nlj(r)

[
{m∗

HF(r,Enlj)/m}−1 (10)

× π−1

∞∫

EF

WI(r,E
′)

(E′ − Enlj)2
dE′

]
dr,Enlj < EF,

Nnlj =

∞∫

0

ū2nlj(r)

[
{m∗

HF(r,Enlj)/m}−1

× π−1

EF∫

−∞

WI(r,E
′)

(E′ − Enlj)2
dE′

]
dr,Enlj > EF,

where m∗
HF is the effective Hartree–Fock mass; that

is,

m∗
HF(r,E)/m = 1− d

dE
VHF(r,E). (11)

Their use frequently leads to underestimated values
of the total number of neutrons (protons), Nn(p) =∑

nlj (2j + 1)Nnlj , in bound nuclear states with re-
spect to the numberN(Z). This underestimation may
stem from strong short-range correlations dominated
by tensor forces in the proton–neutron interaction [8],
which shift the components of the spectral func-
tion [5] toward positive energies by several hundred
MeV units [9]. In order to determine the parameter
VHF(EF) by fitting the calculated number of nucleons,
Nn(p), to the numberN(Z) for the nucleus being con-
sidered, we therefore used the values Nnlj determined
by the BCS formula

Nnlj(Enlj) (12)

= 1/2

(
1− (Enlj − EF)√

(Enlj −EF)2 + (Δ)2

)
.

We took the energies calculated with a dispersive
optical potential for the energies Enlj and employed,
for the gap parameter, its empirical value
Δ=−1/4{Si(A+ 1)− 2Si(A) + Si(A− 1)}, (13)
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Table 1. Root-mean-square charge radii 〈rch〉 (in fm units)
of stable calcium and nickel isotopes

Nucleus Experiment [20–22] DOM

40Ca 3.4777(12) 3.47

42Ca 3.5086(13) 3.52

44Ca 3.5182(13) 3.52

46Ca 3.4956(13) 3.52

48Ca 3.4772(13) 3.48

58Ni 3.7757(13) 3.84

60Ni 3.8110(13) 3.84

62Ni 3.8386(14) 3.85

64Ni 3.8553(14) 3.86

i = n, p,

which was found from data on the nucleon separation
energies Sn(p) [10–12].

The spectroscopic factors and root-mean-square
radii of single-particle states were calculated by the
formulas

Snlj =

∞∫

0

ū2nlj(r) [m̄(r,Enlj)/m]−1 dr, (14)

Rrms
nlj =

⎡
⎣

∞∫

0

ū2nlj(r)r
4dr

⎤
⎦
1/2

. (15)

In Eq. (14), m̄(r,Enlj)/m is the ratio of the effective
energy-dependent mass to the total nucleon mass:

m̄(r,E)/m = 1− [m/m∗
HF(r,E)]

d

dE
V (r,E). (16)

The spatial sizes of a nucleus were characterized by
the root-mean-square radius

〈
rch,p,n

〉
,

〈
rch,p,n

〉
=

⎡
⎢⎢⎣

∞∫
0

r4ρch,p,n(r)dr

∞∫
0

r2ρch,p,n(r)dr

⎤
⎥⎥⎦

1/2

, (17)

where ρch,p,n stands for, respectively, the charge (ch),
proton (p), and neutron (n) density.

3. DENSITY DISTRIBUTIONS OF STABLE
CALCIUM AND NICKEL ISOTOPES

The nuclear spectroscopy of stable calcium and
nickel isotopes was studied in [13–15]. In the present
study, the radial density distributions ρch,p,n and the
radii

〈
rch,p,n

〉
for the even–even isotopes 40−48Ca and

48−64Ni were calculated along with ρn and 〈rn〉 for
the isotopes 92−100Mo by employing the DOP pa-
rameters found earlier. The DOP parameters for the
stable isotopes 40−48Ca and 58−64Ni were determined
in [13, 14, 16] from an analysis of the most precise and
reliable information about the proton and neutron en-
ergies and occupation probabilities for single-particle
orbits near the Fermi energy EF. This information
was obtained by the joint evaluation of the data on
nucleon-stripping and nucleon-pickup reactions on
the same nucleus. Some parameters were fixed ac-
cording to the global parameters from [17] of the
traditional optical model by employing the procedure
for constructing dispersive optical potentials from [6].
The parameters of the neutron dispersive optical po-
tential for molybdenum isotopes were also determined
in [6].

