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In this paper, the reliability allocation problem (RAP) for real-time
avionics systems (RTAS) is considered. The proposed method for solving
this problem consists of two steps: (i) creation of an RTAS simulation
model at the necessary level of abstraction and (i7) application of meta-
heuristic algorithm to find an optimal solution (i. e., to choose an optimal
set of fault tolerance techniques). When during the algorithm execution
it is necessary to measure the execution time of some software compo-
nents, the simulation modeling is applied. The procedure of simulation
modeling also consists of the following steps: automatic construction of
simulation model of the RTAS configuration and running this model in a
simulation environment to measure the required time. This method was
implemented as an experimental software tool. The tool works in cooper-
ation with DYANA simulation environment. The results of experiments
with the implemented method are presented. Finally, future plans for
development of the presented method and tool are briefly described.

1 INTRODUCTION

In this paper, RTAS are considered. Modern RTAS consist of multiple devices
connected by a network of data transfer channels. Each real-time avionics device
runs a specific mix of applications and of system software. Some parts of this
software have deadline constraints. Real-time avionics systems are characterized

by four fundamental properties:
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One of the RTAS development goals is reaching a high level of dependability
while providing required functionality and meeting constraints on performance
and cost. Different methods are used to guarantee the necessary level of de-
pendability. All these methods involve structural, time, informational, or space
redundancy. It should be noted that for aircraft and space systems, there are
strict constraints on total weight, space, and power consumption. In this paper,
a method for reaching the goal mentioned above is described.

Dependability of RTAS is its ability to deliver service that can be justifiably
trusted [1]. For estimation of dependability, the notion of reliability is used.
Reliability of an RTAS is defined as the conditional probability that the system
is operational during the interval (0,¢cnq) provided that it was operational at
time ¢ = 0 [2]. Different approaches to provide dependability have been devel-
oped. One of them is fault tolerance (FT). Fault tolerance is an approach that
enables an RTAS to continue operating correctly in case of failure of some of its
components. In the following section, some FT mechanisms are considered that
are used in RTAS.

2 FAULT TOLERANCE MECHANISMS

Fault tolerance mechanisms are designed to allow a system to tolerate faults
that remain in the system after its development. Fault tolerance mechanisms
are employed during development of the system. When a fault occurs, these
mechanisms provide means for the system to prevent system failure from occur-
ing.

In this paper, the following mechanisms are considered: N-version program-
ming (NVP/0/1 and NVP/1/1) and recovery blocks (RB/1/1) [3, 4].

N-version programming [3] involves a deciding module called the voter and
N independently developed software versions, which are functionally equivalent.
N is usually an odd number. In NVP, all N software versions for the same task
are executed at the same time (i.e., concurrently), and their outputs are col-
lected and evaluated by the voter. The majority of the outputs determines the
voter’s decision. Any hardware failure can cause the associated software running
on it to produce unacceptable results. Two subclasses of NVP mechanism are
considered:

488



AVIONICS

(1) the NVP/0/1 mechanism [4] has zero hardware faults tolerated and a single
software fault tolerated. The system architecture consists of N independent
software versions (components) running concurrently on a single hardware
component; and

(2) the NVP/1/1 mechanism [4] involves N independent software versions, each
running on a separate hardware component. The system is operational if
more than half software versions (on operational hardware) are operational.

The RB/1/1 mechanism [3, 4] involves an adjudication module called ac-
ceptance test and at least two software components called alternates. When
execution of the first (or primary) alternate is finished, output of this alternate
is tested for acceptance. If it fails, the process rolls back to the beginning and
then executes the second alternate and tests its output for acceptance. This
process continues until the output from some alternate is accepted or all outputs
of the alternates have been tested and have failed.

In the following section, some terms are formulated and the RAP for RTAS
is introduced.

3 RELIABILITY ALLOCATION PROBLEM

Formal model of an RTAS used in this paper is based on program behavior in-
variant [5]. As it has been already noted in Introduction, RTAS are characterized
by four fundamental properties: (i) functionality; (i) performance; (ii¢) depend-
ability, and (iv) cost. Functionality and performance are described by program
behavior invariant; dependability and cost are additionally introduced in this
model.

