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key molecules and pathways. At the moment lack of information 
on genetic determinants of migraine and lack of animal models of 
“common” migraine makes it difficult to choose a starting point 
for a signal pathway. Because of this we have chosen FHM1 as a 
such point.  FHM is a rare (0.003%) and severe form of monogenic 
migraine with aura which is characterized by the development 
of muscle weakness during aura. It is considered that the 
mutations in CACNA1A gene which encodes the main subunit of 
voltage-dependent calcium channels (VDCCs) (Cav2.1) cause the 
development of FHM1. 

Main function of VDCCs is modulation of stimulating 
neurotransmitters release in neuromuscular synapse as well as 
in central synapses of cerebellum, brain trunk and brain cortex 
predominantly [1]. More than 60 mutations which may lead to 
different phenotypical forms varying from pure FHM1 to FHM1 
accompanied by cerebellar ataxia of varying severity or severe 
brain edema leading to fatal coma are known nowadays in this 
gene [2-4]. Mutations in CACNA1A gene may cause diseases not 
linked to FHM1 including episodic ataxia type 2 [5], progressive 
ataxia [6], spinocerebellar ataxia type 6 [7] and different forms 
of epilepsy [8]. The development of FHM1 is mainly caused by 
missense mutations in CACNA1A gene (50-70% of families) [9]. 
In 40% of families with FHM1, a mutation leading to Thr666Met 
amino acid substitution was found (here and further the location 
of a substitution with a number between two amino acid names 

was marked) [10]. Arg192Gln mutation causes pure form of 
hemiplegic migraine, while Ser218Leu causes malignant form 
with the hemiplegic migraine attacks developing after any 
head injury and often accompanied by coma [11]. Meanwhile 
Arg192Gln homozygotes may show normal phenotype, Ser218Leu 
heterozygotes are characterized by ataxia and high risk of sudden 
death due to severe epileptic seizures and cerebral edema 
[11,12]. It was shown on the cell models that different types of 
mutations of CACNA1A gene in FHM1 cause different variants of 
channelopathies - a type of diseases characterized by ion channel 
function disturbance, changes in its structure and kinetics 
[13-16], leading to increased Ca2+ ion flow through voltage-
dependent channels. Altered calcium channels may be opened by 
less voltage comparing to wild-type channels which means that 
less depolarization is required to open a channel [11]. Moreover, 
altered channels are opened for a longer time compared to wild 
type. Mutation Ser218Leu results in the development of the most 
altered channels and shows the most severe phenotype with risk 
of severe attacks accompanied by consciousness failures [17].

Purpose of work - conduct analysis of molecular processes 
underlying pathogenesis of familial hemiplegic migraine type 
I. Building schemes of molecular interactions which lead to 
migraine attack development will allow not only to understand 
causes of an attack but also to reveal key molecules and pathways 
which may be targets for new drugs and treatment approaches.
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Abstract

Migraine is a multifactorial disease, manifested by intense bouts of recurrent 
headaches. Molecular mechanisms of migraine attack are not clear. In this study, 
we carried out the analysis of molecular processes in the pathogenesis of a rare 
hereditary form of migraine - familial hemiplegic migraine type I. Constructed 
hypothetical signaling pathways allowed us to understand the causes of a 
migraine attack and identify key molecules and signaling pathways for further 
experimental and clinical studies.
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Introduction
Migraine is a multifactorial socially significant disease, 

manifested by intense bouts of recurrent pulsating headaches. 
There are three main theories describing migraine pathogenesis: 
vascular theory, neurogenic theory and trigeminovascular theory. 
Genetic predisposition to migraine is proved by epidemiological 
and genetic studies. Three forms of migraine with monogenic 
inheritance are well-known nowadays: familial hemiplegic 
migraine (FHM) of I, II and III types. But no genes or gene 
combinations associated with “common” migraine are known. 
Building a map of molecular signal pathways leading to a migraine 
attack may help to understand the causes of attacks and reveal 
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Materials and Methods 
In our study, we used Pathway Studio® 9 software with 

ResNet® 13 (Elsevier) database. ResNet13 contains biological 
objects (proteins, cell processes and diseases in particular) with 
annotations, as well as annotations of function links between 
objects. This database is a result of processing full-text research 
papers and abstracts indexed by Medline.

