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Abstract
The effect of impurity quasi-resonant centers (QRCs) on the second harmonic generation in the
mode of formation of the two-color dark temporal solitons at the presence of phase and group
mismatchings is studied. It is shown that QRCs, leading to a decrease of the generation
efficiency, simultaneously contribute to the formation of such solitons.
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1. Introduction

Optical solitons are objects that can be used in information
transmission and processing systems. The studies of vari-
ous soliton modes of the second harmonic generation have
become relevant after the invention of coherent sources of
intense light radiation. Thus, the spatial two-color (paramet-
ric) solitons were predicted in [1]. Such solitons are continu-
ous two-color laser beams localized in the transverse direc-
tions. This localization occurs due to mutual compensation of
nonlinear self-focusing and transverse broadening of the beam
due to diffraction.

Bright and dark temporal parametric solitons have been
studied in detail [2, 3]. The stable localization of such solitons
in the direction of propagation is ensured by mutual compens-
ation of nonlinear self-compression of the pulse and its dis-
persion spreading. Bright temporal solitons are the short laser
pulses. In turn, dark temporal solitons are the localized areas
in the laser beam, the field intensity inside which reaches zero
[4, 5]. Such dark bunches propagate along the laser beam.

The parameters of the medium can be effectively controlled
by the impurity quasi-resonant centers (QRCs) [6]. The role of
such centers can be fulfilled, for example, by the quantum dots
[7, 8]. As is known, the dispersion properties are most effect-
ively manifested in the vicinity of resonant quantum trans-
itions. At the same time, in order to avoid irreversible losses,

which are also significant in the vicinity of resonances, the
frequency of laser radiation should lie outside from the absorp-
tion lines of the impurity centers. Simultaneous satisfaction
to the both conditions is usually called the quasi-resonant
approximation [6, 9, 10].

In [11] a new two-color spatiotemporal soliton, called as
the bright-dark parametric soliton, was predicted. Along the
longitudinal coordinate this object looks like a dark temporal
soliton. With respect to the transverse directions it has the
properties of a bright spatial soliton. Note that in [11] the
bright-dark parametric soliton was studied under idealized
conditions, when the phase matching (PM) and group match-
ing (GM) conditions were simultaneously satisfied. In addi-
tion, the parameter of the dispersion of group velocity (DGV)
was considered positive at the fundamental frequency, and
equal to zero at the second harmonic frequency. At the same
time, in the transparency spectral region of natural crystals the
DGV parameter monotonically increases with the increasing
of frequency [4, 12]. For the reasons stated above, a crystal
with quadratic optical nonlinearity containing doped QRCs
may be useful here.

Before the studying of the possibility of forming of a bright-
dark parametric spatiotemporal soliton in a crystal containing
impurity QRCs in the absence of the both types of matching,
it is useful to first consider such possibility for a dark temporal
two-color soliton. This study is the subject of the present work.
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2. Basic equations

Let the laser pulse propagate along the z - axis, which is per-
pendicular to the optical axis of the uniaxial crystal. We will
also assume that the selected quantum transition of the impur-
ity centers is in quasi-resonance with the laser pulse at the fun-
damental carrier frequency. Then the equations for the linearly
polarized complex slowly varying envelopes (SVEs) ψ 1 and
ψ 2 of the electric field of pulses at the fundamental frequency
ω and at the second harmonic frequency 2ω have the form
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Here and below the subscripts j = 1 and j = 2 refer to the
parameters at the fundamental frequency and at the second
harmonic frequency, respectively; c is the speed of light in
vacuum, nj is the refractive index, vj is the group velocity,
βj is the GVD parameter, α1 = 4πωχ (2)(2ω,−ω)/cn1, α2 =
4πωχ (2)(ω,ω)/cn2, χ (2)(ω1,ω2) is the frequency-dependent
second-order nonlinear susceptibilitiy of the crystal under con-
sideration, n is the concentration of impurity centers, d is the
real matrix element of the dipole moment of quasi-resonant
quantum transition of the impurity QRCs, R is the complex
envelope of the dimensionless non-stationary dipole moment
of the impurity center.

Assuming that the temporal duration τp of the dark laser
soliton is shorter than all times of relaxation, we supplement
the system (1) and (2) by the material Bloch equations describ-
ing the dynamics of impurity QRCs:
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where h̄ is the Planck constant, ω0 is the frequency of the
quantum transition of impurity centers involved in the interac-
tion with the laser pulse, and w is the difference between the
populations of the excited and ground states of the impurity
center.

