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ABSTRACT

A hypersonic rotational polytropic flow in the vicinity of a gravitating body has no global spectral modes which grow on
the dynamical timescale. Nevertheless, the fundamental question remains unclear whether the accretion is possible if
some sort of small perturbations is set up in the medium, i.e whether the perturbations will ever exhibit a substantial
growth at the dynamical time span. In spite of the fact that a traditional modal analysis gives answer “no” for that issue,
this doesn’t arrive us to the conclusion that linear mechanisms are not related to the basic problem of non-magnetic
angular momentum transfer in the rotating flows. On the contrary, it is also known that due to the non-orthogonality of
eigenmodes in a shear background there can exist a particular initial perturbations which exhibit a substantial (optimal)
growth in energy at finite time intervals. Here we study a specific sort of small inertial-acoustic perturbations being the
linear combination of slow neutral eigenmodes with the corotation located beyond the outer boundary of the basic flow.
We consider a geometrically thin compressible configurations with free boundaries assuming that 𝛿 ≡ h/Δ << 1,
where h is the disc half-thickness and Δ is its finite radial size. We obtain a substantial transient growth of optimal
perturbations at the timescale of ts ∼ (𝛿Ω0)−1, where Ω0 is the typical keplerian frequency in the disc. We note that ts
is longer than the dynamical time intervals but shorter that the viscous, duffusion timescale, t𝜈 ∼ 𝛿−2Ω−1

0 . So results
obtained here can be related to the problem of angular momentum transfer and various temporal phenomena in
Keplerian flows including accretion discs which already have an effective turbulent viscosity.

THIN DISC

In our research we make the following assumptions:

I The thin disk approximation, 𝛿 << 1
I The sub-Keplerian rotation with the small fixed deviation from the pure keplerian angular velocity profile, ΩK ∝ r−3/2,

where r is the distance from the gravitating point-mass object
I The polytropic equation of state
I The non-viscous, compressible fluid
I We assume that the basic flow has a finite radial size and the free boundary where the pressure, p, vanishes

For such model, in cylindrical coordinates the stationary configuration is described by the following equations:
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where x ≡ r/r0 and y ≡ z/r0 are dimensionless radial and vertical coordinates, H(x) is the half-thickness profile, x1
and x2 are the points where H = 0, so that Δ = x2 − x1. Finally, h(x, y) is an enthalpy distribution in the disc, h = 0
corresponds the free surface of the disc.

SPECTRAL PROBLEM

First of all, we have to solve the spectral problem of the flow considered. In general, it’s a difficult task, which was
carried out by a number of authors in the past for a variety of background models. The main complicating factors are the
presence of resonances in the flow for definite-frequency modes (i.e. lindblad and corotation resonances) and the
necessity to take into account the vertical perturbed motions.

However, we concern about non-modal dynamics here, so we prefer to take the simplest part of modal spectrum as a
sample to study the transient dynamics phenomenon. Specifically, we consider only the eigenmodes with no node in the
vertical direction and with all resonances beyond the outer boundary of the disk, x2.

Since the stationary configuration is axially symmetric, the eigenmodes are proportional to ∝ exp(−i𝜔t + m𝜙), where
t is time, 𝜙 - azimuthal coordinate, 𝜔 is an eigen-frequency and m is an azimuthal number. The basic equations for
such modes has the following form:
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where Ω is an angular velocity of the rotating flow, 𝜌 is the density, W = 𝛿h/𝜌, 𝛿h is the fourier-amplitude of the
enthaply euler perturbation, �̄� = 𝜔 − mΩ, 𝜅2 = 2Ω

x
d
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is the epicyclic frequency and D = 𝜅2 − �̄�2.

We study perturbed flow with a vertical hydrostatic equilibrium, W = W (x) and equation (2) can be integrated over the
vertical direction:
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where Σ is the surface density:
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is equatorial value of enthalpy. For our primitive eigenmodes in the modal framework, and we employ the WKBJ-method
to solve (3):

W = C0S1 (x) cos [S0 (x) + 𝜙0] , (5)
where S0,1 are known slowly varying functions of x . WKBJ-solution is irregular in boundary points, so we use the regular
bessel solutions in the vicinity of x1,2:

W = C1,2 x̃−(2n−1)/4 Jn−1/2(z), (6)

where z ∝ x̃1/2/𝛿, x̃ ≡ |x − x1,2| and n is the usual polytropic index (6) match the WKBJ-solution for discrete values of
𝜔 given by the dispersion relation:
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OPTIMIZATION PROBLEM

Consider the linear span SN of a finite number of eigenmodes:

q =
N∑︁

n=1

𝜅nq̃n (8)

where vector
q̃n = {𝛿vr, 𝛿v𝜙,W}n × eim𝜙,

𝛿vr, 𝛿v𝜙 are the euler perturbations of radial and azimuthal velocity components and the temporal evolution is
determined by the coefficients

𝜅n(t) = 𝜅0
ne−i𝜔nt.

𝜅0
n are the arbitrary complex numbers and 𝜔n are the corresponding eigen-frequencies.

First, we introduce the inner product in SN so that the norm of individual perturbations is equal to its full acoustic energy:
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where the vertical integration is done.

Then the growth factor for the individual perturbations is
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T , 𝜅 = (𝜅1, 𝜅2, ..., 𝜅N)T and the optimal perturbation at every moment is

G(t) = max
𝜅0 ̸=0

g(t) ≡ ‖eΛt‖2, (11)

where eΛT is the propagator acting on the initial perturbations, Λ = diag{−i𝜔1,−i𝜔2, ...,−i𝜔N}.

