
On the appearance of multiple attractors in

discrete food-chains

Danny Fundinger

Laboratory of Mathematical Modelling,

Department of Mathematics

Sankt Petersburg State Polytechnic University

Sankt Petersburg, 195251, RUSSIA

e-mail research@danny.fundinger.de

Torsten Lindström

Department of Chemistry and Biomedical Science,

University of Kalmar

S-39182 KALMAR, SWEDEN

e-mail torsten.lindstrom@hik.se

George Osipenko

Laboratory of Mathematical Modelling,

Department of Mathematics

Sankt Petersburg State Polytechnic University,

Sankt Petersburg, 195251, RUSSIA

e-mail george.osipenko@mail.ru

Abstract

Klebano� and Hastings (1994) detected cases of multiple attractors
in continuous food-chains. In this paper we discuss similar phenomena
in the discrete food-chains introduced by Lindström (2002). The
results imply that the dynamical properties including species persistence
may change due to disturbances that do not involve changes in the
environmental parameters. Thus, there are possibilities that species may
be eradicated or start to oscillate at di�erent frequencies without any
changes in the environment. Since this is now shown to hold in both
seasonal and non-seasonal environments, we expect that this is a rather
general property of ecosystems.
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1 Introduction

Lindström (2002) proposed a model for discrete food-chains that displays a lot
of properties commonly known for continuous food-chains (Rosenzweig (1973),
Gragnani, DeFeo, and Rinaldi (1998)). Klebano� and Hastings (1994) and later
Kuznetsov, DeFeo, and Rinadi (2001) pointed out that multiple attractors may
be involved in such continuous food-chains. It was reported in Lindström (2002)
and Gyllenberg, Hanski, and Lindström (1996) that multiple attractors normally
exist already in discrete predator-prey systems.

In this paper we analyze a number of more delicate ways how multiple
attractors (invariant sets possessing asymptotic stability by Lyapunov) may
evolve in three-dimensional ecosystems. Neimark-Sacker bifurcations describe
to a large extent the transistions from stable to unstable behavior in discrete
food-chains. After a Neimark-Sacker bifurcation an invariant non-smooth circle
usually appears (Kutsnetsov (1998)) and the dynamics on the invariant cir-
cle can shortly after the Neimark-Sacker bifurcation be understood as a circle
map (Wiggins(2003)). The dynamics of circle maps usually contains resonance
tongues describing structurally stable periodic behavior and structurally unsta-
ble quasi-periodic behavior. As we proceed further away from the Neimark-
Sacker bifurcation, the circle map description breaks down and the resonance
tongues start merging. At paramater values corresponding to merging reso-
nance tongues, multiple attractors can normally be detected (Aronson, Chory,
Hall, and McGehee (1982) and Gyllenberg, Hanski, and, Lindström (1996)).
The descriptions of these phenomena has so far been restricted to phenom-
ena in 2-dimensional state spaces and we now do attempts to describe these
phenomena in 3-dimensional state space. We give examples on how certain bi-
furcation sequences can be connected to disappearance of orientation of certain
invariant manifolds. These are phenomena that cannot be analyzed completely
in 2-dimensions. We proceed with an analysis of the reported mathematical
phenomena and link this to possible consequences for population dynamics.

A number of advanced numerical methods is needed for the analysis of the
model in Lindström (2002). One of these methods is the construction of the
symbolic image graph (Osipenko (1983,2004), Avrutin, Fundinger, Levi, Os-
ipenko, and Schanz (2006) and Fundinger (2005)) in order to compute an outer
covering of the chain-recurrent set, see (Devaney (1989) and Guckenheimer and
Holmes (1983)). By application of this method, return trajectories of any type
can be localized. In our context, the technique was successfully applied to pro-
vide information of otherwise invisible unstable quasiperiodic oscillations. For
the computation of periodic cycles, we applied the RIM method (Fundinger
(2006)). This method is an alternative to the standard approach of using a
Newton-based iteration scheme which has the advantage that neither an initial
guess is required nor the computation of any Jacobian-like matrix. We applied
the RIM method for computation of both, stable and unstable periodic orbits.
The method proved useful for localization of coexisting attractors, too. By mi-
nor modi�cations (cf. Fundinger (2006)), the RIM method can also be applied
to approximate parts of the stable manifolds. Additionally, we used some stan-
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dard techniques for analysis, like computation of forward iterates and dominant
Lyapunov exponents. All of the above mentioned techniques are implemented
as part of the non-commercial AnT software package (cf. Avrutin, Lammert,
Schanz, Wackenhut, and Osipenko (2003)) (see (AnT (2005)) for download).
Most of our computations were carried out with this tool. The only applied tech-
nique not included in the AnT package, was the iteration of a speci�c chosen
curve. If appropriate starting points are given, this method allows an approx-
imation of the form of an invariant manifold which is completely speci�ed by
the starting points given. It connects the iterates of the starting points and
extracts information about the dynamics on the manifold. The method is still
under development.

