
ISSN 0361�7688, Programming and Computer Software, 2013, Vol. 39, No. 5, pp. 242–254. © Pleiades Publishing, Ltd., 2013.
Original Russian Text © R.L. Smelyansky, A.G. Bakhmurov, D.Yu. Volkanov, E.V. Chemeritskii, 2013, published in Programmirovanie, 2013, Vol. 39, No. 5.

242

1. INTRODUCTION

In this paper, we give a retrospective analysis of the
experience of several domestic projects on the design
of tools for the analysis and support of distributed real�
time embedded systems (DRTESs). A general charac�
teristic of the object of research in these projects (i.e.,
DRTES) and requirements on the tools are given in
the editorial of the present issue of the journal.

The STEND system (1984–1990) [1] was the first
such project. The aim of this project was to develop an
environment for the observation and measurement of
the behavior of distributed programs with the view to
assess the performance of these programs on distrib�
uted systems with various target architectures, which
are different from the instrumental host architecture.
A program for the distributed computing system
(DCS) under study was executed on an experimental
DCS; the operating system provided the collection of
a trace and its supply to the simulation model of the
target system of the DCS to determine its performance
characteristics. In this project, the first domestic
object�oriented distributed operating system has been
developed.

During 1994–2001, a completely software simula�
tion environment DYANA [2] was developed.
The main objectives of research in this project were the
development of a mathematical model of the dynam�
ics of a DCS [3, 4] and the implementation of a com�
bined approach to the simulation of distributed sys�
tems [5] when both quantitative methods of analysis

(time as a measurable quantity) and qualitative analy�
sis (time is order on a set of events) were applied to the
same representation/description of the system. In this
project, a simulation approach to the development of
software was studied for the first time; later this
approach was called a model driven approach (MDA);
see, for example, [6]. The results of this research were
used in several research and development projects for
domestic industry and in the international research
project DrTESY [7].

Since 2001, research on the design of a hardware�
in�the loop (HWIL) testbed1 for an airborne system
has been carried out on the basis of the experience
gained during the development of the DYANA envi�
ronment [8–10]. Some subsystems of the DYANA
environment were adapted to the specific character of
real�time operation. The designed means have also
been successfully applied to the development of real
shipborne computer systems.

Since 2010, a simulation environment has been
developed on the basis of the experience obtained, and
an analysis of a new generation of DYANA�2012 ori�
ented to international standards has been carried out.

The paper is organized as follows. In Section 2, we
describe the architecture of the simulation environ�
ment (below in the text, Environment), which sum�

1 In customer’s terminology (and in publications), the testbed has
a different name: mathematical simulation testbed for on�board
systems (MST OBS); however, in fact the HWIL simulation is
meant.

Integrated Environment for the Analysis and Design of Distributed
Real�Time Embedded Computing Systems

R. L. Smelyansky, A. G. Bakhmurov, D. Yu. Volkanov,
and E. V. Chemeritskii

Faculty of Computational Mathematics and Cybernetics,
Moscow State University, Moscow, 119992 Russia

e�mail: {smel,bahmurov,dimawolf,tyz}@lvk.cs.msu.su
Received February 2, 2013

Abstract—Problems of analysis and design of embedded real�time systems for controlling complex engineer�
ing systems are considered by an example of a DYANA simulation environment and its development at the
Laboratory of Computing Systems (LCS), Faculty of Computational Mathematics and Cybernetics, Mos�
cow State University. Special attention is paid to the verification of the conformity of the designed system to
the requirements formulated at the early stages of design. The key features of this environment are as follows:
the use of a formal model of operation for distributed systems, and the analysis of various aspects of the behav�
ior of a system, both quantitative and logical, by a unified description of systems. The application of the
DYANA environment in research and engineering projects over the last 28 years is considered. A comparison
with other domestic and foreign results in the field of simulation of real�time distributed embedded comput�
ing systems is presented.

DOI: 10.1134/S0361768813050058

PROGRAMMING AND COMPUTER SOFTWARE Vol. 39 No. 5 2013

INTEGRATED ENVIRONMENT FOR THE ANALYSIS AND DESIGN OF DISTRIBUTED 243

marizes the experience gained in the above�mentioned
projects, and briefly describe the role of each sub�
system. In Sections 3–8, we describe individual sub�
systems and their evolution from project to project.
In the Conclusions, we give a brief summary and a
comparison with the projects of other designers and
formulate prospective problems of constructing the
Environment.

2. GENERALIZED ARCHITECTURE
OF ENVIRONMENT FOR THE SUPPORT

OF THE SIMULATION
AND DESIGN OF A DRTES

The structure of the Environment is shown in Fig. 1.

The source texts of models, intermediate results of
preparation of models for execution, execution traces
of models, specifications of requirements on the
behavior of the system, as well as reports of the tools of
analysis for models, are stored in the repository. The
grouping of models into projects is supported, and
there is integration with the version control system of
the source texts.

Environment for the development of models contains
the following components: editors of descriptions of
models in graphic and text form, an editor of settings
of a model in a tabular form, and an interface for nav�
igation over the repository.

Language of the description of models (it is not
shown in the scheme) is implemented in the form of
description editors and a set of compilers. The princi�
ples of construction of the language and restrictions
adopted when creating it are described in Section 3.

Language of the specification of requirements on the
behavior of the system, whose characteristics are briefly
described in Section 7.

Model execution environment is responsible for the
data exchange between the components of a model, for
binding the events to the model time, or, if necessary, to
(astronomical) time, for parallel (on several computers)
execution of actions defined in the description of the
model, and for the interaction of the models with full�
scale DRTES devices. The problems of constructing
an execution environment for models are considered
in detail in Section 4.

Subsystem of behavior analysis is intended for the
determination of the quantitative and qualitative char�
acteristics of behavior of the modeled DRTES.
By quantitative characteristics we mean those charac�
teristics of the system that depend on time as on a
measurable parameter. By qualitative, or logical, char�
acteristics we mean the properties of the system that
depend on time as on a logical parameter, for example,
on certain ordering on the set of actions and events in
the system. The quantitative characteristics, for exam�
ple, performance, are evaluated by the results of a sim�
ulation experiment. During the experiment, one col�
lects a trace of events, which can later be repeatedly
analyzed by a user from various standpoints. The sep�
aration of the processes of trace collection and pro�
cessing and analysis allows one to reduce the number
of expensive runs of the model, to uncouple from real
time in the analysis, to compare various runs of the
model, and geographically separate the place of exper�
iment from the place of analysis. The structure and the
problems of the subsystem of quantitative analysis of
behavior are described in Section 5.

WCET

Setup editor

Debugger

Navigator

Control of

 Subsystem of

 Repository

Models
Traces

Reports

Model running subsystem

 Control of events
Time synchronization

Trace collection

Subsystem of

On�line

Visualization of

Verification of

S
u

bs
ys

te
m

 o
f

an
al

ys
is

Subsystem of time estimation

During running

Model
design

environment

Diagram
editor

Text editor

over
repository

versions

logical analysis
optimization

and
planning

visualization

a trace

properties
over a trace

Fig. 1. Structure of software means of a DRTES simulation environment.

244

PROGRAMMING AND COMPUTER SOFTWARE Vol. 39 No. 5 2013

SMELYANSKY et al.