Let us set the goal of excluding thematerial variables and of
the impurity centers from the system (1)–(4) using the quasi-
resonant condition

τ−1
p << |ω−ω0|<< ω, ω0. (5)

Taking into account the condition (5), we rewrite the
equation (3) in the form

R=− dψ 1w
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According to the condition (5), the second term in the right-
hand side of equation (6) is a small perturbation. Taking into

account this term by the method of the successive approxima-
tions, we will have the expansion [13]
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From the physical considerations it is clear that under the
condition (5) the excitation of the impurity centers is relatively
weak. I.e. the change of populations of the quantum levels
of these centers is insignificant. We will assume that in the
absence of a laser radiation (ψ 1 = 0) all impurity centers are in
the ground state (w=−1). Then, assuming approximately in
the second and third small terms of the last expansionw=−1,
we obtain
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Let us substitute (7), neglecting the last term, into
equation (4). Then after integration we will have

w=−1+
2d2|ψ 1|2

h̄2(ω0 −ω)
2 . (8)

Using (1), (2), (7), and (8), we arrive to the set of equations
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where
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For the additionΛ to the refractive index at the fundamental
frequency, caused by impurity centers, we have

Λ =
ωc

n1 (ω0 −ω)
. (14)

The group velocity ṽ1 and the DGV coefficient β̃1 in the
presence of these impurities are determined by the expressions
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ωc = 2πd2n/h̄ is the collective frequency [14].
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The phase transformations (11) lead wave equation (1), (2)
to the autonomous set of equations (9) and (10). These trans-
formations generalize the corresponding transformations [15]
for the case when QRCs are absence.

From (13)–(16) it follows that QRCs lead, in particular, to
changes of the refractive index, group velocity and the DGV
parameter at the fundamental frequency, as well as to the
appearance of Kerr nonlinearity at this frequency (see last term
on the right-hand side of equation (9)).

The parameter |n2 − ñ1| characterizes the magnitude of the
phase mismatching between pulses at the fundamental carrier
frequency and at the second harmonic frequency. From (13) it
is evident that impurity centers also affect on this magnitude.

The group mismatching is characterized by the difference
of group velocities ṽ1 and v2. As it follows from (15), there is a
fundamental possibility of controlling by this difference with
helping of QRCs.

The frequency ω0 can be changed using a permanent
external electric field, capable of causing a Stark shift of the
quantum levels [16].

3. Dark parametric solitons

Let us make some preliminary numerical estimates. To
satisfy the conditions (5), we assume ω ∼ ω0 ∼ 1015 s−1,
|ω0 −ω| ∼ 1013 s−1, τp ∼ 10−12 s. Assuming also that d∼
10−18 SGSE, n∼ 1017 cm−3, we find ωc ∼ 109 s−1. Then
from (12), (14) and (15) we have σ ∼ 10−7 SGSE, Λ∼ 10−4,
and c |1/ṽ1 − 1/v2| ∼ 10−2. For the coefficient σcr, which
determines the intrinsic Kerr nonlinearity of the crystal, we
have σcr = 6πωχ (3)/cn1 [4], where χ (3) is the third-order
optical susceptibility. Assuming that χ (3) ∼ 10−14 SGSE for
a typical crystal [17], we find σcr ∼ 10−9 SGSE, that is two
orders of magnitude smaller than the parameter σ, which
determines the Kerr nonlinearity of the QRCs. Thus, the
intrinsic Kerr nonlinearity of the crystal in the absence of
QRCs can be neglected.

Assuming that the typical values of the parameter β1 in the
spectral area of optical transparency of the crystals are |β1| ∼
10−27 − 10−28 s2 cm−1 [4], we find from (16)

∣∣∣β̃1/β1∣∣∣∼
102 − 103, β̃1 ∼ 10−25 s2 cm−1.

Under conditions of the absence of QRCs the absolute val-
ues of DGV parameters at the fundamental frequency and at
the second harmonic frequency are usually of the same order:

|β1| ∼ |β2|. Thenwe have
∣∣∣β̃1∣∣∣>> |β2|, as it follows from (16)

and from the numerical estimates given above. Therefore, with
good accuracy in equation (10) we put β2 = 0 [2, 18]. Under
this condition the system (9), (10) has an exact solution in the
form of dark solitons:
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The duration τp of the dark soliton is a free parameter here.
The parameterΩ has themeaning of the frequency shift of fun-
damental soliton component. This parameter is determined by
the magnitude of the group mismatching. In turn, the para-
meter µ is determined by both phase and group mismatchings
(see (19) and (22)).