The paper is organized as follows. We start by formulating the model and
compute its equilibria. Then we give an overview about the main dynami-
cal characteristics of the system. We start from a parameter setting at which
the computation and analysis of system features are comparatively easy. After-
wards, we describe the area of investigation in parameter space where coexisting
attractors can be found. The occurrence of these multiple attractors is the sub-
ject of the following chapter. We list several examples leading to initial value
dependent dynamical patterns and discuss under what circumstances such be-
havior may evolve in our system and what potential reasons may create such
behavior in general ecological systems.

2 The model and its equilibria

We de�ne the model under study here by the discrete dynamical system

Xt+1 =
M0Xt exp(−Ut)

1 + XtH(exp(−Zt), Ut

1−exp(−Zt)
)
,

Ut+1 = M1XtUt exp(−Zt)K(Ut) ·K(M2UtZt),
Zt+1 = M2UtZt.

(1)

The two special functions referred to above are given by

H(α, ρ) = − exp(−ρ)(Ei(ρ)− Ei(αρ)) log α (2)

and

K(γ) =

{
1−exp(−γ)

γ , if γ 6= 0.

1, if γ = 0
, (3)

The model was derived in Lindström (2002), with an explanation of all involved
parameters and variables. The variables are related to the di�erent trophic lev-
els of the system, so X is proportional to the vegetation abundance whereas Z
is proportional to the carnivore abundance. Since the relation between herbi-
vores and U is nonlinear, a more complicated relation describes the situation
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here. However, such relationships do not change the topological properties of
the system under study. So, for convenience, we will refer to the vegetation,
herbivore, and carnivore levels in the sequel.

The above model contains exponential integrals. Well-working approxima-
tions are therefore needed especially for theoretical studies of the model. An
approximation already introduced by Lindström (2002) can be de�ned by

Xt+1 =
M0Xt exp(−Ut)

1 + Xt max(exp(−Ut),K(ZT )K(Ut))
Ut+1 = M1XtUt exp(−Zt)K(Ut) ·K(M3UtZt)
Zt+1 = M2UtZt.

(4)

This approximation seems to work well not only in theoretical computations.
The original model (1) contains numerical di�culties that are removed in the
approximation (4), cf Lindström (2002). Note that in the original equation
M2 = M3. The fourth parameter M3 is introduced in order to generate addi-
tional cases allowing an analysis as complete as possible of the system charac-
teristics (see Sec. 3). We have not made any attempts to clarify the biological
relevance of this parameter. Note that the solutions of (4) remain positive and
bounded (repeating the arguments in Lindström (2002) shows that all solutions
starting in the positive cone enter the box 0 < Xt < M0, 0 < Ut < M0M1,
0 < Zt < M0M1M

2
2 /M3 within three iterations).

The system (4) has at most four equilibria and they are given by:

E0 = (0, 0, 0)
E1 = (M0 − 1, 0, 0)

E2(X∗, U∗, Z∗) =

(M0 log
(

M1M0
1+M1

)
(M0 − 1)M1 − 1

, log
(

M1M0

1 + M1

)
, 0

) (5)

and that a fourth is given by

E4(X̃, Ũ , Z̃) = (
M0 exp(− 1

M2
)− 1

K
(

1
M2

)
K
(
log M1

(
M0 exp(− 1

M2
)− 1

)) ,

1
M2

, log M1

(
M0 exp(− 1

M2
)− 1

))
if M2 = M3 and

max(exp(−Ũ),K(Ũ)K(Z̃)) = K(Ũ)K(Z̃). (6)

Uniqueness of the last equilibrium follows from the fact that the right hand-side
of

1 = M1
M0 exp(−1/M2)− 1

max
(
exp(− 1

M2
,K( 1

M2
)K(Z))

)K(
1

M2
) exp(−Z)K(

M3

M2
Z)
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is a continuous and strictly decreasing function of Z. In order to see this,
consider the derivative of the function exp(−Z)K(aZ)/K(Z), for Z > 0 and
α > 0. This derivative equals a positive function times

a exp(Z)− a + exp(Z)− exp((a + 1)Z).

Use of the usual Maclaurin expansion for exp(Z) shows now that the expression
above is negative. Thus, at most four equilibria exist for system (4) in the
non-negative octant.