Subsystem of estimating the time complexity solves
the problem of assessing the execution time of a given
segment of a program code by a given type of com�
puter. This makes it possible to decouple a program
code from the hardware that executes the program.
Thanks to this, one can analyze the behavior of the
program on different configurations of the equipment.
One distinguishes two statements of the problem: time
assessment when executing a code block for a specific
set of input data, and assessment of the worst execu�
tion time over all possible sets of input data. This sub�
system is described in greater detail in Section 6.

Subsystem of verification is engaged in solving the
problems of qualitative analysis. It allows one to check
whether a model possesses some logical properties
and, if not, to construct counterexamples in which
these properties are not valid. The result of verification
can be applied to all possible variants of operation of
the DRTES, which is extremely important for validat�
ing the correctness of the mission�critical software of
the DRTES. The subsystem of verification is described
in greater detail in Section 7.

Subsystem of scheduling and optimization supports
the choice of a DRTES structure that guarantees the
required characteristics of performance and the con�
struction of a schedule for executing computational
tasks or operations of data transmission through data
exchange channels. Specification of the problems of
this subsystem and the order of integration into the
Environment are given in Section 8.

Subsystem of analysis of fault tolerance and reliabil�
ity allows one to assess the reliability of the (projected)
DRTES for a given failure flow with regard to the
operation of fault�tolerance mechanisms and their
effect on the real�time mode, as well as to optimize the
configuration of the above�mentioned mechanisms,
provided that the deadline times of execution of
DRTES tasks remain unchanged. The analysis of this
subsystem falls outside the scope of the present paper;
it is carried out in [11].

Figure 2 represents a generalized structure of the
hardware of the Environment with regard to the needs
of HWIL simulation. The environment for the design
of models operates on one or several automation work�
stations of experimenter engineer. The model repository
is situated in the repository server, which is accessible
to all the computers of the Environment through a
local�area network. One or several instrumental com�
puters for simulation (ICSs) are used to run a model.
The ISCs are connected to channels of on�board inter�
faces (the number and the types of these interfaces are
determined by the specific features of the designed
DRTES). In turn, the channels of on�board interfaces
are connected to the devices of the on�board equip�
ment presented in the full�scale form. The models of
missing devices are run on ISCs; accordingly, a sub�
system for running models should be installed on the
ISCs. To provide a real�time data exchange between
ISCs, these computers are connected by an additional
real�time local�area network. (The problems of time
control in a distributed environment are considered in
more detail in Subsection 4.4.)

3. MODEL DESCRIPTION LANGUAGE

As a rule, one of the following approaches is used
when developing means for describing simulation
models [12]:

• construction of a new domain�specific program�
ming language that supports simulation, for example,
control of time; unified interaction mechanisms between
the components of a model; automatic tracing of an
experiment; etc.;

• writing special modules (class libraries and
macro definitions) that solve the problem of support�
ing simulation for a general�purpose language.

The application of an already existing language
allows one to simplify the development of models due
to the fact that the designers need not study a new lan�
guage and can apply existing software (such as the
development environment, a translator, and a debug�

 W
o

rk
st

at
io

n
s

Users

On�board interface channels

ISC

 Users Users

Fig. 2. Structure of hardware means of a DRTES simulation environment.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 39 No. 5 2013

INTEGRATED ENVIRONMENT FOR THE ANALYSIS AND DESIGN OF DISTRIBUTED 245

ger) and existing libraries of software components.
Such an approach was used in the first simulation
model STEND, which was developed by our team.
As the simulation language for this system, we used C.

At the same time, general�purpose languages either
do not allow or allow a restricted control of how the
designer observes the requirements of simulation dis�
cipline (mechanisms of control of the model time,
methods of interaction between the components, lan�
guage constructions used—“projection” of the Dijk�
stra programming discipline [13] to the development
of a software model); this fact complicates the possi�
bilities of formal logical analysis. These languages can�
not be applied to the implementation of the method of
development of a model and a code through successive
refinements [14].

In contrast, domain�specific simulation languages
allow one to rigorously specify a simulation discipline,
owing to which a formal analysis of a model within a
given simulation scheme is simplified and becomes
possible. A special simulation language allows one to
implement an approach to the development of a
model by successive refinements and can take into
consideration almost all the requests of specialists who
will work with this language. An example of such a spe�
cial language is given by the MM language [15], which
was developed for the DYANA simulation environ�
ment.

The MM language is based on a system with mes�
sages [16]. It is proved that a system with messages, as
an algorithmic system, is equivalent to Petri nets [17,
18]. The list of algorithmically solvable problems
within Petri nets and their modifications, in contrast
to systems that can be reduced to Turing machines,
most fully corresponds to the list of problems that arise
in the analysis of DRTESs [5]. Therefore, the main
advantage of such a language is the use of a unified
description for the algorithmic and quantitative analy�
sis of DRTESs.

The MM language of the DYANA simulation envi�
ronment represents an extension of the C language by
the means for the description of a DCS. These means
allow one

• to describe software and hardware components
of the system, as well as the connection of software
components to hardware ones;

• to describe the structure of messages used during
the interaction of components;

• to describe the internal operation of each process
in the system and its interaction with other processes;

• to develop a model by the method of successive
refinements.

There are two types of software components in the
MM language: sequential processes and distributed
programs, and two types of hardware components:
sequential and distributed executors. A process is
defined by the algorithm of its operation and interac�
tion with other processes. A sequential executor con�

tains information on its time characteristics. A distrib�
uted program represents a family of processes and/or
other programs, and a distributed executor represents
a family of sequential executors and/or other distrib�
uted executors. In the body of a sequential process, the
algorithm of its operation and interaction with other
processes is described. The body is described in a cer�
tain extension of the C language, and its syntax resem�
bles the description of the C function. The MM lan�
guage describes the types of components, and the
instances of these types are used subsequently. The
description of a type of a component consists of a
header and a body. The header defines the type of a
component (a process, a program, or a sequential or
distributed executor), the name of the type of a com�
ponent, the list of its parameters, and the list of buffers
(the list of “pins” for hardware components) through
which the component exchanges information with
other components.

Naturally, the advantages of the MM language were
obtained at the expense of degradation of other prop�
erties of the language, for example, the modularity,
impossibility to include algorithms of operation in the
C++ language into the description text, as well as
external libraries. For example, one cannot divide the
body of a process into several functions in the MM
language.

Since there were no problems of qualitative analysis
and the support of the design method through sequen�
tial refinement of a code in the hardware�in�the�loop
(HWIL) simulation testbed, but the main problem was
to guarantee real�time operation, it was decided to
develop a new language—a model description lan�
guage (MDL). The MDL is an extension of the C pro�
gramming language. The MDL contains a number of
special concepts that are used to describe the proper�
ties and the operation logic of the modeled devices.
These concepts include particular models (PMs),
operation modes of the PMs, the parameters of the
PMs, interfaces, timers, signals, and waiting points for
signals. To each concept, there correspond elements of
the MDL described by means of MDL statements.
The set of the MDL statements reflects the specific
character of the application domain of the MDL and
is intended for the description of the models of
DRTES devices, timing the operation algorithms of
models, and the organization of their interaction with
regard to the specific features of data transmission
through multiplex channels. At the same time, the
direct advance of the model time in the MDL is inac�
cessible, in contrast to the MM language.