G is calculated employing the standard procedure, specifically, it equals to the first singular value of propagator matrix.
It is important to note that the numerical tests show that saturation of G always takes place as we increase N . Namely,
G doesn’t change noticeably when N gets to 20 − 30 of higher.

OPTIMAL GROWTH

In the figure we present the results for optimal growth calculation in our model.
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On the plot (a) you can see the energy
growth for linear combinations that attain
maximum at t = 250, 290, 390 (green curves)
and optimal growth of perturbations (red
curve). The fixed parameters are 𝛿 = 0.002,
m = 25, N = 20, Δ = 1.0, n = 3/2

On the plot (b) you can see the optimal
growth for different values of 𝛿. Red, green and
blue curves correspond to 𝛿 = 0.001, 0.002
and 0.003 accordingly. For all curves
here m = 25, N = 20, Δ = 1.0, n = 3/2

We conclude that the linear combination of neural inertial-acoustic modes we’ve chosen for this study is capable of
substantial energy growth at the sonic timescale, ts, which is intermediate between the the dymanical, td , and viscous,
t𝜈, timescales. Note that as the same time full energy of each separate eigenmode remains constant in time. Moreover,
as we can see, the transient growth get higher as the rotation approaches the keplerian profile, i.e. as the disc becomes
more and more geometrically thin.

ANGULAR MOMENTUM FLUX

In a rotating disc an angular momentum density of perturbations is equal to

K = x < 𝛿Σ𝛿v𝜙 >, (12)

where <> means averaging over the azimuthal coordinate, 𝛿Σ is the perturbation of surface density.
The non-zero (radial) angular momentum flux density equals to

F = xΣ < 𝛿vr𝛿v𝜙 > (13)

These quantities obey the conservation law
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= 0 (14)

F is simply related to the work done by the Reynolds force which is responsible for the energy transport from the basic
flow to perturbations. In fact, the total acoustic energy of perturbations changes due to the action of the Reynolds force
only:
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Σ𝛿vr𝛿v𝜙x dx d𝜙 (15)

Let us see how the profile of F (x) changes with time during the transient growth and decay.
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In the figure
you can see the angular momentum flux for
perturbations with optimization time t = 290.
The fixed parameters are 𝛿 = 0.002, Δ = 1.0,
m = 25, n = 3/2, N = 20.
On the plot (a)
green, brown, red, magenta and blue curves
correspond to t = 50, 100, 150, 200, 240.
On the plot (b) red, green, blue and brown
curves correspond to t = 290, 350, 400, 450.

It’s clear, that when the energy of perturbations grows up angular momentum is transported outwards. At the same time,
the narrow region of the most intensive angular momentum flux moves from the outer edge of the disc to it’s inner part.
When the evolution changes to the decay epoch, we see the reverse process. Note again, that F = 0 at all points of
(x1, x2) for each separate neutral eigenmode.

PARAMETRIC STUDY

Here we’d like to present a short parametric study of optimal growth in thin polytropic disc. We have few parameters
need to be fixed for the particular model. These are the polytropic index ,n, which changes in the range (3/2, 3) from
perfect cool gas to relativistic gas, the wave number in azimuthal direction, m, the disc half-thickness, 𝛿, and it’s radial
size, Δ.

To display G behaviour, we take two characteristic quantities, Gmax , which is the magnitude of the first maximum on
G(t) curve, see the figures above, and the time, Tmax , at which an optimal growth attains Gmax .
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Let us note at first that we din’t find
a considerable dependence on n in the range
mentioned. On the plots (a) and (b) you can
see the dependence of Gmax and Tmax on 𝛿.
N = 20, Δ = 2.0,
n = 3/2. Red, green, blue and brown curves
are obtained for m = 5, 10, 15, 25 accordingly.
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On the plots (a) and (b) you can see the
dependence of Gmax and Tmax on 𝛿 as well.
But now we fix m and change to different
radial size of the disc: N = 20, m = 10,
n = 3/2, and red, green, blue and brown
curves are obtained for Δ = 0.5, 1.0, 1.5, 2.5
accordingly.

Evidently, the transient growth phenomenon
becomes more prominent while approaching
small 𝛿, i.e. the disc rotation tends to the keplerian profile. This is opposite to sonic modal instability that emerges from
resonant interaction between the basic flow and the mode of perturbations (of between two perturbation modes with
total energy of opposite signs) at the corotation critical layer and is strongly suppressed close to the keplerian rotation.
We also notice that the optimal growth increases as we increase m or Δ.

COMMENTS

Our study shows the significance of the transient growth concept in application to astrophysical systems. We stress that
in contrast to the majority of publications in this area we use here the full grobal approach to the problem, so we
consider the perturbation dynamics in the whole sub-keplerian thin disc including the influence of the free boundary and
the vorticity gradient.

We found that a linear combination of the most simple type of the eigenmodes exhibit a substantial transient growth of
acoustic energy with positive angular momentum transfer, i.e. outwards from the central object. Also, the characteristic
timescale of optimal transient growth in thin disk is of order of the sonic timescale, which is longer than the dynamical
one but shorter that the period of viscous evolution of the configuration as a whole.

Finally, we see several directions to develop our research. That is, one has to include the vertical structure of
eigenmodes into consideration, and eigenmodes with corotation resonance inside the flow. Then, it’d be important to
include a small viscous corrections since this must be necessary to do on small spatial scale of perturbations. At the
same time the latter would possibly allow us to consider a quasi-stationary dynamics of thin hypersonic disc under the
external stochastic forcing on the time intervals shorter than the viscous timescale of the whole disc.