3 Two attractors on the Möbius strip

In order to study the main characteristics and structure of the coexisting at-
tractors, we commence by analyzing the system (4) at the parameter position
M0 = 4.0, M1 = 1.0, M2 = 3.0, M3 = 4.0. At this parameter position all invari-
ant curves turn out to be low-periodic orbits, which is a good starting point for
a rigorous analysis of important basic asymptotic features of the system. Later,
we shall modify parameters in order to achieve values that we know have bio-
logical relevance (M2 = M3) and follow up with a discussion of what bifurcation
sequences may yield multiple attractors in biological food-chain systems.

The above parameter setting yields two attractors. These attractors are 16-
periodic cycles. Additionally, we can �nd the 4 �xed points alluded to above, and
three further periodic cycles, namely a 16-periodic and two 8-periodic ones. The
RIM method provides an e�cient tool for computing these orbits, see Fundinger
(2006).

The two 16-periodic cycles, which are the attractors of the system, can be
generated by initial data according to

S16
1 ≈


 2.7540

0.2977
0.02869

 , . . .

 , S16
2 ≈


0.9889

0.9753
0.1610

 , . . .

 .

A computation of the eigenvalues along these cycles con�rms that

e1(S16
1 ) ≈ 0.0087, |e2,3(S16

1 )| ≈ |0.9161± 0.1832i| = .9342 < 1, (7)

e1(S16
2 ) ≈ 0.0079, |e2,3(S16

2 )| ≈ |0.8672± 0.2166i| = .8938 < 1, (8)

which shows that the eigenvalues of both cycles are located inside the complex
unit circle. Consequently, these cycles are attracting periodic orbits.

Now we proceed by giving the unstable periodic orbits. One of them is
16-periodic and can be generated by:

U16
1 ≈


0.9109

0.4561
0.4268

 , . . .

 ,
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whereas two are 8-periodic,

U8
1 ≈


1.8548

1.1184
0.4369

 , . . .

 , U8
2 ≈


2.2910

0.0807
0.2726

 , . . .

 .

The eigenvalues for the unstable cycles are given by:

e1(U16
1 ) ≈ 0.0105, e2(U16

1 ) ≈ 1.0874, e3(U16
1 ) ≈ 0.6492, (9)

e1(U8
1 ) ≈ 1.0988, e2(U8

1 ) ≈ −0.1084, e3(U8
1 ) ≈ −0.7945 (10)

e1(U8
2 ) ≈ −1.1252, e2(U8

2 ) ≈ 0.8983, e3(U8
2 ) ≈ −0.0800 (11)

For each of these cycles, one eigenvalue lies outside the unit circle, and two
are inside. Thus, the cycles are of saddle type. The stable manifolds of these
saddles are 2-dimensional, the unstable ones are 1-dimensional.

Considering the properties of the periodic cycles, we can conclude that they
belong to a one-dimensional invariant manifold M. This manifold consists of
the periodic cycles and the unstable manifolds of the saddles so that

M = S16
1 ∪ S16

2 ∪ U16
1 ∪ U8

1 ∪ U8
2 ∪Wu(U16

1 ) ∪Wu(U8
1 ) ∪Wu(U8

2 ).

In order to approximateM, we computed the unstable manifolds of the saddles.
This is done by the computation of several forward iterates starting in the
vicinity of the saddle points. The numerical approximation of M is shown in
Fig. 1(a), whereby the periodic cycles and the unstable manifolds of the saddles
are colored di�erently. Obviously,M consists of eight similar parts in the phase
space. Each of these parts corresponds to a set of saddles and period-two sinks
of the map f8, which is denoted as the eighth iterated of the system function
f as de�ned by Eq. 4. The enlargement of one of these parts, as illustrated in
Fig. 1(b), clari�es the structure of the system. The unstable manifolds of the
8-periodic cycle U8

2 leads to S16
1 and the unstable manifold Wu(U16

1 ) leads to
S16

1 and S16
2 .

Next we outline the relation between the two saddles U8
1 and U8

2 . Therefore
we computed parts of the stable manifold of U8

2 , i.e. W s(U8
2 ). Note that, due to

the complexity of the underlying system, the computation of the stable manifold
is a nontrivial task. Indeed, we are only able to compute a rough approxima-
tion of the local stable manifold in the vicinity of U8

2 . We applied the RIM
method as described in Fundinger (2006) and computed an outer covering of
those parts of the stable manifolds for which forward iterates come close to the
saddle within 100 iteration steps. As can be seen in Fig. 2, the unstable mani-
fold Wu(U8

1 ) intersects with W s(U8
2 ) so that Wu(U8

1 ) oscillates around W s(U8
2 ).