Real-time avionics system consists of subsystems and links between subsys-
tems. Structure of the RTAS can be represented as a graph. Subsystems cor-
respond to the nodes of this graph and links between subsystems correspond
to its edges. Program behavior invariant is a tuple (Cr, LE, Bh, G) where Cr is
the initial structure of the system (represented as a graph); LE is the behavior
of operating system; Bh is the behavior of application software; and G is the
interpretation of LE and Bh on Cr. An algebra of LE, Bh, and G is defined
in [5]. In brief, LE and Bh describe functionality of the RTAS and G describes
performance of the RTAS.

Each subsystem consists of a hardware component, a software component,
and an optional FT mechanism. For each hardware and software component,
there is a set of versions of this component. Number of component versions
used in the subsystem and number of copies for one version are defined by the
FT mechanism chosen for the subsystem. Dependability of real-time avionics
is determined by choice of hardware components, software components, and FT
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mechanisms for nodes of Cr. Let introduce notations for description of Cr,
dependability, and cost:

C' (System) — cost of the RTAS configuration;
Cihjw and ijw — cost of H;; and S;;;
Chax — maximum system’s cost;

D; — maximum allowed execution end time for the software component of
subsystem U;. Execution time is measured from the RTAS execution start;

F; — FT mechanism chosen for the subsystem U;; F; C FT;;

FT.ai — set of available FT mechanisms for the RTAS. Here, FT.yai
= {None,NVP/0/1,NVP/1/1,RB/1/1} is considered. —“None” corre-
sponds to the absence of FT mechanism;

FT; — set of available FT mechanisms for the subsystem U;; FT; C FT yyai1;
H,; — hardware component of subsystem Uj;

HlF ¢ — multiset of versions H;; chosen for the hardware component H; of the
subsystem Uj;

H,; — the jth version of the hardware component H;, Vi € [1;n], ¥ j € [1;pi];
i — index of subsystem, i € [1;n];

n — number of subsystems within the distributed RTAS;

p; — number of hardware component versions available for subsystem Uj;

P, — probability of failure from related fault among all software versions for
the subsystem Uj;

P! — probability of failure of decider or voter for the subsystem U;;

P!, — probability of failure from related fault between two software versions
for the subsystem U;

¢; — number of software component versions available for subsystem U;;
R (System) — reliability of the RTAS configuration;

R?jw and Rf;” — reliability of H;; and S;;;

S; — software component of the subsystem U;;

SE — multiset of versions S;; chosen for the software component S; of the
subsystem Uj;
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Figure 1 Example of RTAS with 4 subsystems

S;; — the jth version of the software component for subsystem U;, Vi € [1;n],
Vj€ [Lal;

System — a particular configuration of RTAS. It includes a set of HlF " SZF iR
and F; for each subsystem Uj;

Systems — set of all configurations of RTAS. It includes all HZF R SiF ‘ and F;
combinations in all subsystems U;, System € Systerms;

T; (System) — execution end time of the software component of subsystem Us.
It depends on initial data for the subsystem, choice of hardware version,
software version, and FT mechanism; T; is measured via simulation;

U; — subsystem 1;
x;; — number of copies of H;; for Hj;
yi; — number of copies of S;; for .S;.

According to this notation, Cr = [{Ui,...,U;,...,Un},...,(U;,U;),.. ]
with Ui = {Hi17 Silu None} and System = [{Ul, ey Ui, ey Un}, ey (Ul, Uj), .. ]
with U; = {H", SF F}, i€ [1;n).

An example of RTAS with 4 subsystems is shown in Fig. 1. Here, second
subsystem has FT mechanism NVP/0/1 with three different software versions
running in parallel on one hardware component.

The total cost of the system is:

C (System) = i C; = i Z z;;C1Y + Z yii O
i=1 1

i=

S a3 o

=1 j=1 =1 j=1

491



PROGRESS IN FLIGHT DYNAMICS, GNC, AND AVIONICS

Let assume that the kth hardware component and the [th software compo-
nent for subsystem U; are choosen. The reliability of subsystem without FT
mechanisms is:

Ri - th]gw Zslw, k € [lvpi]a le [LQZ] .

