VIBRATIONAL SPECTRA AND CALCULATION OF THE NORMAL VIBRATIONS
OF 1,3-DIMETHYL-1,1,3,3-TETRACHLORODISILOXANE
A. A. Morozov, I. V. Khristenko,

UDC 535.33:541.65
Yu. A. Pentin, S. V. Krasnoshchekov,
E. A. Chernyshev, and T. I. Krasnova

The vibrational spectra of 1,3 -dimethyl-1,1,3,3-tetrachlorodisiloxane (DMTChDS) were obtained in [1] where the $v(S i O)_{s}$ and $v(S i O)$ as bands were identified. No calculation of the frequencies and forms of the normal vibrations was carried out.

We have recorded the IR spectra of DMTChDS in the gaseous, liquid, and crystalline states and the Raman spectra in the liquid and crystalline states (Fig. 1). The frequencies and forms of the normal vibrations of this molecule have been calculated in order to provide a more reliable interpretation of the vibrational spectra. On account of the lack of data concerning the geometry of this molecule, data on hexachlorodisiloxane (HChDS) and hexamethyldisiloxane $(H M D S)$ from [2, 3] were employed. The following parameters were used: RSiO $1.60 \AA$, $R_{\text {SiC }} 1.88 \AA, R_{\text {SiCl }} 2.01 \AA, R_{C H} 1.09 \AA$, SiOSi $146^{\circ}$. The angles at the $\operatorname{Si}$ atoms were assumed to be tetrahedral. Retarded internal rotation around the $S i-0$ bonds is possible in DMTChDS as a result of which this molecule can exist in the form of several conformers of $C_{1}, C_{S}, C_{2}$, and $C_{2 v}$ symmetry. In carrying out the calculations it was assumed that one of the SiCl or SiC bonds of the $\mathrm{CH}_{3} \mathrm{Cl}_{2} \mathrm{Si}$ - groups lies on the SiOSi plane in a trans-position with respect to the SiO bond (Fig. 2) although in [2] it was concluded that there is some deviation from the planar structure of the trans-chain in HChDS. We carried out calculations for all four conformers using the one and the same force constant matrix which was set up using data on the force fields obtained in [4] for HChDS and HMDS. No additional refinement of the force field was carried out. The results of the calculations are shown in Table 1 . The calculation enabled one to assign the experimental frequencies using the calculated forms of the vibrations. There is no doubt concerning the assignment of the frequencies of 2990 and $2918 \mathrm{~cm}^{-1}$ to the $\nu(\mathrm{CH})$ as and $\nu(\mathrm{CH})_{s}$ valence vibrations respectively and the frequencies of 1405 and $1270 \mathrm{~cm}^{-1}$ to the $\delta\left(\mathrm{CH}_{3}\right)_{\text {as }}$ and $\delta\left(\mathrm{CH}_{3}\right)_{S}$ deformation vibrations. The absorption bands in the $760-850 \mathrm{~cm}^{-1}$ region are assigned to $\rho\left(\mathrm{CH}_{3}\right)$ and, moreover, the vibration with a frequency at around $800 \mathrm{~cm}^{-1}$ is very strongly mixed with $\nu(\mathrm{SiO}) \mathrm{s}$. The antisymmetric $v(S i O)$ as vibration appears in the spectrum as a strong broad band the position of which varies somewhat upon passing from the liquid to the crystal ( $1095 \mathrm{~cm}^{-1}$ in the liquid and $1145 \mathrm{~cm}^{-1}$ in the crystal) which may be associated with an increase in the SiOSi angle in the crystal in comparison with this angle in the liquid [5-7]. Two frequencies, 680 and $645 \mathrm{~cm}^{-2}$, may be assigned to the $v(S i 0)_{s}$ vibration. The first only appears in the IR spectrum as a very weak band which is most probably a combination frequency or an overtone and it is therefore more reasonable to assign the weak band at $645 \mathrm{~cm}^{-3}$ in the IR and Raman spectra to $v(S i 0)_{s}$. It is partially polarized in the Raman spectrum. The weak, depolarized band in the Raman spectrum at $755 \mathrm{~cm}^{-1}$ is assigned to the $v(\mathrm{SiC})$ valence vibration. The assignment of the valence vibrations of the $\mathrm{SiCl}_{2}$ groups, the vibrational frequencies of which are shown in Table 1 , also does not present any significant difficulty. The assignment of the deformation vibrations of the $\mathrm{CH}_{3} \mathrm{Cl}_{2} \mathrm{Si}^{-}$ fragment is considerably more difficult. These vibrations are very strongly mixed with one another and any specific assignments can only be made provisionally (Table 1).