Thus, our numerical results indicate that the unstable manifold Wu(U8
1 ) inter-

sects the stable manifold of U8
2 transversally on the Möbius strip, and therefore

the heteroclinic structure found here is a structurally stable phenomenon, cf
Guckenheimer and Holmes (1983) and Kuznetsov (1994).

Due to the fact that all minimal attractors (i.e. attractors that do not
contain other attractors) of the system belong to M, there is a minimal two
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Z

X
U

(a)

•
U8

1
•

U16
1

•
U16

1

•
S16

2

•
S16

2
• U8

2

•
S16

1

•S16
1

(b)

Figure 1: (a): Numerical approximation of the invariant manifold M of the 8-
and 16-periodic cycles for M0 = 4.0, M1 = 1.0, M2 = 3.0, M3 = 4.0 and the
unstable manifolds of U8

1 (blue), U8
2 (red) and U16

1 (dark green). (b): Enlarge-
ment of one of the eight similar parts of M. Arrows indicate the direction of
the �ow.
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•
U8

2

(a) (b)

Figure 2: (a):The unstable manifold of U8
1 (blue) in the vicinity of U8

2 . (b):
Numerical approximation of parts of the stable manifold of U8

2 (dark green).
White and black arrows indicate the direction of the �ow.

dimensional invariant manifold M2 which contains M and is Lyapunov stable.
Such a manifold can be approximated using iterates of speci�c curves, cf Section
1.

The results of a computation are shown in Fig. 3(a). It is clear that M2,
as M, consists of eight similar parts. Each of the eight similar parts is mapped
to its neighbor so that after eight iterates it is mapped into itself. Thus, the
manifold M2 =

⋃
Vi, i = 1, 2, ..., 8 consists of eight homeomorphic pieces. One

of them is illustrated in Fig. 3(b).
The manifold M2 turns out to be homeomorphic to a Möbius strip. More

precisely, consider the restriction of the dynamical system toM2 and the eigen-
vectors EV1, EV2, EV3 corresponding to the eigenvalues e1(U8

2 ), e2(U8
2 ), e3(U8

2 ),
see Eq. 11. Let A be a point located at the periodic orbit U8

2 and denote the
system function de�ned by Eq. 4 as f . The invariant subspace spanned by EV1

and EV2 (or EV3) is a tangent space TM2(A) to M2 at the point A. The
di�erential Df8(A) restricted to TM2(A) changes orientation because the �rst
eigenvalue e1(U8

2 ) > 1 and e2(U8
2 ) < 0 (or e3(U8

2 ) < 0), i.e.

det(Df8(A))|TM2(A) = e1(U8
2 ) e2(U8

2 ) < 0.

At the same time, from continuity it follows that the map f : Vi → Vi+1 saves
orientation. This is possible only if the manifold M2 is non-orientable. The
manifold M2 is two-dimensional and thus, it must be a Möbius strip.

As already mentioned, the unstable manifold of the 8-periodic hyperbolic
orbit U8

2 ends at the 16-periodic sink S16
1 . Thus, considering the map f8, Wu(A)

ends at a two-periodic sink P 2 = {P1, P2} ⊂ S16
1 . Hereby, the map f8 changes

orientation and maps P1 to P2.
Taking the geometrical point of view, we could say that the 8-periodic cycles
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(a) (b)

Figure 3: (a) Numerical approximation of the two dimensional invariant mani-
fold M2 for M0 = 4.0, M2 = 3.0, M3 = 4.0 by curve iteration. (b) One of the
eight homeomorphic parts Vi ⊂M2, i = 1, 2, . . . , 8.

U8
1 and U8

2 lie on the center line of the Möbius strip, and the 16-periodic cycles
S16

1 , S16
2 and U16

1 on its outer boundary.
Some general characteristics regarding the occurrence of multiple attractors

can already be identi�ed. Firstly, if multiple attractors exist, they are situated
close to each other in the phase space. The attractors are invariant cycles, either
periodic or quasi-periodic. Geometrically, each of them forms the boundary of a
Möbius strip and there is an invariant curve of saddle type, also on the boundary
of a Möbius strip, in between these attractors. These characteristics �t to all
multiple attractors that we were able to localize.