For FT mechanisms NVP/0/1, NVP/1/1, and RB/1/1, estimation of relia-
bility is given in [4]. For example, the reliability of U; in case of FT mechanism
RB/1/1 is considered. The kith and koth hardware components and l;th and
loth software components are assumed to be chosen. In this case, the reliabil-
ity is:

Ri=1— (P!, +(1— P! )P+ (1—Pi)(1— PP}

+ (1= P = P = Py)(1 - R - R)
+ (1= PL)(1 = P = Py)(1 = (1= R - RE)(L = Ry (A - RE)) -

ily ilo
Total reliability of the system is:

n

R (System) = H R;.

i=1
Now, the RAP for RTAS can be formalized:
Given:
n;
Di, i, © € [1,n];
(Cr,LE, Bh, G);

CMv R i€ L,n], j€l,pi;

0,5 0 T,

CiY, R:Y, i€ [1,n], j€ll,ql;

4,30 "0

FT;, i€ [1,n];
Pi

TV

Pév Paillv i€ [1,nl;
D, i € [1,n]; and
Cmax'

Find:

Configuration System € Systems, which maximizes the system reliability
R (System) under constraints C (System) < Cpax and V i € [1;n] : T; (System)
< D;.
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Reliability allocation problem can be formulated as a discrete optimization
task:

max R (System) ;
Systemé&Systems

C (System) < Cpax;
T; (System) < D;, Vi€ [1,n].

4 RELATED WORK

The scientists worked on the RAP since 1960s. Since RAP is an nondeterministic
polynomial-time hard (NP-hard) problem [6], its solution possesses a great prac-
tical and theoretical value. Originally, this problem had been solved by exact
methods, but as the number of components grew, the scientists started to use
heuristic methods. In 1975, Holland proposed the first metaheuristic scheme —
genetic algorithms [7]. During the 1980s and 1990s, other metaheuristic schemes
were suggested, such as simulated annealing, ant colony algorithms, and im-
mune algorithms. All these approaches are actively used in our days to solve
RAP. Current state of the art is described in detail in [8, 9]. Surveys [10 12]
should also be noted.

The following metaheuristic algorithms and other methods are applied to
RAP for the last years: ant colony algorithms, genetic algorithms, hybrid genetic
algorithms, tabu search, simulated annealing algorithms, immune algorithms,
cellular evolutionary approach, heuristic methods, and exact methods including
dynamic programming.

Unfortunately, in most of the abovenoted papers, only redundancy is consid-
ered as an example of FT mechanism. In these papers, the reliability of either
only hardware or only software is considered. It should also be noted that ex-
act methods, including dynamic programming, are effective for small dimension
tasks only [13]. As it was shown in [5], separate consideration of RTAS hard-
ware and software components does not allow adequate describing of system
characteristics. To evaluate the reliability of the whole system, both hardware
and software reliability must be considered together as, for example, described
in [4,13]. The authors of [4] and [13] describe the use of FT mechanisms such as
NVP/0/1, NVP/1/1, and RB/1/1. However, deadline constraints for software
tasks are not considered in [4,13]. In this paper, checking of deadline constraints
for software tasks is performed by simulation [5].

Genetic algorithm is a population-based directed random search technique
inspired by the principles of evolution. Though it provides only appximate so-
lutions, it can be effectively applied to almost all complex combinatorial prob-
lems [9]. To improve the computational efficiency, or to avoid premature conver-
gence, numerous researchers have been inspired to seek effective combinations
of genetic algorithms with heuristic algorithms, simulated annealing methods,
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neural network mechanisms, steepest descent methods, or other local search
methods. These combinations are generally called hybrid genetic algorithms and
they represent one of the most promising development directions in optimization
techniques.

In this paper, an adaptive hybrid genetic algorithm (AHGA) for solving RAP
is presented. This algorithm includes application of an adaptive control proce-
dure to automatically regulate the genetic algorithm’s parameters.