Despite of its detailed work�up, the MDL turned
out to be too bulky for practical application. Engineers
should overcome a rather high entrance threshold to
start writing models in MDL. To develop a new model,
one should perform a number of routine procedures
on the creation of bodies and headers of model com�
ponents. Therefore, for the DYANA�2012 environ�
ment, we chose the universal modeling language UML

246

PROGRAMMING AND COMPUTER SOFTWARE Vol. 39 No. 5 2013

SMELYANSKY et al.

with graphic interface [19] as the simulation language.
By means of the diagrams of the UML language, one
describes the static structure of a system and the
dynamic aspects of its behavior.

4. SIMULATION RUNTIME ENVIRONMENT

4.1. Requirements for the Runtime Environment

In a discrete�event simulation on the logical level,
a system is represented as a set of independent compo�
nents that can change their state, thus giving rise to
independent flows of events. The runtime environment
is used to synchronize these components and to com�
bine their flows into a common simulation trace by
which one can analyze the properties of the system
formed by these components [20].

The execution environment of a DRTES should
support the HWIL simulation mode [8]; therefore, it
should be a software–hardware complex. In practice,
one often needs simulation experiments in which both
hardware tools using a variety of channels for interac�
tion, protocols, and data transmission formats, and
software models developed by independent teams with
the use of various tools and operating on different
principles take part simultaneously. Such a variety
forms a set of additional requirements on the interface
of the runtime environment.

1. Completeness. The interface of the runtime envi�
ronment should be complete in order to exclude the
need of direct interaction between the components of
the model, bypassing the runtime environment.

2. Universality. The runtime environment should
have standard program interfaces suitable for includ�
ing a wide range of existing and potential participants
of simulation, i.e., both software simulation models
and hardware tools (we call them full�scale compo�
nents).

3. Transparency. Physical devices connected to the
runtime environment should not distinguish between
the interaction with the runtime environment and the
interaction with the hardware whose operation the
runtime environment simulates.

The satisfaction of the above�listed requirements
and, first of all, transparency, implicitly suggests that
the runtime environment of DRTES models has a
number of additional qualities:

4. Predictability. The runtime environment should
allow the control and measurement of the time
parameters of all the actions of the modeled system.

5. Performance. The performance of the runtime
environment should possess all the properties of a
real�time system; for example, it should ensure the
same response time of software models as that of the
hardware simulated by these models.

6. Flexibility. The runtime environment should be
able to operate in different configurations of hardware
systems, including distributed systems and computer
networks.

7. Scalability. The hardware system in which the runt�
ime environment operates should allow the increase of its
performance without any significant reconfigurations of
the hardware part of the runtime environment. In turn,
the runtime environment should be able to optimally
plan and distribute available resources.

Below in this section we consider the main prob�
lems that arise during the construction of a runtime
environment satisfying the above�described require�
ments.

4.2. Interface of a Runtime Environment

One of important problems of simulation that is
also characteristic of programming as a whole is the
problem of reuse of simulation models. However, the
solution of this problem in practice becomes compli�
cated due to the need to adjust the model interface to
its new environment, i.e., to the models with which it
has to interact. In the field of program engineering,
this problem is efficiently solved with the help of ser�
vice�oriented architectures, which break the depen�
dence between individual components of a system,
providing them a necessary set of services. A similar
approach can also be applied to the development of a
runtime environment: it has to provide a set of services
to the participants of simulation, that is sufficient to
describe the behavior of these participants and elimi�
nate their direct interaction with each other.

For constructing DRTES models, the services of
the runtime environment should break not only inter�
face, but also logical dependence between individual
components of a model. An example of such an inter�
face is given by the service of data transmission
according to the “publisher–subscriber” scheme. The
publisher announces data of a given type and transfers
them to the runtime environment, and the runtime
environment transfers the data to all the subscribers
who have requested this type of data. This mechanism
allows one to easily change both publishers and sub�
scribers without making changes in the simulation
participants. The above�listed ideas were reflected in
known standards [21, 22]. However, in the field of
HWIL simulation, today there is no real�time simula�
tion of such standards. There have been attempts to
construct appropriate runtime environments on the
basis of the high level architecture (HLA) simulation
standard [23]. But this standard requires improvement
in order to be used in real�time simulation [24]:

1. HLA does not provide an interface for defining
parameters as a service; therefore, the participants of
simulation have no right to require that the runtime
environment should, for example, process an event
within a given time.

2. The standard does not provide mechanisms for
controlling the resources of the operating system;
therefore, the operating system can, for example, sud�
denly download the pages of simulation processes

PROGRAMMING AND COMPUTER SOFTWARE Vol. 39 No. 5 2013

INTEGRATED ENVIRONMENT FOR THE ANALYSIS AND DESIGN OF DISTRIBUTED 247

from the main memory, or give higher priority to other
existing tasks in using the processor time.

3. HLA supports only two strategies to provide a
quality of service (QoS) for data exchange: reliable and
unreliable exchange (usually implemented by means
of TCP and UDP protocols), which is not sufficient
for real�time simulation.

Nevertheless, the rate of development and the
dynamics of the expansion of HLA to related fields of
simulation show that it is more expedient to update the
HLA standard to real�time simulation than to develop
a new interface of the runtime environment from
scratch.

The size and the complexity of the simulation
models of modern DRTESs do not allow one to carry
out experiments using a personal computer. For a long
time, there have been used various parallel and distrib�
uted runtime environments [25] for processing such
simulation. For example, the runtimes created at the
LCS use a cluster of personal computers. When
designing a HWIL simulation testbed at the LCS, an
additional local area network with a stack of own real�
time protocols was developed. However, such an
approach is unacceptable when carrying out experi�
ments with the use of geographically remote compo�
nents of a model.

4.3. Distribution vs Centralization

An important problem in the organization of a dis�
tributed runtime environment is sharing its function�
ality between instrumental computers. For example,
important functions of the runtime environment are
the support of the coherence of states, the synchroni�
zation of the components of a model, and operations
of low�level interaction. The method of implementa�
tion of these functions has a crucial effect on the per�
formance of the runtime environment. There are
known two main approaches to such an implementa�
tion: centralized and distributed ones. The distributed
implementation of the runtime environment implies
that the local components of the environment one per
each instrumental computer) are equivalent and self�
sufficient [26] and requires the application of compli�
cated algorithms for their coordination. Therefore,
designers usually rule out distributed architecture and
introduce a centralization of one or other functions,
which allows one to centralize, for example, the syn�
chronization of all participants of simulation on the
same computer. In this case, the role of local compo�
nents reduces to the data transmission from a partici�
pant of simulation to the central component and back.
The software architecture employing the central com�
ponent is called a centralized architecture, and the
architecture without the central component is said to
be decentralized or peer�to�peer [27]. For example,
the HWIL simulation testbed system is a peer�to�peer
system, whereas the CERTI system [28] is a clearly
pronounced centralized system.

The results of testing the modern distributed simula�
tion systems show that decentralization usually provides
better performance [29]. However, both approaches have
their merits and demerits; therefore, designers often try
to use tradeoff decisions. One of such decisions is a
cascade architecture of the runtime environment. It
means the division of local components into groups
and the connection of each group to own intermediate
component that is central for the members of this
group. In turn, intermediate components are con�
nected to the central component as ordinary local
components. Repeated application of the described
approach allows one to construct several cascades of
components of various levels. Each of these compo�
nents can independently perform synchronization in
its group [30].