4 Scenario of bifurcations

Our numerical studies con�rm that the system dynamics are governed by just
one attractor in large parts of the parameter space. Thus, we detected coexisting
attractors only in a small range of the parameter space. Consequently, we limit
the rest of the discussion to the parameter range M0 ∈ [3.3; 3.6] and �x the
other parameters to M1 = 1.0,M2 = M3 = 4.0. So far, multiple attractors seem
to be located in the vicinity of this slot. We commence an overview about some
general features and bifurcations before we proceed in the next section with a
detailed analysis for selected parameter values possessing multiple attractors.

The selected area is located along the route to chaos. At M0 ≈ 2.93 a
Neimark-Sacker bifurcation occurs. The �xed point E4 loses its stability and an
invariant curve is born, see Fig. 4. This curve becomes the minimal attractor of
the system. We denote it by A. As the parameter M0 is increased, the attractor
A is alternatingly quasi-periodic and periodic, like the dynamics of circle maps
(Devaney (1989) and Wiggins (2003)). This holds as long as the parameter
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Z

X
U

E4

E2

E1

Figure 4: Numerical computation of the minimal attractor A (blue) and the
�xed points E1, E2, E4 at M0 = 2.935, shortly after a Neimark-Sacker bifurca-
tion.

value stays moderately far from the bifurcation value, cf Aronson, Chory, Hall,
and McGehee (1982).

Some general features of the selected area can be described by dominant
Lyaponov exponents, see Figure 5. We used the implementation (AnT (2005)) of
the algorithm described in Wolf, Swift, Swinney, Vastano (1985) for this compu-
tation. The general patterns described by alternating periodic and quasiperiodic
motion alluded to above is con�rmed in the Figure, negative values indicate that
at least one periodic attractor exists, values around zero indicate quasi-periodic
motion, or otherwise structurally unstable cases. Positive values indicate at least
one chaotic attractor. If several attractors exist, the dominant Lyapunov expo-
nent corresponding to the attractor having (X, U, Z)T = (0.927, 0.527, 0.112)T

in its basin of attraction was computed. Our objective was actually a plot of
the di�erent Lyapunov exponents of di�erent attractors in the same diagram in
order to be able to visualize sharply the regions possessing initial value depen-
dent dynamics. However, for cases when multiple attractors were detected in
this study, their Lyapunov exponents turned out to follow each other too close
in magnitude for this to make sense (cf. (7) and (8)).

We next analyze the structure of the attractor in the selected area by choice
of a particular parameter value. We choose M0 = 3.4001 and construct an outer
covering of the chain recurrent set (cf. Guckenheimer and Holmes (1983)) by
means of the symbolic image method, see Osipenko (1983), Osipenko (2004),
and Fundinger (2005).

The results are displayed in Figure 6. Four unstable �xed points are located
together with two invariant curves, one of them is unstable and the other one
turns out to be the minimal attractor, A, of the system. The unstable invari-
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λ

Figure 5: Plot of the largest Lyapunov exponents λ of the minimal attractor A
in the parameter range M0 ∈ [3.3; 3.6].

z

y x

(a)

z

x

y

(b)

Figure 6: Two di�erent views of the outer covering of the chain recurrent set
at position M0 = 3.4001. The attractor A (red), an unstable invariant curve
(green) and the unstable �xed points (blue) are shown. The fourth �xed point
at (0, 0) is not visible here.
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ant curve was born at the Neimark-Sacker bifurcation at M0 ≈ 2.93 and looses
its stability at M0 ≈ 3.366. At this position a bifurcation happens and a new
stable invariant cycle is born. The bifurcation reminds about the type of period
doubling bifurcation that is usually observed in continuous dynamical systems.
However, we can not speak of period doubling bifurcations here in the same
sense as is usually meant for discrete systems. We rather observe a pattern
that is typical for continuous systems (cf. Feigenbaum (1978,1980) Gucken-
heimer and Holmes (1983)) in a discrete system. The emerged cycle becomes
the minimal attractor A of the system and both cycles are illustrated in Fig. 6.
These two cycles belong to a two dimensional invariant manifold M2 which is
homeomorphic to our old friend, the Möbius strip, cf Section 3.

Geometrically, the curves resemble the shape of a Möbius strip. The stable
invariant curve can be imagined as the edges of the strip, and the unstable
curve as its center line. Numerical studies of forward and backward iterates so
far indicate that the curve at the center line is of saddle type. We have not
yet established this property by means of measures like, for instance, Lyapunov
exponents.

The dominating Lyapunov exponent of the attractor A turns out to be λ =
6.4766 · 10−6, which together with numerical error bounds indicates that A is
quasi-periodic. Unfortunately, similar quantities cannot be computed for the
unstable invariant curve by means of numerical methods currently available to
us. The sharpest answer was provided by the RIM method which con�rmed a
period higher than 64 in case it is periodic. Thus, we consider this as a quasi
or high-periodic cycle. Since all quasi-periodic cases are structurally unstable,
there are limits on how far we are able to pursue such a classi�cation numerically.