By way of example, Fig. 1 shows the calculated
density distributions ρch in the isotopes 40Cа and
64Ni. We performed the respective calculations at
the values found for the proton DOP parameters
in [14] for the 40Cа nucleus and in [16] for the iso-
topes 58,60,62Ni, employing the occupation probabili-
ties Nnlj in the form (10) and (12), respectively. This
figure shows that the results of the calculations are in
good agreement with experimental data from [18, 19].
The distribution ρn calculated for the 92Mo nucleus is
presented in Section 4.

The charge radii 〈rch〉 for stable calcium and nickel
isotopes are given in Table 1. The results of the
calculations agree well with the experimental values〈
r

expt
ch

〉
for calcium isotopes from [20, 21] and the

experimental values for nickel isotopes from [22]. The
deviation takes the largest value of 1.5% for the iso-
tope 58Ni. The experimental and calculated charge
radii 〈rch〉 in nickel isotopes grow with increasing N
in the isotopes. It is noteworthy that the calculated
radii 〈rch〉 grow more slowly than the experimental

values
〈
r

expt
ch

〉
do. The above agreement can be im-

proved via varying the DOP parameters (in particular,
the parameter rHF) in calculating 〈rch〉. The change

in the radius
〈
r

expt
ch

〉
in response to an increase in the

number of neutrons in stable calcium isotopes does
not reduce to a smooth growth because of the doubly
magic nature of the isotopes 40,48Са. The effect ex-
erted by the filling of the 1f7/2 shell with neutrons on
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Fig. 1. Charge density distributions ρch in the (a) 40Cа
and (b) 64Ni nuclei: (points) experimental data from [18,
19] and (curves) results of the calculations with a disper-
sive optical potential.

the charge radii
〈
r

expt
ch

〉
in the isotopes 40−48Ca was

discussed in [23]. In the present study, the dynamics

of the change in
〈
r

expt
ch

〉
could be described owing to

the inclusion of shell effects [24], which consist in the
decrease in the imaginary part of the dispersive optical
potential near the Fermi energy EF for nuclei in which
N (Z) is a magic number in comparison with what we
have for neighboring nuclei.

The spectroscopic factors Snlj calculated accord-
ing to Eq. (14) for valence neutron states are given

in Fig. 2. The experimental values S
expt
nlj for neutron

states of stable calcium isotopes in the vicinity of EF
were obtained in [25, 26] from an analysis of data on
(d, p), (p, d), and (e, e′p) reactions. The factors Snlj

calculated for stable isotopes reflect the magic prop-
erties of the numbers N = 20 and 28. For example,
the S1d3/2 and S1f7/2 reach maximum values in the

cases of 40Cа and 48Са, respectively. The fact that the
results of DOP calculations agree with experimental
data on the single-particle properties of stable nuclei
gives sufficient grounds to employ this approach to
predict theoretically density distributions in unstable
nuclei.

0.4

0.6

0.8

Snlj

0.2
40 44 48 52 56 60 64 68

A

Fig. 2. Spectroscopic factors Snlj for the following neu-
tron single-particle states in calcium isotopes according
to (closed symbols) experimental data from [25, 26] and
(open symbols) the results of DOP calculations: (closed
and open left-oriented triangles) 1d3/2, (closed and open
diamonds) 1f7/2, (closed and open down-oriented tri-
angles) 2p3/2, (open up-oriented triangles) 2p1/2, (open
boxes) 1f5/2, (open circles) 1g9/2.

4. DENSITY DISTRIBUTIONS
OF UNSTABLE CALCIUM, NICKEL,

AND MOLYBDENUM ISOTOPES

A procedure for performing a physically validated
extrapolation of the DOP parameters from the re-
gion of stable nuclei to the region of unstable nuclei,
for which experimental information about nucleon
scattering on them and about their single-particle
properties is limited or is absent was proposed in [6].
This procedure makes use of the predictions based on
the systematics of global parameters [17] within the
traditional (nondispersive) optical model and leads
to agreement between the total number of nucleons,
Nn (Np), and the number N(Z) for the nucleus being
considered.