4.4. Synchronization of Flows of Events

One of the central problems of distributed simula�
tion is the problem of coordination of flows of events
from independent components of a model in uniform
time [26, 31]. There exist two essentially different
solutions to this problem. The first assumes the use of
a communication environment in which an earlier
sent message is always received earlier than the mes�
sages sent later. This can be achieved in uniform clock
systems, i.e., in systems where the clocks are synchro�
nized on the physical level in all instrumental comput�
ers. In this case, the messages processed by different
computers are ordered automatically. For example,
the mechanism of common clocks is effectively used in
an HWIL simulation testbed system. However, this
solution requires hardware support and is unaccept�
able for networks.

The second approach suggests the support of uni�
form model time algorithmically. Algorithms for this
purpose are divided into conservative and optimistic
ones [26]. A conservative algorithm does not allow a
participant of simulation to advance its model time
until another participant can send to it a message with
a time tag equal to the present instant of the model
time. As is shown in [31], such an approach leads to a
considerable delay in the operation of the system.

In contrast, optimistic algorithms never restrain
the participants. The task of these algorithms is to
solve the arising problems of synchronization by roll�
ing back the model time. Optimistic algorithms are
harder to implement, require the possibility of preser�
vation and recovery of the states of participants, and
require a lot of memory. Moreover, the rollback oper�
ation significantly complicates the use of optimistic
algorithms for solving simulation problems bound to
real time.

In addition to the time advance algorithms consid�
ered, researchers sometimes distinguish mixed algo�
rithms, which allow one to unite the participants of a
model that work by different schemes [31]. When
appropriately applied, mixed algorithms allow one to

248

PROGRAMMING AND COMPUTER SOFTWARE Vol. 39 No. 5 2013

SMELYANSKY et al.

combine the advantages of these schemes; at the same
time, wrong matching of different time advance algo�
rithms may lead to a significant decrease in the perfor�
mance. Therefore, the use of mixed algorithms
requires a careful analysis of a simulation model.

5. TOOLS FOR THE COLLECTION
AND ANALYSIS OF SIMULATION RESULTS

To collect and analyze the results of simulation,
one should solve the following problems:

• Allow an experimenter to specify what events are
of interest.

• Organize recording of events that are significant
for the experimenter in the DRTES under study.

• Choose a format to record the results of simulation.
• Choose a form to display the results of simulation.
• Choose methods for the analysis of the results of

simulation.

5.1. Choice of Events for Recording

The means of recording and tracing the simulation
events trace changes in the states of the model compo�
nents and of the participants of simulation and the
exchange of messages between them [9]. Each
recorded element is called an event; such an element is
surely accompanied by a time tag. The recorded events
are displayed by on�line visualization tools, as well as
retained in the form of a sequence called a trace. The
retained traces are processed by the tools for analysis
of the results of simulation of a DRTES.

In the DYANA environment and the HWIL simu�
lation testbed, there is a preset list of events for record�
ing. It contains events related to the transfer of mes�
sages between the components of the model and to a
change in the parameters of the models themselves.
In addition to the preset events, a user may define its
own events and model operation modes, which are
also recorded in a trace. Note that the possibilities of
storing information in such events in both simulation

environments are more modest than those in the pre�
set list of events.

5.2. Tools for Recording and Tracing Events

There are known two approaches to the recording
of events and collecting traces: centralized and distrib�
uted ones.

Centralized data collection is an approach that
assumes a uniform collection point for the data of a
simulation experiment. This approach requires that
the collector of a trace should intercept all the neces�
sary data at one point of the network. The main advan�
tages of the centralized approach are simplicity, lack of
the need for time sorting of data, and flexibility and
simplicity of management of the tracing process from
a single point of data collection. The main shortcom�
ing is the accumulation of a large volume of traffic at a
single point of the network, which may lead to over�
loads and jams.

Distributed data collection suggests the existence of
several points of data collection. At each point, only a
part of data of a simulation experiment is collected.
Thus, a simulation process results in a set of traces col�
lected at different points of the network. The main
advantage of the distributed collection is that it pre�
vents an overload of the network at one point. How�
ever, this approach requires additional processing of
the collected data. The centralized scheme was used in
the DYANA project, while the distributed scheme, in
the HWIL simulation testbed [9].

The DYANA�2012 environment, which is compati�
ble with the HLA standard, employs the centralized
version of the scheme (shown in Fig. 6.1). The idea of
this decision consists in the creation of a separate feder�
ate (federate 2 in Fig. 3) that is engaged exclusively in
the collection of information on the events in the simu�
lation environment and their recording into a trace.

More promising is the distributed collection of
information on the basis of a multiagent tracing sys�

Federate 1

PM1

 RTI support library

Subscription

Monitor of events
Buffer of

Trace collection

 Socket TCP IP

HLA RTI interface environment Trace

Federate 2

PM2

 (Ambassador)
 RTI support library

 (Ambassador)

to attributes
events

process

Fig. 3. Scheme of trace collection by a federate collector.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 39 No. 5 2013

INTEGRATED ENVIRONMENT FOR THE ANALYSIS AND DESIGN OF DISTRIBUTED 249

tem [32]; however these schemes are difficult to
implement.

5.3. Formats of the Traces of Events

The next question that needs to be solved in a tracer
of events is the choice of a format in which a trace is
stored. On the one hand, this format should be infor�
mative enough to provide storing all the necessary data
of a simulation experiment; simple in order that the
process of collecting a trace should manage to store a
trace with regard to all the incoming events; and com�
pact, since the volume of data accumulated during
simulation can be large enough, for example, it may
amount to several terabytes.

The DYANA simulation environment employs a
specially developed TRC format of a trace. Experience
has shown that the format of a trace is too rigid, insuf�
ficient, and difficult to expand. These drawbacks were
eliminated in the HWIL simulation testbed, in which
information on the events is stored in both the main
and the external trace. The file of the external trace
represents a set of non�fixed�size records. In the exter�
nal trace, additional information on an event is
recorded, while, in the main trace, a reference is given
to the record of the corresponding event in the exter�
nal trace. For example, for a “Parameter updating”
type event, the value of the parameter to be changed is
recorded in the external trace.

Thus, one can consider the multilevel structure of a
trace and the increased time of reading and recording
into the trace as the shortcomings of this format. The
advantages of the TRC format are the flexibility of the

structure of records on the events and the possibility of
merging the traces recorded by different components
of the simulated system. In the new version of the
DYANA�2012 environment, an open trace format
(OTF) [33,34] is chosen as the main format for storing
a trace. OTF is an open format of traces developed at
the Center of High�Performance Computations, Uni�
versity of Dresden, to deal with large�scale parallel
platforms. Since the primary objective of the OTF was
to store traces for parallel programs, rather than
DRTES models, we compared the abstractions of
OTF and DRTES. The file structure of the OTF for�
mat is illustrated in Fig. 4. One should place special
emphasis on the possibility of flexible adjustment of
the structure of events due to the presence of the global
file of definitions.