The basic structure of the attractor remains as illustrated as long as no chaos
is detected. Windows in parameter space can be observed for which the attractor
is a periodic cycle. Later, we shall see that several more period doubling-like
bifurcations of the same kind happen close to the transition to chaos. The stable
invariant curve becomes unstable again, and a new stable invariant curve is born
which winds around it. Hence, the attractor is on the edge of a Möbius strip
which is embedded into another one and several more unstable invariant curves
coexist.

5 Occurrence of multiple attractors

In this section we show the occurrence of multiple attractors within the para-
meter range discussed above. Our objective is to determine typical patterns of
multiple attractors in our system. We focus on two windows in the parame-
ter range. The �rst case involves two coexisting attractors which are invariant
curves. The latter case involves periodic attractors only, which allows compu-
tation of the eigenvalues. We also show that a period-doubled Möbius strip
appears between the two windows, and that the second scenario of multiple
attractors happens close to the occurrence of chaos.

First we look at the interval M0 = [3.53195; 3.5332]. Within this range
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2

• U107
1

•U107
1

•
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(b)

Figure 7: Numerical approximation of the two minimal attractors at M0 =
3.532. A1 is quasi-periodic (blue) and A2 consists of 107 closed cycles (red)
around a 107-periodic hyperbolic orbit U107

1 . Another 107-periodic orbit U107
2

is a saddle which separates the attractors. The unstable manifold of the saddle
is also computed (dark green).

several local and global bifurcations lead to a number of subsequent changes
in the dynamics. This involves the appearance of two coexisting attractors
after a saddle bifurcation, a boundary crisis between an attractor and a saddle,
and the birth of a second coexisting attractor out of a periodic saddle. We
proceed with the scenario that produces the coexisting attractors at the position
M0 = 3.532 and postpone a more detailed discussion of the bifurcation sequence
to a subsequent paper.

The two attractors found are an invariant quasi-periodic curve, in the follow-
ing denoted by A1, and an invariant set A2 which consists of 107 closed curves
which are situated around an unstable 107-periodic orbit U107

1 . Hereby, A2 is
an invariant quasi-periodic curve for the 107-th iterate of Eq. 4. In between A1

and A2, a 107-periodic saddle orbit U107
2 is situated. The two periodic orbits

can be generated by

U107
1 ≈


1.6284

0.1417
0.4878

 , . . .

 , U107
2 ≈


1.6440

0.1369
0.4944

 , . . .

 .

The results of a computation are illustrated by Fig. 7. Hereby, A2 moves closer
to U107

1 for an increase of M0 (subcritical stable Neimark-Sacker). The radius
of the cycles decreases and in M0 ≈ 3.532833 the stable cycles are absorbed by
U107

1 . At this position, U107
1 becomes stable and is an attractor.

We also investigated the 2-dimensional stable manifold W s(U107
2 ) of the

saddle U107
2 . We provide numerical evidence that the manifold separates the

domains of attraction of A1 and A2 in Fig. 8(b). We �rst give a 1-dimensional
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•
U107

2

A1

A2

W s(U107
2 )

(a) (b)

Figure 8: (a) Sketch of parts of the stable manifold of the saddle orbit U107
2 ,

i.e. W s(U107
2 ), which separates the attractors A1 and A2. The approximation

shows a projection of the local stable manifold within the vicinity of one of the
points belonging to U107

2 . Black arrows indicate the direction of the �ow. (b)
Numerical approximation of parts of the stable manifold W s(U107

2 ) (dark blue).
The unstable manifold Wu(U107

2 ) (green) and the attractors A1 (light blue) and
A2 (red) are also shown. White arrows indicate the direction of the �ow. The
stable manifold W s(U107

2 ) separates the domains of attraction of A1 and A2.

illustration of the manifold by numerical approximation computed by curve iter-
ates in Figure 8(a). A 2-dimensional approximation is then shown in Fig. 8(b).
This approximation was computed with the RIM method mentioned in Sec. 3
and produces an outer covering of those parts of the stable manifold for which
the forward iterates come close to the saddle within 2500 iterations. Although
only those parts of the stable manifold can be approximated which are situ-
ated in the vicinity of one point of the saddle orbit U107

2 , it is obvious that the
stable manifold separates the domains of attraction. The structure of the com-
plete stable manifold, as well as of the two domains of attraction it separates,
is in general not only di�cult to compute but also to visualize. Although we
were able to compute larger parts of the stable manifolds as the one shown in
Fig. 8(b), we were not able to give a meaningful interpretation regarding the
position and size of the domains of attraction.