For the unstable calcium, nickel, and molybdenum
isotopes studied here, the dispersive optical potential
was determined in [6, 24]. The imaginary part of the
neutron dispersive optical potential for calcium iso-
topes near the neutron drip line was corrected in the
present study. In [24], the parameter d3 in the energy
dependence of the surface absorption Wd(E) for the
isotope 70Cа was determined by requiring that the
energy E− of the last predominantly occupied state
and the energy E+ of the first predominantly free state
be close to, respectively, the sign-reversed neutron-
separation energies −Sn(70Ca) and −Sn(71Ca) [10].
This condition corresponds to the idea that N = 50 is
a “strong” magic number. In the vicinity of the
nucleon drip line, it is natural to expect the weakening
of shell effects in accordance with the calculations

PHYSICS OF ATOMIC NUCLEI Vol. 80 No. 5 2017
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Fig. 3. Neutron single-particle energies Enlj of the following states in the even–even (a) calcium and (b) nickel isotopes
according to (symbols shaded in black) experimental data, (symbols shaded in gray) estimations, and (open symbols) the
results of DOP calculations: (closed and open circles) 2s1/2, (black, gray, and open left-oriented triangles) 1d3/2, (black, gray,
and open diamonds) 1f7/2, (black, gray, and open down-oriented triangles) 2p3/2, (black and open triangles) 2p1/2, (black,
gray, and open boxes) 1f5/2, (gray and open hexagons) 1g9/2, (gray and open stars) 3s1/2, (gray and open pentagons) 2d5/2,
and (open right-oriented triangles) 2d3/2. The dashed and dotted curves stand for the energies−Sn(N,Z) and−Sn(N +1, Z)
according to [10] and [11], respectively; the dash-dotted curve represents the Fermi energy EF; and the solid curves correspond
to the DOP calculations.

performed in [27] on the basis of the Hartree–Fock–
Bogolyubov model with SkP Skyrme forces. Avail-
able data on scattering and single-particle properties
of bound states of stable nuclei were analyzed in [28]
on the basis of the dispersive optical model. This
analysis revealed that, for N > Z nuclei, the (N −
Z)/A dependence of Wd is weaker for neutrons than
for protons. In [29], it was assumed that Wd for
neutrons is independent of (N − Z)/A. It turned out
that this made it possible to match the spectroscopic
factors calculated for states of calcium isotopes in
the vicinity of the Fermi energy with experimental
data. We have performed model-dependent calcu-
lations with two versions of the surface absorption
Wd for calcium isotopes in the vicinity of the neu-

tron drip line. In the first version, the absorption
Wd was independent of (N − Z)/A, its parameters
being chosen to be equal to the global parameters for
40Cа [17]. In the second version, we fixed all of the
parameters at the values obtained in [17]; this was
not so only for the parameter d3 (for the results of the
respective calculation, see Fig. 3a), which was set to
8.0 MeV for the isotopes 60,68,70Cа—that is, reduced
in relation to d3 = 11.5 MeV [17]. In either version,
we set the geometric parameters rHF and aHF to,
respectively, rV and aV [17] and took the spin–orbit
potential from [17] as well. The parameter values of
VHF(EF) = 46.1, 44.6, and 44.5 MeV were found for
the isotopes 60,68,70Cа, respectively, by fitting the cal-
culated number Nn to the number N for the isotope
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being considered. In determining Nn for the isotopes
60,68,70Cа, the respective sum included the 3s1/2 and
2d5/2 states, which lie above the Fermi energy. These
states play an important role in the formation of the
neutron-halo structure in calcium isotopes near the
neutron drip line [2, 3]. The above two versions of
the calculation led to close values of the energies Enlj

near the Fermi energy EF.
The evolution of single-particle neutron spectra

in the calcium isotopes (DOP parameter set featur-
ing d3 = 8 MeV) and in the N � 50 nickel isotopes
is illustrated in Figs. 3a and 3b, respectively. The
experimental and estimated energies Enlj for unsta-
ble nickel isotopes were obtained in [30, 15]. The
neutron single-particle spectrum of molybdenum iso-
topes was calculated on the basis of the dispersive op-
tical model, and the results of those calculations were
presented in [6]. According to calculations involving a
dispersive optical potential, the particle–hole energy
gap G in the isotope 70Ca is about 0.8 MeV. This
value is substantially smaller than the G value in the
stable N = 50 isotones. In particular, we have G ≈
4 MeV for 92Мо (see [6]). This result agrees with the
idea that shell effects become weaker as the isotopes
being considered approach the neutron drip line [27].
According to the mass-model prediction from [11],
about 20 neutrons separate the 78Ni nucleus from the
neutron drip line. From Fig. 3b, one can see that
the calculation on the basis of the dispersive optical
model suggests that N = 50 is a magic number of
neutrons for the 78Ni nucleus. By way of example,
we indicate that the energy −Sn (78Ni) is close to the
energy Enlj of the 1g9/2 state, while the energy −Sn

(79Ni) is close to the energy of the 2d5/2 state. Fig-
ure 4a, which gives the gap G for the N = 50 isotones
92Mo, 78Ni, and 70Ca, shows that it decreases as one
approaches the neutron drip line. The evolution of the
proton single-particle spectra of calcium and nickel
isotopes is shown in Figs. 5a and 5b, respectively. It
corresponds to the idea that the numbers Z = 20 and
28 have magic properties. From Fig. 5, one can see
that the energies −Sp(N,Z) and −Sp(N,Z + 1) are
close to the energies E− and E+, respectively.