5.4. Tools for the Visualization
of the Traces of Events

All the simulation environments developed at the
LCS since the middle of the 1990s employ a Vis tool
for the display and analysis of traces. It provides the
following facilities to work with a trace:

• obvious display of the structure of a simulated
DRTES;

• visualization of the time line (lifeline) of each
component of simulated systems, changes in the states
of the components, and the duration of stay of each
component in a specific state;

• visualization of the interaction between compo�
nents and of the attributes of interactions;

• scaling and navigation along a trace;

trace.otf

trace.1.def

trace.1.events

trace.1.snaps

trace.1.stats

trace.x.def

trace.x.events

trace.x.snaps

trace.x.stats

....

OTF

trace.0.def

Index file Global file of

Format

Event stream files Event stream files

definitions

Fig. 4. File structure in the OTF format.

250

PROGRAMMING AND COMPUTER SOFTWARE Vol. 39 No. 5 2013

SMELYANSKY et al.

• search of events and states;
• possibility of application of filters of component�

wise, event�wise, and state�wise display.
According to the practice of introduction of a sim�

ulation environment into industry, the implemented
type of display is not always convenient. The means of
visualization should be adjustable to the type of display
depending on user’s requirements.

5.5. Methods of Quantitative Analysis
of Simulation Results

The methods of the quantitative analysis of the results
of simulation are reduced to the methods of trace analy�
sis. One can distinguish three types of trace analysis prob�
lems: search for an event with preset properties; search
for fragments that are “similar” to a given template; and
comparison of two traces. All these problems are solved
in the Vis environment.

To solve the problems of the two last types, the
events of a trace are encoded in some alphabet, and a
trace is considered as a row of symbols in this alphabet.
Therefore, the problems of trace analysis are reformu�
lated in terms of the search and comparison of sequences
of symbols in a row. The following methods are applied: a
method of search by means of regular expressions [35],
and methods of fuzzy search on the rows [36].

6. TOOLS FOR ESTIMATING
THE EXECUTION TIME

As soon as a process is bound to a computer in a
DRTES model, the problem arises of estimating the
execution time of a program coded block on this com�
puter. This is necessary, for example, to verify the con�
straints on the execution time of the program as a
whole. If a software model is not yet specified up to
complete software implementation (in a high�level
language or in assembly language) or the architecture
of the target computer is not specified, then the time
estimate must be explicitly set by the designer of the
DRTES model. When the architecture and the
instruction set of the computer are known, the time
estimation can be automated. The most straightfor�
ward method of automation consists in the inclusion
of a cycle�accurate instruction set simulator. However,
this method significantly slows down the execution of
a code block and of the model as a whole.

To speed�up the estimation of the execution time of
a code block, a static–dynamic approach [37] was
developed in the DYANA project. At the translation
stage of a model, a static analysis of the text of the
model is carried out, and, for every basic block of a
code in the program fragment analyzed, an expected
execution time is predicted. Then the program block is
run on an instrumental computer. During the runtime,
the total execution time is determined on the basis of
the earlier made static estimates (with certain correc�
tion).

An essential role in predicting the execution time is
played by the architectural features of a target executor
(computer) on which the computations are performed.
To map the computations onto the architecture of a spe�
cific target computer, one introduces a model of a com�
puter in which a certain set of parameters is established
that affect the execution time of the program. For the
time estimating subsystem, the following models have
been designed within the DYANA project:

• The model of a conventional sequential complex
instruction set computer (CISC) [38, 39], which is
based on known algorithms of optimal code genera�
tion for such computers. This model requires specifi�
cation of a generalized instruction set of the computer
along with their execution times. The target computer
does not need a cross�compiler of the C language.
A description of the instruction set was developed for
an Intel 80286 processor.

• The model of a restricted instruction set computer
(RISC), which needs a cross�compiler for the target
computer and carries out a static analysis on the level of
assembly language. This model allows one to statically
determine the time delays that arise on pipelined
devices due to the dependence of data instructions. The
analysis of the behavior of the instructions�cash mem�
ory is also carried out in the static mode. Supported
processors are Sun MicroSPARC II and Motorola
DSP96002.

• The model of an RISC with a vector kernel [41],
which combines high (up to a cycle duration) accuracy
of estimation with the high execution efficiency of
programs (from 4 to 100 times faster than the cycle�
accurate instruction set from the chip manufacturer).
In contrast to the above�mentioned models, in which
the semantics of the estimated block of a code is deter�
mined by the semantics of the C language on the
instrumental computer, the present model is equipped
with a fast instruction set simulator operating accord�
ing to the rule of translation of the machine codes into
C codes for the instrumental computer. A supported pro�
cessor is NM64403 with NeuroMatrixR architecture.

Along with the problem of estimating the execution
time of a program for a specific set of input data, the
problem of estimating the worst case execution time
(WCET) was considered within the DYANA and
DYANA�2012 projects. According to [42], for an arbi�
trary program, it is impossible to find an estimate for
the WCET in the general case. However, under a num�
ber of admissible constraints imposed on a DRTES
(integer data, explicitly defined bounds for the number
of iterations of cycles, and disabled recursion), the
problem becomes solvable.

According to the survey in [42], there exist a num�
ber of commercial WCET tools, along with a number
of promising research prtojects. A WCET method was
developed at the LCS for processors with pipelined
architecture [43].

PROGRAMMING AND COMPUTER SOFTWARE Vol. 39 No. 5 2013

INTEGRATED ENVIRONMENT FOR THE ANALYSIS AND DESIGN OF DISTRIBUTED 251

To implement an analyzer for estimating the
WCET in the DYANA�2012 environment, a static
method was chosen with model�checking technology.
The advantage of the static method is that it does not
require running a program on the target computer and
executes a model of the system under study on an
instrumental computer almost without any delay.
When one applies a verification of programs on mod�
els, one can also analyze programs with nondetermin�
istic behavior; at the same time, one does not need to
enumerate the entire space of execution paths (as, for
example, in the exhaustive method). The implementa�
tion is based on a Metamoc tool [44], which involves
an UPPAAL verifier for the analysis of a WCET esti�
mate. The analyzer supports programs written in a
subset of the C programming language and supports
the following structures of the language: integer vari�
ables, arrays of integer data, pointers, arithmetic on
integer data and pointers, and conditional operators.

7. LOGICAL ANALYSIS

As already mentioned, the main problem of logical
(qualitative) analysis is to verify if the behavior of the
system complies with the requirements of the specifi�
cation. This is one of the main problems in the inte�
grated approach to the simulation of DCSs [5]. How�
ever, the application of known methods of logical
analysis is associated with a fast growth in the number
of states of a model as the number of parallel processes
increases. Therefore, in the practical implementation
and application of verification systems, one has to
apply methods of reducing the system of transitions:
partial order reduction, the use of different types of
symmetries in the model, and abstraction. Another
problem is that verification systems require a represen�
tation of a model that is different from its representa�
tion for quantitative analysis. For practical application
of verification systems in simulation systems, one
should transform a model from one form of represen�
tation to another, which is often a difficult task, especially
for the models of complex software systems. In case of
error detection, one should transfer the results of verifica�
tion to a real system and then correctly transfer the cor�
rections made to the verification system. Therefore, a
designer of simulation tools faces the following dilemma:
either develop his own means of verification, or integrate
with an existing verification system.