5 METHOD FOR SOLVING THE RELIABILITY
ALLOCATION PROBLEM

In this section, the proposed method for solving the RAP for RTAS is described.
The method consists of the following steps:

1. Creation of an RTAS simulation model with necessary level of detail.

2. Searching for an optimal solution (i.e., optimal set of fault tolerance tech-
niques) with AHGA.

In AHGA, the solutions of the RAP are coded by chromosomes. Chromosome
contains integer string coded information for each subsystem. For a subsystem,
this string includes:

the number of hardware component versions set (H;");

the number of software component versions set (S1"); and
the type of FT mechanism (F}).

For each solution in the population, the goal function defines the quality of this
solution. For RAP, the goal function is the reliability of the whole system. This
function is being maximized.

Because most of the solutions from the search space may not satisfy cost
and time constraints, a penalty function is added into the algorithm. Penalty
function is the factor by which the goal function value should be multiplied. The
following penalty function for time and cost constraints was proposed:

R** (System) = R* (System) Eost, (System)
where
R* (System) = H R} (System) ;

i=1

R} (System) = R;E%, . (System) ;

ime (
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| 1 if T; (System) < D ;
i t — .
time (Sys em) L otherwise;
T; (System)
1 if C' (System) < Ciax ;
Eeost (System) = _ Cmax otherwise.
C' (System)

If the solution meets the cost (time) constraint, then the penalty function is
equal to 1; else, it is inversely proportional to the cost (time).
The AHGA execution can be divided in the following steps:

I Generation of initial population of solutions based on the information about
RTAS.

IT Population estimation: calculating of cost, execution times, goal function

for population members, and average and maximum reliability of the pop-
ulation. Fixating the best current solution.
On the step II, for each solution, the RTAS simulation model is updated
to take in account the timing overhead of FT mechanisms defined by this
solution. Then, the updated model is executed to calculate the execution
times of the software on each subsystem for the given solution.

III Choosing solutions for the next population. At this moment, the algorithm
uses the proportional selection scheme to choose an element from the pop-
ulation.

IV Crossover operation is applied to elements of the new population. The
elements for crossing are taken from the set chosen on step III. A single-
point crossover is used, where crossover point corresponds to the bound of
a subsystem’s integer substring. The probability of crossover is Peyoss. New
population is created after crossover, which contains (100 — N¢yoss) % of best
solutions from the current population and Ng,..ss% of best solutions after
Crossover.

V Elements of the new population are mutated. Defined percentage (Nymut)
of best solutions are not mutated. All other solutions are mutated with
probability Ppyt.

VI Repeat step II.

VII If the number of iterations exceeds the given number without improvement
of the goal function’s value, then go to step IX; otherwise, go to step VIIL.

VIII Perform the adaptive control procedure and go to step III.

IX Finish the execution.
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All of the parameters Peross, Nerosss Nomut, and Pamyt are initially speci-
fied by the researcher and automatically modified during the execution of the
method.

Adaptive control procedure is applied for automatic change of values of
crossover and mutation parameters. Detailed description of this procedure is
given below.

For previous and current populations, the average and the maximum relia-
bilities of the population are estimated. Let introduce some notations:

RP™ — reliability of the ith member of the previous population;
RE" — average reliability of solutions from the previous population:
n R;arev '

Ry =) ——;

=1

R§*** — maximum reliability of solutions from the previous population:

max __ prev
Ry™ = max R;;
1=1,...,n

R{™M™ — reliability of the ¢th member of the current population;

R3V — average reliability of solutions from the current population:

n
Rgurr
av __ T .
RYY = E ;

- n
i=1

R — maximum reliability of solutions from the current population:

R"™ = max R{"M".
eV

Each of selection, crossover, and mutation parameters take one of three differ-
ent values (“large,” “normal,” and “small”) which are defined by the researcher.
These values are assigned as shown in Table 1.

For example, if average reliability of the population increases from previous
to current population, then, according to Table 1, it is needed to increase the
number of solutions after crossover entering the next population and probability
of crossover; and otherwise, to decrease the number of solutions for crossover
and probability of crossover.