Let us next consider the eigenvalues of the periodic orbits which can be
approximated as

|e1,2(U107
1 )| ≈ |0.9950± 0.2146i| = 1.0179 > 1, e3(U107

1 ) ≈ 0, (12)

e1(U107
2 ) ≈ 1.3694, e2(U107

2 ) ≈ 0.6504, e3(U107
2 ) ≈ 0. (13)

First of all, the eigenvalues con�rm us the numerical results regarding U107
2 �

the cycle is of saddle type and has a 1-dimensional unstable and a 2-dimensional
stable manifold. Furthermore, the cycle U107

1 has a 1-dimensional stable and a 2-
dimensional unstable manifold which spirals to the curves of A2. Note that each
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of the periodic orbits has an eigenvalue close to 0. Due to the numerical error
bounds a sharper answer is not possible. However, none of the eigenvalues is be-
low or equal 0 because the determinant of the Jacobian, i.e. det(Df107(U107

1,2 )),
is positive and, hence, e1e2e3 > 0. We consider next the possibility of construct-
ing a two-dimensional invariant manifold M2 which contains A1, A2, U107

1 and
U107

2 . Due to the fact that |e1,2(U107
1 )| > 1, the eigenvector EV3 corresponding

to e3(U107
1 ) is transversal to M2. This con�rms that M2 is Lyapunov stable.

We proceed with a bifurcation happening before occurrence of the next area
in parameter space with multiple attractors. Close to M0 ≈ 3.5331 a period
doubling-like bifurcation as described in Sec. 4 can be observed again. Our
numerical evidence so far suggests that one attractor is located at the boundary
of a Möbius strip that winds around the initial Möbius strip. We illustrate
the situation by an invariant curve at position M0 = 3.5501 in Fig. 9(a). The
minimal attractor A at this position belongs to a two-dimensional invariant
manifoldM which is homeomorphic to the Möbius strip. However, there is also
another two-dimensional invariant manifold M2 homeomorphic to a Möbius
strip which contains M and also the invariant curve which was born after the
Neimark-Sacker bifurcation at M0 ≈ 2.93. Note however, that we have not yet
established this properties by measures. We give an illustration by computation
of curve iterates at position M0 = 3.56. The manifolds M and M2 can be
approximated as shown in Fig. 9(b).

Next we present coexisting attractors which are all located on the boundary
of a Möbius band which winds around another one. Therefore, we investigate
the interval M0 ∈ [3.57; 3.5714]. In this area, the actual transition to chaos
appears and also multiple attractors can be observed. The area displays mainly
a negative dominant Lyapunov exponent, cf Figure 5. Thus, at least one of the
attractors must be periodic. Indeed, all attractors found here turned out to be
periodic.

For a detailed study we choose the position M0 = 3.571. Here, we �nd two
coexisting attractors. One of them is a stable 71-periodic cycle generated by

S71 ≈


 1.8598

0.76013
6.2305 · 10−3

 , . . .

 .

Additionally, we �nd a second stable cycle which is 142-periodic,

S142 ≈


 1.93364

0.60068
0.20656 · 10−3

 , . . .

 .

We computed the eigenvalues of these cycles,

|e1,2(S71)| ≈ |0.6477± 0.3656i| = 0.7438 < 1,e3(S71) ≈ 0, (14)

|e1,2(S142)| ≈ |0.5079± 0.3626i| = 0.6241 < 1,e3(S142) ≈ 0. (15)
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X

U

(a) (b)

Figure 9: (a) Numerical approximation of the minimal attractor A at M0 =
3.5501 (blue), which is a quasi-periodic cycle, and the �xed points (red). (b)
Numerical approximation of M and M2 by curve iterates at M0 = 3.56.

All eigenvalues are < 1, and so we can verify the stability of these cycles.
Obviously, both cycles are minimal coexisting attractors of the system. They
are illustrated in Fig. 10.

Additionally, by use of the RIM method, 2 unstable periodic cycles can be
found. One of them is 71-periodic,

U71 ≈


1.02136

0.36569
0.4285

 , . . .

 ,

and the other one is 142-periodic,

U142 ≈


 1.7406

0.10355
1.3340

 , . . .

 .