In the early 1990s, both the native language of
specification MM�spec [45] based on temporal logic
and the first Russian verification system [46, 47] were
developed in the DYANA system. In the latter verifica�
tion system, a program written in the DYANA simula�
tion language automatically constructs a model that
verifies the validity of formulas of temporal logic.
These formulas display the requirements (restrictions)
imposed on the behavior of the system [48]. In com�
parison with the semi�automatic and automated
methods of verification, the verification system in the

DYANA environment does not require that the user
should have special knowledge in the field of mathe�
matical logic and methods of programming theory.
The system also allows the expert to choose the
abstraction level of the initial program and specify the
key components of the system.

In the DYANA system, a program in the MM lan�
guage is translated into the internal representation for
verification (the MDL language) [46, 48]. A specifica�
tion of the behavior of a simulated system is created in
the MM�spec language. Then the specification is
translated into a set of formulas of branching�time
logic CTL [49]. This logic is an extension of proposi�
tional logic and allows one to construct specifications
in terms of not only states, but also actions. It is impor�
tant that algorithms for checking the validity of formu�
las of CTL logic on a distributed program model have
linear complexity with respect to the size of a formula
and of the model [50].

The model written in the MDL language represents
a parallel composition of nondeterministic finite
automata extended to admit integer variables. Each
automaton is defined by a parameterized description,
and the interaction between the automata is per�
formed through common variables. During the imple�
mentation of a parallel composition, each automaton
is specified by the substitution of the variables through
which the interaction is performed for the formal
parameters. During the verification, depending on the
method chosen (which is specified in the configura�
tion file of the problem), either a graphic or a symbolic
representation of the model is constructed according
to the MDL�description of the program. Admissible
reductions are carried out. The results of verification
(a counterexample) are transformed by the interface
component into the computation trace of the MM
program. This trace is visualized by the trace display
means Vis.

Another approach, an UPPAAL open public domain
tool [51], was used in the DYANA�2012 system. This
approach is described in detail in article [52], which was
published in the same issue.

8. INTEGRATION
WITH OPTIMIZATION TOOLS

The most topical optimization problems associated
with the development of DRTESs can be classified
into the following groups:

• choice of the structure of DRTES hardware (set of
computers and the structure of exchange channels); a typ�
ical problem statement is the minimization of complexity
(cost) while preserving the specified schedule times;

• scheduling the execution of tasks on the DRTES
computers and exchanges in information exchange
channels;

• distribution (connection) of software and hard�
ware components; a possible variant of the problem

252

PROGRAMMING AND COMPUTER SOFTWARE Vol. 39 No. 5 2013

SMELYANSKY et al.

statement is as follows: on the basis of the description
of the functions of the system, decide which functions
are implemented in hardware and which in software,
and on what hardware components;

Since 1996, research has been carried out at the
Laboratory of Computer Systems on the application of
the methods of combinatorial optimization to the above�
listed problems [53, 54]. On the basis of the results
obtained, a system of automatic planning (Scheduler
CAD) of exchange through a channel with centralized
control (the MIL�STD�1553B standard or domestic
GOST R 52070�2003) [55] has been implemented.

The integration of the HWIL simulation testbed with
the Scheduler CAD [56] was performed that enables one

• to use, in simulation, the data on the structure of
messages and the structure of the exchange schedule
from the Scheduler CAD Database;

• to carry out an automatically created schedule of
information exchange on a DRTES model that includes a
model of a channel and a model of devices on the channel.

While working on the adaptation of the HWIL simu�
lation testbed to marine navigation systems [57], addi�
tional possibilities of defining the exchange schedule
through a channel were implemented in a format com�
patible with the system software (SS) of DRTES devices.
This allows one to include the created code, worked
out on the models of devices, into the SS of actual
DRTES devices.

In the DYANA�2012 environment, the interaction
between a DRTES model with schedule optimization
tools is organized as follows. The task�execution
schedule is specified in the form of an XML document
(it is created by the user either manually or automati�
cally by the schedule optimization tool). The object
model of this document is constructed on the basis of
the formal definition of a schedule from [58] and [59].
The DYANA�2012 environment includes a facility for
transforming a schedule into a text of the DRTES
model in which the tasks are executed according to
this schedule.

There are plans to implement facilities for detailing
the model mentioned up to a complete program.

9. CONCLUSIONS

In this article, we have considered a retrospective of
several domestic research and development projects in
the field of simulation and analysis of the operation of
real�time embedded distributed computing systems.
We have considered various approaches to the con�
struction of these systems and their merits and demer�
its and pointed out the main scientific problems on the
way to the development of such systems and ways of
their solution. For each project, we have shown exam�
ples of its application in industry.

Comparing the results obtained at the LCS during
the last 30 years with the results of other researchers
and software producers, we can note the following.

We are not familiar with any earlier works on an
integrated approach to the study of quantitative and
logical properties of DRTESs.

We have implemented the approach involving the
joint design and simulation (codesign) of software and
hardware tools of DRTESs independently and almost
simultaneously with foreign research groups. For
instance, we designed the prototypes of the main sub�
systems of the DYANA environment in 1994–1996
and issued the final version of the environment of the
second generation in 1999. Foreign publications on
the codesign of environments have appeared since
1994 (see the survey [60]).

We can point out the following directions as pro�
spective fields of research:

1. Combination of conservative and optimistic
schemes of synchronization of the model time in the
execution environment of models.

2. Development of a modular execution environ�
ment for discrete�event simulation models adjusted to
the type of simulated objects.

3. Automation of the processing of simulation results.
4. Development of new methods of visualization of

the results of simulation of DRTESs, including on�
line visualization.

5. Development of methods and tools for planning
of simulation experiments.

6. Development of a distributed runtime environ�
ment with real�time control with the use of software�
defined networks [61].

ACKNOWLEDGMENTS

This work is supported by the Ministry of Educa�
tion and Science of Russian Federation (state contract
no. 14.740.11.0399) within the Federal Target Program
“Scientific and Scientific and Pedagogical Personnel of
Innovative Russia.” The work was partly supported by the
Russian Foundation for Basic Research (project nos. 95�
01�01590�a, 98�01�00151�a, 01�01�00263�a).

REFERENCES

1. Basiladze, S.G., Smelyansky, R.L., Karavaev, A.I.,
Emel’yanov, M.V., Kosov, V.F., and Eloev, O.Z., Exper�
imental multiprocessor system STEND, in Moduli ø
programmnoe obespechenie system avtomatizatsii eksper�
imental’nykh issledovanii: Uchebno�metodicheskoe poso�
bie (Modules and Software for Systems of Automation
of Experimental Investigations: Tutorial and Methodi�
cal Book), Basiladze, S.G., Ed., Moscow: Mosk. Gos.
Univ., 1990, pp. 120–129.

2. Bakhmurov, A., Kapitonova, A., and Smeliansky, R.,
DYANA: An environment for embedded system design
and analysis, Proc. 32nd Annual Simulation Symposium,
San�Diego, California, 1999, pp. 50–57.

3. Smelyansky, R.L., Operation model of distributed
computing systems, Vestn. Mosk. Univ., Ser. 15: Vychisl.
Mat. Kibern., 1990, no. 3, pp. 3–21.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 39 No. 5 2013

INTEGRATED ENVIRONMENT FOR THE ANALYSIS AND DESIGN OF DISTRIBUTED 253

4. Smelyansky, R.L., Operation theory of distributed
computating systems, Trudy mezhdunarodnoi konferen�
tsii “Parallel’nye vychisleniya i zadachi upravleniya”
(PACO'2001) (Proc. Int. Conf. “Parallel Computation
and Control Problems” (RASO'2001), (Moscow, 2001),
Moscow: Inst. Probl. Upr. Trapeznikova RAN, 2001,
pp. 161–182.