The neutron root-mean-square radii 〈rn〉 in cal-
cium, nickel, and molybdenum isotopes are shown in
Fig. 6 versus the relative neutron excess (N − Z)/A.
One can see that the calculated radius of the 70Cа nu-
cleus, 〈rn〉 = 4.80 fm, exceeds substantially the value
that arises for this nucleus upon the linear extrapola-
tion of the dependence 〈rn ((N − Z)/A)〉 for the N �
40 isotopes. A sharp growth of 〈rn〉 was predicted
on the basis of the relativistic continuum Hartree–
Fock model in [2] and on the basis of the nonrela-
tivistic Hartree–Fock–Bogolyubov model in [3]. The

conclusion that a giant neutron halo (featuring more
than two neutrons) may be formed in the isotope 70Ca
was drawn in those studies. Figure 4b illustrates
the growth of the calculated radius 〈rn〉 in the N =
50 isotones 92Mo, 78Ni, and 70Ca with increasing
(N − Z)/A.

In the 70Cа nucleus, halo neutrons are in states
of energy above the Fermi energy, which, in this
nucleus, is close to zero (EF = −0.175 MeV [11]).
According to the calculation with a dispersive optical
potential, one of these states, 3s1/2, is still bound,
its radius (Rrms

nlj = 12.0 fm) being more than twice as
long as the radius (Rrms

nlj = 4.9 fm) of the lower lying
1g9/2 state (see Table 2). Further, 2d states already lie
at positive energies, their radius Rrms exceeding 9 fm.
The occupation probability Nnlj (10) for the 3s1/2
state is 0.44, and 0.9 of a nucleon populates it. In
the 2d5/2 and 2d3/2 states, whose occupation proba-
bilities are Nnlj = 0.25 and 0.1, respectively, there are
1.5 nucleons and 0.3 of a nucleon, respectively. It is
noteworthy that the radii Rrms of states up to the 1g9/2
state are close in theN = 50 isotones 92Mo, 78Ni, and
70Ca; in contrast, the radii of the 3s1/2 and 2d states
grow substantially upon going over from the stable
isotope 92Mo to the isotope 70Ca, which lies in the
vicinity of the neutron drip line. The neutron density
distributions calculated for these isotones with the
dispersive optical potential constructed in the present
study are given in Fig. 7. The surface layer is sub-
stantially more extended in the 70Ca nucleus than in
the 78Ni and 92Mo nuclei.

The N = 86 isotope 138Mo lies near the neutron
drip line, its Fermi energy being EF = −0.09 MeV

Table 2. Root-mean-square radii Rrms
nlj (in fm units) of

neutron single-particle states near the Fermi energy EF in
N = 50 isotones according to calculations with a disper-
sive optical potential

Subshell 92Mo 78Ni 70Ca

2d3/2 5.47 7.46 9.83

2d5/2 5.22 6.08 9.05

3s1/2 5.62 7.67 12.0

1g9/2 4.71 4.83 4.90

1f5/2 4.28 4.57 4.51

2p1/2 4.42 4.80 4.99

2p3/2 4.32 4.64 4.75
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Fig. 4. (a) Particle-hole gap G and (b) neutron root-mean-square radius 〈rn〉 for the N = 50 isotones 92Mo, 78Ni, and 70Ca.
The solid curves on display represent the results of the calculations performed with a dispersive optical potential.

Enlj, MeV
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Fig. 5. Proton single-particle energies Enlj in even–even (a) calcium and (b) nickel isotopes. The notation for the points is
identical to that in Fig. 3. The dashed lines represent the energies −Sp(N,Z) and −Sp(N,Z + 1) according to [11]. The solid
curves correspond to a calculation with a dispersive optical potential. The dashed-dotted line stands for the Fermi energy.