Comparison of the IR and Raman spectra of DMTChDS in the various different states of aggregation shows that significant changes are observed in the region of the skeletal and deformation vibrations of the $\mathrm{CH}_{3} \mathrm{Cl}_{2} \mathrm{Si}$ - spinning top.

For instance, the band at $232 \mathrm{~cm}^{-1}$ which is strong in the Raman spectrum of the liquid becomes weak in the Raman spectrum of the crystal. The complex band at $340 \mathrm{~cm}^{-1}$ with a shoulder on the low-frequency side in the Raman spectrum of the liquid has a symmetric contour with a maximum at $325 \mathrm{~cm}^{-1}$ in the spectrum of the crystal. In the $I R$ spectrum of the crystal a doublet is observed at 325 and $319 \mathrm{~cm}^{-1}$ instead of the band at $340 \mathrm{~cm}^{-1}$. There is a sig-

[^0]a



Fig. 1. IR spectra (a) and Raman spectra (b) of DMTChDS: 1) gas, 2) liquid, 3) crystal.
nificant decrease in the intensity of the line at $145 \mathrm{~cm}^{-1}$ and the bands associated with the $v\left(\mathrm{SiCl}_{2}\right)$ vibrations are shifted to lower frequencies in the spectrum of the crystal as compared with that of the liquid. All these changes, including the shift of the band due to the $v(S i O)$ as valence vibration can hardly be explained unless there is an increase in the Siosi angle. Apparently, the changes indicated above are associated with a change in the conformational structure.

Apart from the investigation of the vibrational spectra in the various different phase states, we also studied the temperature dependence of the spectra within the limits of a single phase. The investigation were carried out over the following temperature ranges:
TABLE 1. Calculated and Experimental Values of the Vibrational Frequencies of the $\left(\mathrm{CH}_{3} \mathrm{Cl}_{2} \mathrm{Si}\right)_{2} \mathrm{O}$ Molecule
 *Frequencies which according to the calculation do not differ by more than $\pm 5 \mathrm{~cm}^{-1}$ for the different conformers at the maximum value of the calculated band energy for the one and the same internal coordinate are given once without indicating the conformer.
TThe coordinate with the maximum value of the calculated band energy is indicated.


Fig. 2. The DMTChDS conformer with $C_{2 v}$ symmetry.
$100-20^{\circ} \mathrm{C}$ in the case of the gas (IR), 20 to $-20^{\circ} \mathrm{C}$ for the $1 i q u i d$, and -25 to $-140^{\circ} \mathrm{C}$ for the crystal (Raman) and down to $-190^{\circ} \mathrm{C}$ (IR). No substantial changes in the spectra were noted during this work.

Deformation vibrations are the most sensitive to rotational isomerism. Calculation showed that this is also observed in the case of the DMTChDS molecule. When this occurs, vibrations which are similar in form may differ in frequency while vibrations of different forms occurring in different conformers may have very similar frequencies, It is therefore impossible to arrive at an unambiguous judgement concerning a change in the conformation structure of DMTChDS from a comparison of the spectra for the various different states of aggregation even if such a change does occur.

## LITERATURE CITED

1. W. Noll, Angew. Chem., 75, No. 1, 123-130 (1963).
2. W. Airey, C. Glidewel, A. G. Robiette, and G. H. Heldrick, J. Mol. Struct. 8, No. 4, 413-422 (1971).
3. B. Csakvari, Zs. Wagner, P. Gömöry, et al., J. Organomet. Chem., 107, No. 2, 287-296 (1976) .
4. A. N. Lazarev, T. F. Tenisheva, and I. S. Ignat'ev, Vibrations of Siflple Molecules with Si-O Bonds [in Russian], Nauka, Leningrad (1980).
5. H. Kreigsman, Zh. Anorg. Allg. Chemie, 298, No. 2, 223-231 (1959).
6. A. N. Lazarev, T. F. Tenisheva, and V. P. Davydova, Dok1. Akad. Nauk SSSR, 173, No. I, 120-122 (1967).
7. L. M. Volkova and N. A. Chumaevskii, Dokl. Akad. Nauk SSSR, 173, 598-601 (1967).

[^0]:    Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 40, No. 6, pp. 970-974, June, 1984. Original article submitted February 16, 1983.