5. Molonov, V.G., and Smelyansky, R.L., A complex
approach to the simulation of distributed computing
systems, Programmirovanie, 1988, no. 1, pp. 57–65.

6. Broenink, J.F., Groothuis, M.A., Visser, P.M., and
Orlic, B., A model�driven approach to embedded con�
trol system implementation, Western Multiconference
on Computer Simulation, WMC 2007, San Diego, 2007,
pp. 137–144.

7. Smelyansky, R.L., Chistolinov, M.V., Bakhmurov, A.G.,
and Zakharov, V.A., On international project in the field
of verification of software for embedded systems, in
Programmnye sistemy i instrumenty: Tematicheskii
sbornik fakul’teta VMiK MGU im. Lomonosova (Soft�
ware and Hardware: Thematic Collection of the Fac�
ulty of Computational Mathematics and Cybernetics,
Moscow State University), Korolev L.N., Ed., Mos�
cow: MAKS Press, 2000, pp. 24–30.

8. Gribov, D.I. and Smelyansky, R.L., Complex simula�
tion of the on�board equipment of a flying vehicle, in
Methods and Means of Information Processing: Proc. 2nd
All�Russian Scientific Conf. (Moscow, 2005), Moscow:
Mosk. Gos. Univ., 2005, pp. 59–74.

9. Balashov, V.V., Bakhmurov, A.G., Volkanov, D.Yu.,
Smelyansky, R.L., Chistolinov, M.V., and Yushche�
nko, N.V., Hardware�in�the�loop simulation testbed
for the design of embedded computing systems, in
Methods and Means of Information Processing: Proc. 3rd
All�Russian Scientific Conf. (Moscow, 2009), Moscow:
Mosk. Gos. Univ.; MAKS Press, 2009, pp. 16–25.

10. Smelyansky, R.L. and Bakhmurov, A.G., Application of
the HWIL simulation method to the design of on�board
equipment of a flying vehicle, in Proc. 3rd All�Russian Sci�
entific and Engineering Conf. “Supercomputer and Multi�
processor Computing Systems (MVS'2001) (Taganrog,
2002), Taganrog: TRTU, 2002, pp. 135–140.

11. Volkanov, D.Yu., Programmirovanie (in press).
12. Nance, R.E., A History of Discrete Event Simulation

Programming Languages, Blacksburg: Virginia Poly�
tech. Inst. State Univ., 1993.

13. Dijkstra, E.W., A Discipline of Programming, Englewood
Cliffs: Prentice�Hall, 1976.

14. Bakhmurov, A., Kapitonova, A., and Smeliansky, R.,
DYANA: An Environment for Embedded System Design
and Analysis, in Proc. 5th International Conference
TACAS'99, (Amsterdam, 1999), Amsterdam: Springer,
1999 (LNCS vol. 1579, pp. 390–404).

15. Bakhmurov, A.G. and Smeliansky, R.L., DYANA—the
pilot project of investigation of distributed programs and
computer systems, Proc. 2nd Russian–Turkish Seminar
on New High Information Technologies, Gebre, 1994.

16. Riddle, W.E., An approach to software system behavior
description, Comput. Languages, 1979, vol. 4, pp. 29–47.

17. Riddle, W.E., An approach to software system model�
ling and analysis, Comput. Languages, 1979, vol. 4,
pp. 49–66.

18. Peterson, J., Petri Net Theory and Modeling of Systems,
Englewood Cliffs: Prentice�Hall, 1981.

19. Gomaa, H., Designing Concurrent, Distributed, and
Real�Time Applications with Uml, Boston: Addison�
Wesley, 2000.

20. Sanchez, P.J., Fundamentals of simulation modeling,
in Proc. 39th Winter Simulation Conference (WSC’07)
(Washington, 2007), pp. 54–62.

21. IEEE Std. 1278.1a�1998: Simulation Interoperability
Standards Committee of the IEEE Computer Society
IEEE Standard for Distributed Interactive Simulation:
Application Protocols, 1998.

22. Simulation Interoperability Standards Committee of the
IEEE Computer Society: IEEE Standard for Modeling
and Simulation (MS) High Level Architecture (HLA)
Federate Interface Specification, 2000.

23. Chaudron, J. B., Saussié, D., Siron, P., and Adelan�
tado, M., Real�time aircraft simulation using HLA
standard, IEEE AESS Simulation in Aerospace, Tou�
lose, 2011.

24. Adelantado, M., Siron, P., and Chaudron, J.B.,
Towards an HLA Run�time infrastructure with hard
real�time capabilities, International Simulation Multi�
Conference (ISMC'10), Ottawa, 2010.

25. Fujimoto, R. M., Perumalla, K., Park, A., Wu, H.,
Ammar, M. H., and Riley, G.F., Large�scale network
simulation: How big? How fast?, Proc. 11th IEEE/ACM
Symposium on Modeling, Analysis and Simulation of
Computer Telecommunication Systems (MASCOTS’03),
Orlando, 2003.

26. Kazakov, Yu.P. and Smelyansky, R.L., Organization of
distributed simulation, Programmirovanie, 1994, no. 2,
pp. 45–64.

27. d’Ausbourg, B., Siron, P., and Noulard, E., Running
real time distributed simulations under Linux and
CERTI, European Simulation Interoperability Work�
shop, Edinbourgh, 2008.

28. Noulard, E., Rousselot, J.Y., and Siron, P., CERTI, an
open source RTI, why and how, Joint 2009 Spring Sim�
ulation Interoperability Workshop (SIW), 2009.

29. Malinga, L. and Le Roux W.H., HLA RTI performance
evaluation, European Simulation Interoperability Work�
shop, Istanbul, 2009, pp. 1–6.

30. Chemeritskiy, E.V., Towards a HLA�based hardware�
in�the�loop simulation runtime, Proc. 6th Spring/Sum�
mer Young Researchers’ Colloquium on Software Enge�
neering, SYRCoSE�2012, Perm, 2012.

31. Fujimoto, R.D., Parallel and Distributed Simulation
Systems, Wiley Interscience, 2000.

32. Song, H.J., Shen, Zh.Q., Miao, Ch.Y., Tan, A.H., and
Zhao, G.P., The multi�agent data collection in HLA�
based simulation system, 21st International Workshop
on Principles of Advanced and Distributed Simulation
(PADS'07), 2007.

33. Knupfer, A., Brunst, H., Malony, A.D., and She�
nde, S.S., Open Trace Format API Specification Ver�
sion 1.1, Dresden: Dresden Univ. of Technology, 2006.

34. Knupfer, A., Brunst, H., Malony, A.D., and
Shende, S.S., Open Trace Format (OTF) Tutorial: Pre�
sentation, Dresden: Univ. of Dresden, 2006.

35. Bochkov, S.O. and Smelyansky, R.L., Program debug�
ging in distributed computing systems, Programmiro�
vanie, 1988, no. 4.

36. Volkanov, D.Yu. and Cherei, M.V., A study of the applica�
bility of fuzzy search algorithms to the analysis of the
results of simulation of real�time computer systems, in
Programmnye sistemy i instrumenty: Tematicheskii sbornik,

254

PROGRAMMING AND COMPUTER SOFTWARE Vol. 39 No. 5 2013

SMELYANSKY et al.