[12]. According to the calculation with the dis-

persive optical potential constructed in the present

study, the 3p1/2 and 3p3/2 neutron states in this

nucleus have the radii of Rrms
nlj = 10.4 and 9.4 fm,

respectively, which exceed substantially the radii of

the neighboring states—for example, the radius of

PHYSICS OF ATOMIC NUCLEI Vol. 80 No. 5 2017



926 BESPALOVA, KLIMOCHKINA

0

−0.5

0.5

1.0

3.0

3.2

3.4

3.6

3.8

3.5
4.0
4.5
5.0
5.5

Δrnp, fm

〈rp〉, fm

〈rn〉, fm

0.1−0.1 0 0.2

(c)

(b)

(a)

0.3 0.4 0.5
(N − Z)/A

Fig. 6. (a) Neutron root-mean-square radii 〈rn〉 in calcium, nickel, and molybdenum isotopes versus the relative neutron
excess, (b) proton root-mean-square radii 〈rp〉 in calcium and nickel isotopes, and (c) neutron-skin thickness Δrnp in calcium
and nickel isotopes according to (closed symbols) experimental data from [31, 32] and (open symbols) results of calculations
with a dispersive optical potential: (closed and open boxes) calcium, (closed and open circles) nickel isotopes, and (open
triangles) molybdenum isotopes. The solid curves on display were calculated with a dispersive optical potential.
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Fig. 7. Neutron density distributions according to the
results of the calculations performed within the single-
particle approach with a dispersive optical potential
for the isotopes (curve 1) 92Mo, (curve 2) 78Ni, and
(curve 3) 70Ca.

Rrms
nlj = 6.8 fm for the lower lying 2f7/2 state and the

radius of 6.2 fm for the higher lying 1h9/2 state. For
the isotope in question, this leads to the radius 〈rn〉
larger than that which the linear extrapolation of the
dependence 〈rn ((N − Z)/A)〉 for N � 80 yields (see
Fig. 6a). In accordance with the occupation probabil-
ities Nnlj given by expression (10), there are 3.5 neu-
trons in 3p states of the 138Mo nucleus. This result
complies with the predictions of the Hartree–Fock–
Bogolyubov method for the formation of the neutron-
halo structure in the neighboring 124 � N � 138 zir-
conium isotopes [31].

For calcium isotopes and 20 � N � 50 nickel iso-
topes, the proton radius 〈rр〉 and neutron-skin thick-
ness Δrnp = 〈rn〉 − 〈rp〉 calculated with the afore-
mentioned dispersive optical potential are presented
in Figs. 6b and 6c, respectively. The calculated values
of Δrnp are compared with the experimental data,

Δr
expt
np , obtained for 40,42,48Ca and 58,64,68Ni in [32,

33] and compiled in [34, 35]. The thickness Δrnp cal-
culated for the isotope 70Cа exceeds substantially the
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value to which the dependences Δrnp ((N − Z)/A)
determined for calcium and nickel isotopes that lie far
from the neutron drip line tend.

In accordance with the shell effect, the spectro-
scopic factor S1g9/2 is also greater in 70Cа than in
68Са (see Fig. 2), but it does not reach values in ex-
cess of 0.8, which are characteristic of stable isotopes.
Once again, this result can be associated with the
weakening of the shell effect near the nucleon drip
line.

5. CONCLUSIONS

Special features of the spatial neutron-density and
proton-density (charge-density) distributions in 20 �
N � 50 calcium and nickel isotopes and the neutron-
density distribution in 50 � N � 96 molybdenum
isotopes have been studied on the basis of the mean-
field model involving a dispersive optical potential.
Good agreement with experimental data on charge-
density distributions and root-mean-square radii has
been attained for stable calcium and nickel isotopes.

As one approaches the neutron drip line, the cal-
culated neutron particle–hole energy gap G corre-
sponding to the number of N = 50 decreases, which
demonstrates the weakening of the shell effect. Ac-
cording to the calculation with the dispersive optical
potential constructed in the present study, the isotope
70Ca, which lies in the vicinity of the neutron drip
line, features a neutron halo containing more than
two nucleons and has a root-mean-square radius
〈rn〉 that significantly exceeds the radius of halo-
free N = 50 isotones. For molybdenum isotopes, the
calculated radius 〈rn〉 also exhibits a sharp growth
as they approach the neutron drip line. This agrees
with the results of the calculations performed in [31]
with the aim of exploring the possible formation of
the halo structure in neighboring zirconium isotopes
lying near the neutron drip line.
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