Assuming σ = 0, we will have from (17)–(22) the solu-
tions, which were obtained in [3] for the case when the QRCs
are absent. If, in addition, the conditions of PM and GM are
strictly satisfied, we will have the solutions discussed in [2].

In order to match the solution (17)–(22) with the SVE
approximation used above, the inequalitiesΩ<< ω and q<<
ω/c must be satisfied. It is clear from (19) that both inequalit-
ies are compatible with each other under the above condition
c |1/ṽ1 − 1/v2| ∼ 10−2 << 1. Indeed, in this case we have
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Using the above estimate β̃1 ∼ 10−25 s2 cm−1, we have
Ω∼ 1013 s−1, which satisfies the inequality Ω<< ω with a
good margin.

In the general case the analysis of the solution (17)–(22)
seems to be very painstaking. We will limit ourselves to con-
sidering a typical situation inherent in the transparency area of
crystals in the near infrared and visible areas [4]. According to
the numerical estimates given above, we will assume that the
DGV is determined mainly by QRCs.

For crystals such as barium or sodium niobate with the high
quadratic nonlinearity we have χ (2) ∼ 10−7 SGSE [19]. Then
α1 ∼ α2 ∼ 0.1 SGSE and α1α2 >> σµ. According with the
estimates given above, QRCs have virtually no effect on the
refractive index n1. Therefore, we can put with a good accur-
acy ñ1 ≈ n1. Assuming in addition to the estimates given above
that |n2 − n1| ∼ 0.01, from (22) we find µ≈ ω (n2 − n1)/c∼
103. For τp ∼ 10−12 s we have β̃1 << µτ 2p . As a result, the
expressions (20) and (21) take the form

F1m =
1
τp

√
2β̃1ω (n1 − n2)

cα1α2
, F2m =

β̃1
α1τ 2p

, . (23)

For the intensities I1,2 = cΦ 2
1m,2m/2π we will have estim-

ates of I1 ∼ 107 W cm−2 and I2 ∼ 103 W cm−2. Thus, I2/I1 ∼
10−4. When the conditions of PM and GM are valid, we have
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I2/I1 ∼ 1. As can be seen from the first expression (23), the
formation of the dark solitons under consideration is mainly
influenced by the phase mismatching. From the above estim-
ates it is clear that phase mismatching, as expected, leads
to a decrease of the efficiency of second harmonic genera-
tion. Taking into account that α1α2 > 0, from the first expres-

sion (23) and (16) under condition
∣∣∣β̃1∣∣∣>> |β1| we will have

the necessary condition for the possibility of forming of a dark
parametric soliton

(n1 − n2)(ω0 −ω)> 0. (24)

This condition can be satisfied by changing the sign of
detuning ω0 −ω. As was said above, it is can be done with
an external Stark field [16]. Thus, by means of QRCs, satis-
fying inequality (24), it is possible to effectively formation of
the dark two-color solitons.

The temporal solitons are formed at a distance of the order

of dispersion length ldis = 2τ 2p /
∣∣∣β̃1∣∣∣. Then at the above para-

meters we have ldis ∼ 10 cm. In this case the diffraction broad-
ening should not make itself known. Taking for the aperture
D of the input optical pulse D∼ 1 mm, we will have ldif ∼
ωD2/c∼ 103 cm, where ldif is the diffraction length. Thus, the
condition ldis << ldif is satisfied with a good margin.

4. Concluding remarks

The study, which is carried out in this paper, showed that the
presence of QRCs in the crystal promotes the formation of
temporary dark parametric solitons in the second harmonic
generation mode. However, the generation efficiency is relat-
ively low due to the strong influence of phase mismatching.

The next step in the intended direction is to study of the pos-
sibility of forming of the spatiotemporal bright-dark solitons
in the presence of impurity QRCs, as well as in the presence
of phase and group mismatchings. In [11] it was shown that
such solitons can be formed under normal DGV. In our case
the main contribution into DGV is made by QRCs. In this
case the sign of DGV can be effectively controlled by chan-
ging of sign of the frequency detuning ω0 −ω. Therefore, it
should be expected that the presence of QRCs can stimulate

the formation of the parametric bright-dark spatiotemporal
solitons under real experimental conditions.
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