8 (Software and Hardware: Thematic Collection no. 8),
Moscow: Mosk. Gos. Univ., 2007, pp. 137–147.

37. Yushchenko, M.V., Estimating the execution time of
programs by a static–dynamic method, in Program�
mnye sistemy i instrumenty: Tematicheskii sbornik
fakul’teta VMiK MGU im. Lomonosova (Software and
Hardware: Thematic Collection No. 2 of the Faculty of
Computational Mathematics and Cybernetics, Mos�
cow State University), Korolev L.N., Ed., Moscow:
Mosk. Gos. Univ., 2001, pp. 157–167.

38. Kapitonova, A.P., Smelyansky, R.L., and Terekhov, I.V.,
Hardware system for evaluating the laboriousness of
computations in programs, in Sistemnoe programmiro�
vanie i modeli issledovaniya operatsii (System Program�
ming and Models for Operations Research), Moscow:
Mosk. Gos. Univ., 1993, pp. 57–72.

39. Kapitonova, A.P., Smelyansky, R.L., and Terekhov, I.V.,
System for evaluating the time characteristics of pro�
grams: Architecture and Implementation, in Program�
mno�apparatnye sredstva i matematicheskoe obespeche�
nie vychislitel’nykh system (Software–Hardware and
Mathematical Tools for Computer Systems), Moscow:
Mosk. Gos. Univ., 1994, pp. 92–103.

40. Balashov, V.V., Kapitonova, A.P., Kostenko, V.A., Sme�
lyansky, R.L., and Yushchenko, N.V., Method and
means for estimating the execution time of optimized
programs, Programmirovanie, 1999, no. 5, pp. 52–61.

41. Savenkov, K.O. and Yushchenko, M.V., Method for
describing the behavior of a processor to estimate the
execution time of a program, in Methods and Means of
Information Processing: Proc. 2nd All�Russian Scientific
Conf. (Moscow, 2003), Moscow: Mosk. Gos. Univ.,
2003, pp. 486–491.

42. Wilhelm, R., and Engblom, J., The worst�case execu�
tion time problem—overview of methods and survey of
tools, ACM Transactions on Embedded Computing Sys�
tems, 2008, vol. 7, no. 3, article 36.

43. Prus, V.V., Method for estimating the worst�case execu�
tion time for a processor with pipelined architecture, in
Methods and Means of Information Processing: Proc. 2nd
All�Russian Scientific Conf. (Moscow, 2005), Moscow:
Mosk. Gos. Univ., 2005, pp. 167–174.

44. Dalsgaard, A.E., Olesen, M.Ch., Toft, M., Han�
sen, R.R., and Larsen, K.G., METAMOC: Modular
Execution Time Analysis Using Model Checking, 2010.

45. Bakalov, Yu.V., and Smelyansky, R.L., Behavior speci�
fication language for distributed programs, Program�
mirovanie, 1996, no. 5, pp. 41–51.

46. Tsar’kov, D.V., Application of modularity to the verifi�
cation of distributed programs, in Programmnye sistemy
i instrumenty: Tematicheskii sbornik, 1 (Software and
Hardware: Thematic Collection No. 1), Moscow:
Mosk. Gos. Univ., 2000, pp. 128–136.

47. Tsar’kov, D.V., System of formal verification of distrib�
uted programs in the DYANA simulation environment,
in Proc. Int. Conf. “Parallel Computation and Control
Problems” (RASO'2001) (Moscow, 2001), Moscow: Inst.
Probl. Upr. Trapeznikova RAN, 2001, pp. 161–182.

48. Zakharov, V.A., and Tsar’kov, D.V., Efficient algorithms
for the verification of the executability of CTL temporal
logic formulas on the model of their application for the

verification of parallel programs, Programmirovanie,
1998, no. 4, pp. 3–18.

49. Clarke, E.M. and Emerson, E.A., “Design and synthe�
sis of synchronization skeletons for branching time
temporal logic, in Proc. Logic of Programs: Workshop,
(Yorktown Heights), New York: Springer, 1981. (Lec�
ture Notes in Computer Science 131.)

50. Clarke, E.M., Jr., Orna, O., and Peled, D., Verification of
Program Models: Model Checking, Moscow: MTsNMO,
2002.

51. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P.,
and Yi, W., UPPAAL—a tool suite for automatic veri�
fication of real�time systems, Lecture Notes in Computer
Science, 1996, vol. 1066, pp. 232–243.

52. Volkanov, D.Yu., Zakharov, V.A., Zorin, D.A.,
Konnov, I.V., and Podymov, V.V., Programmirovanie (in
press).

53. Kostenko, V.A., The problem of schedule construction in
the joint design of hardware and software, Programming
Comput. Software, 2002, vol. 28, no. 3, pp. 162–173.

54. Kostenko, V.A. and Smelyansky, R.L., Method and
algorithms for the design of the structures of computing
systems by information on the behavior of programs, in
Proc. 2nd All�Russian Scientific Conf. (Moscow, 2005),
Moscow: Mosk. Gos. Univ., 2005, pp. 564–571.

55. Balashov, V.V., Kostenko, V.A., and Smeliansky, R.L.,
A tool system for automatic scheduling of data
exchange in real�time distributed avionics systems, in
Proc. 2nd EUCASS European Conference for. Aerospace
Sciences, Brussels, 2007.

56. Balashov, V.V., Bakhmurov, A.G., Chistolinov, M.V.,
Smeliansky, R.L., Volkanov, D.Yu., and Youshche�
nko, N.V., A Hardware�in�the�loop simulation envi�
ronment for real�time systems development and archi�
tecture evaluation, in Proc. Third International Confer�
ence on Dependability of Computer Systems DepCoS�
RELCOMEX 2008, Szklarska Poreba, 2008.

57. Balashov, V.V., Bakhmurov, A.G., Volkanov, D.Yu.,
Smelyansky, R.L., Chistolinov, M.V., and Yushche�
nko, N.V., Application of a HWIL testbed to the design
of computing systems for a marine navigation complex,
in Programmnye sistemy i instrumenty: Tematicheskii
sbornik, 9 (Software and Hardware: Thematic Collec�
tion No. 9), Moscow: Mosk. Gos. Univ., 2008,
pp. 153–165.

58. Kalashnikov, A.V. and Kostenko, V.A., Parallel algo�
rithm for the simulation of annealing for constructing
multiprocessor schedules, Izv. Ross. Akad. Nauk: Teor.
Sist. Upr., 2008, no. 3, pp. 101–110.

59. Zorin, D.A., A method for representing and transform�
ing schedules in iterative algorithms for the structural
synthesis of real�time computing systems, Program�
mnye sistemy i instrumenty: Tematicheskii sbornik, 12
(Software and Hardware: Thematic Collection No. 12),
Moscow: Mosk. Gos. Univ., 2011, pp. 163–171.

60. de Micheli, G., and Gupta, R.K., Hardware/software
co�design, Proc. IEEE, vol. 85, no. 3, pp. 349–365.

61. Smelyansky, R.L., Software configurable networks, in
Open Systems, 2012, no. 09 (http://www.osp.ru/os/2012/
09/13032491/).

Translated by I. Nikitin