Again, we analyze the eigenvalues of these cycles, which can be approximated
as

e1(U71) ≈ 1.4817, e2(U71) ≈ 0.5603, e3(U71) ≈ 0 (16)

e1(U142) ≈ 1.8779, e2(U142) ≈ −0.0669, e3(U142) ≈ 0 (17)

The periodic cycles U71 and U142 are of saddle type. Their unstable manifolds
are 1-dimensional. A numerical approximation is illustrated in Figs. 11 and 12.
As can be seen, the visualization of the unstable manifolds signi�cantly con-
tributes to the understanding of the dynamics. It becomes obvious that there
is a two-dimensional invariant manifold which contains all periodic cycles and
is non-orientable. Geometrically, the manifold winds around a Möbius strip.
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Figure 10: The two co-existing attractors S71
1 (red) and S142 (blue) at M0 =

3.571.

The unstable manifold of U142 ends in S142 and S71, whereby it seems that the
unstable manifolds of U142 and U71 meet each other close to S71. One half of
the unstable manifold of U71 ends in S71, and the other points towards U71

2 . We
do not give here a more detailed discussion about the properties of the stable
and unstable manifolds. Reason for this is that indeed the transition to chaos
can be observed at this position in parameter space. A more detailed discussion
is out of scope for this paper.

We point out that the maximum number of coexisting attractors is at least
three in our biological system and end up with an investigation of the system
at M0 = 3.5708. At this position, three coexisting attractors can be localized.
These are two cycles of period 71 denoted by S71

1,2 and one cycle of period 142
denoted by S142

1 . The attractors can be generated by

S71
1 ≈


1.0898

0.3074
0.3518

 , . . .

 , S71
2 ≈


1.0646

0.3259
0.3185

 , . . .


and

S142 ≈


1.0919

0.3065
0.3500

 , . . .

 .

The attractors are illustrated in Fig. 13. Indeed, we guess that a still higher
number of coexisting attractors exist in the interval M0 ∈ [3.5708; 3.571].
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Figure 11: (a)+(b): The two co-existing attractors S71 (red) and S142 (blue) at
M0 = 3.571 and an approximation of the saddles U71 (green) and U142 (black)
and their unstable manifolds W s(U71) (orange) and W s(U142) (grey).
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S71
U71

U71
S71

U142S142

U142

S142

Figure 12: Parts of the two co-existing attractors S71 (red) and S142 (blue) and
of the unstable manifolds of the saddles U71 (orange) and U142 (grey). Arrows
indicate the direction of the �ow.

Z

X

U

Figure 13: The three co-existing attractors S71
1 (red), S71

2 (green) and S142

(blue) at M0 = 3.5708.
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6 Conclusion

In this paper we have proved that a real discrete system with biological origin
possesses a non-orientable invariant manifold, i.e. a Möbius strip. We also
indicated that multiple attractors may arise in the system and estimated parts
of the domains of attraction for some of these attractors.

The obtained results concerning multiple attractors in food-chains is that we
have found several parameter regions possessing such phenomena and that we
have been able to locate at least one region possessing at least three coexisting
attractors. The cases so far detected possess attractors that are located close
to each other in phase space. However, we have not been able to exclude more
complicated situations having more intriguing biological consequences in the
system under study or nearby systems, either.

General questions of biological importance are those related to persistence of
species (Butler and Waltman (1986), Waltman (1992) and Rosenzweig (1971))
and regular or irregular population outbreaks (Elton (1930), Hanski, Hansson,
and Henttonen (1991), and Andreasen (2003)) with respect to environmental
parameters that describe the surrounding environment. The notion of persis-
tence is related to food-chain length (May (1971)) and gives valuable insight on
what kind of species are going to invade (as consequences of evolution) and or
become eradicated in the ecology under study. Recently, the notion of persis-
tence have been better understood in simple cases by extended understanding
of the stochastic processes involved (Nåsell (2001)).

In this paper we call into question the status of the environmental parameters
as a sole indicator of how an ecology evolves. Indeed, we argue that multiple
attractors are a rather general phenomenon in larger ecological communities.
This implies that the long-run behavior of the system might be sensitive to
disturbances like temporary harvesting not involving permanent changes in the
environmental parameters themselves. Our results do not imply that the de-
tected changes were remarkable or catastrophic, but they are not more to be
excluded. This also gives rise to intriguing problems when analyzing properties
of ecological time-series (Royama (1992), Stenseth, Bjørnstad, and Falck (1996),
and Ellner and Turchin (1995)). Our work leaves also a signi�cant contribution
to the understanding of the geometry of the invariant sets in typical food-chain
systems. Orientability of these sets can not more be taken for granted, and
non-orientability is a rather general property of these sets.
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