The proposed method was implemented as a software tool integrated with
DYANA environment [14]. See [15] for detailed description of this tool.
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Table 1 Adaptive control procedure

Ry’ ~ RYY
(~ 3%)
Nnmut is large Nnmut is large  Npmus is normal

Pomut 1s small Pyt is normal Py is large
Neross 1 large Neross is large  Neross is normal

Condition Ry < RYY Ry > RYY

RBnax < Rlinax

Prross is large Peross 18 normal Pepogs 1S small
Numut 1s normal Npmut is small  Npmut 1S small

Ry'™ ~ RT"™ Pyt is small Puut is normal Py is large
(~ 3%) Neross 18 normal  Neross 18 small  Neposs 1s small
Preross is large Prross 1s normal Piross 1S small

6 CASE STUDY AND COMPUTATIONAL RESULTS

Previously, AHGA was compared to a method based on classic GA in [16]. In
this paper, AHGA is compared to AHGA with penalty function. In this example,
RAP is considered for a distributed RTAS with following characteristics:

n = 8 — number of subsystems within the distributed RTAS;
p; = 5 — number of hardware component versions available for each subsystem;
¢; = 5 — number of software component versions available for each subsystem:;

R?jw, R} are given on the interval [0.85,0.99];

ijw, C;j" are given on the interval [5, 35];

experiments were performed for total cost constraints of 650, 725, and unlim-
ited;

pure execution times for pairs (software component version, hardware compo-
nent version) are given in the interval [100, 300];

three classes of time constraints are considered:

(1) HC — hard constraints for every subsystem: 395, 749, 997, 422, 949,
1675, 2189, 2429;

(2) AC — average constraints are hard constraints, increased by 50; and

(3) UC — no time constraints.

Structure of the RTAS is shown in Fig. 2. Vertices of the graph correspond
to subsystems, edges — to links between subsystems.
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Figure 2 Structure of the RTAS

The following parameters of AHGA were used in experiments. For parame-
ters from Table 1, the following “small,” “normal,” and “large” values are given:

percentage of solutions not mutated Nymut: {0.05;0.09;0.13};
probability of mutation Pp,t: {0.5;0.75;1};

percentage of solutions chosen for crossover Neyoss: {0.80;0.85;0.90}; and
probability of crossover Peross: {0.5;0.75;1}.

Population size of 50 was used. Number of iterations without improvement
of the goal function was set to 50.

Table 2 Average RTAS reliability and average number of algorithm’s iterations

Cost Time AHGA AHGA with penalty
constraints constraints Reliability Iterations Reliability Iterations
HC 0.4878 50.78 0.8080 125.79
650 AC 0.5410 51.7 0.8112 120.22
ucC 0.7411 58.37 0.8442 124.98
HC 0.5798 52.76 0.8310 130.85
725 AC 0.6535 56.73 0.8381 131.11
UucC 0.8552 65.05 0.8676 126.18
HC 0.7009 65.41 0.8658 158.48
Unlimited AC 0.8142 96.2 0.8734 153.1
UucC 0.8930 148.25 0.8929 144.77
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The results of the experiments are given in Table 2.
Table 2 shows that:

AHGA with penalty function produces better solutions than AHGA;

AHGA performs lesser number of iterations than AHGA with penalty func-
tion and classic GA [16]; and

if the system has no time constraints, then AHGA performs on par with
AHGA with penalty function.

7 CONCLUDING REMARKS

In this paper, the RAP for RTAS is considered and a method for solving this
problem is suggested. This problem was previously explored by many re-
searchers [7, 8]. Key features of the suggested method is the use of simulation
modeling for execution time estimation of RTAS which implements the chosen
FT mechanisms and the use of an adaptive hybrid genetic algorithm. Case study
demonstrates the applicability of method based on AHGA to solving RAP.

The directions for future research include:

more thorough exploration of the proposed method on other examples of
RT systems described in literature and on data from real RTAS (unfortu-
nately, the authors of the existing algorithms performed experiments on
simplified RTAS examples only);

research of methods for multiobjective optimization of the system’s relia-
bility and real-time performance in the presence of faults; and

research on estimating execution time of software components: metamodels
as a replacement of computer simulation.
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