Results and Discussion
We created a hypothetical scheme of signal pathways 

describing causes and possible mechanisms of aura, vasodilation 
and pain in FHM1. The scheme is shown on figure 1, CACNA1A is 
marked white (Figure 1). Cav2.1 channel consists of four proteins 
CACNG2, CACNA2D2, CACNB4 and CACNA1A. Cav2.1 main 
function is modulation of dominantly excitatory neurotransmitter 
release in neuromuscular synapses as well as in central synapses 
of cerebellum, trunk and cortex [18]. 

In Purkinje cell 3 vesicular glutamate transporters - SLC17A7, 
SLC17A6 and SLC17A8 – transport synthetized glutamate 
to vesicles. Glutamine is being synthetized in astrocytes and 
transported to neurons. The fusion of vesicles with presynaptic 
membrane is initiated by intercellular calcium by activation of 
calmodulin and protein kinase A (PKA). Calmodulin and PKA 
phosphorylate activate main proteins of exocytosis such as 
SNAP25, SNAPIN, SYT7, STX1A, STX4 and RIMS1, which take part 
in neurotransmitter secretion.

Thus, CACNA1A dysfunction leads to uncontrollable calcium 
intake which leads to recurrent glutamate release to the synaptic 
cleft. This is supported by clinical data since glutamate release 
inhibitor (botulin toxin A) alleviates the migraine symptoms. 

Main target of botulin toxin A is SNAP25 a protein which plays 
lead role in fusion of vesicles containing neuromediators with 
cell membrane. Thus, the pathological increase of glutamate 
concentration in synaptic cleft is a key part of our scheme. 

Increased glutamate release activates NMDA receptors on 
postsynaptic neurons which lead to release of intracellular 
potassium to cell surface and calcium intake. Extracellular 
potassium causes depolarization of membrane. Hyperpolarization 
is the main cause of spreading cortical depression characterized by 
spreading polarization of brain cells. Aura antecedent to migraine 
attack is the result of spreading cortical depression.  Recent 
studies showed that the increase of glutamate concentration plays 
a leading role in the development of spreading cortical depression 
supporting the hypothesis of cortical hyperexcitability in migraine 
[19]. 

Potassium release leads to vasoconstriction of nearby vessels. 
Vasoconstriction appears before vasodilatation and occurs in 
parallel with development of spreading cortical depression. 
Intracellular calcium in postsynaptic neurons activates KCNMA1 
channel, leading to lengthening of depolarization. Intracellular 
calcium activates cell specific (neuronal or vascular-endothelian) 
types of NO-synthases (NOS) via calmodulin which results in 
increased synthesis of nitric oxide (NO) - a strong vasodilator and 
CGRP (CALCA) release activator. Synthesis and release of the main 
vasodilator and pain neuromediator CGRP (CALCA) in sensory 
vagus nerve ending is also activated. This neuropeptide causes 
the main pathological processes appearing in migraine attack: 
vasodilation and pain. 

Conclusion
Thus we are the first to create a model of signal pathways 

leading to FHM type I. The key molecular in this model is synaptic 
glutamate. And major processes are intracellular calcium 
overload in Purkinje cell and membrane depolarization after 
glutamate overdose. This model may be used as a starting point 
for identification of further pathways of “common” migraine.
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Figure 1: Signaling pathway of familial hemiplegic migraine type I 
(FHM1). Mutations in CACNA1A (white-out style) lead to intracellular 
calcium overload, glutamate overdose in synaptic cleft, development of 
spreading cortical depression (SCD), migraine aura, vasodilation and 
pain. Molecules with increased concentrations are highlighted in red. 
Legend is shown on the Figure. Designed in the Pathway Studio 9 ® 
(Elsevier). This signaling pathway is built manually using ResNet13 
database ® (Elsevier).
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