
Large Scale Network Simulation Based on Hi-Fi Approach. 1

Vitaly Antonenko1, Ruslan Smelyanskiy2, and Andrey Nikolaev3

1Moscow State University, , Applied Research Center for Computer Networks, , Moscow, Russian Federation,
anvial@cs.msu.su, vantonenko@arccn.ru

2Moscow State University, , Applied Research Center for Computer Networks, , Moscow, Russian Federation,
smel@cs.msu.su, rsmelianskiy@arccn.ru

3Applied Research Center for Computer Networks, , Moscow, Russian Federation, anikolaev@arccn.ru

Keywords: Network operation analysis, network pro-
totyping, network protocols, distributed systems, time
synchronization

Abstract
Simulation of Large Scale Networks (LSN) has abroad ap-
plication area. However, so far fine grain simulation of LSN
faced with the problem of high dimension mathematical
model and, consequently, the results were not precise. The
scalable Network Prototyping Simulator (NPS), which al-
low surmount the problems, is presented in this paper. NPS
is based on OS Linux lightweight virtualization containers
(LXC) technics. The approach used in NPS allows achieving
high fidelity simulation results, close to network emulation.
Unlikely the emulation approach NPS allows to work with
LSN networks. To achieve systems scalability authors used
distributed architecture. Like any distributed system, NPS
needs a time management mechanism. In resent paper, au-
thors discuss and propose the time synchronization and the
management mechanism for NPS.

1. INTRODUCTION
The network simulation is the effective method for the net-

work operation analysis. In the scope of this analysis are: esti-
mation of different indexes of network performance (through-
put, end-to-end delay, etc.); to show to what extend the net-
work resources are well balanced for different workloads and
what the influence a malicious code can do on a specific
network; do some changes in the network topology and re-
sources allocation in it will give us a proper results; and many
others.

When we talk about a network simulation, we have keep in
mind that a simulation model is a result of trade-off between
the level of detailed description of a network, the complexity
of a network description, the precision of a network opera-
tion prediction, hardness of a network model identification
and calibration [1].

In its turn the details and the balance in this trade-off is
the consequence of what kind of a mathematical model was
chosen for the simulation model.

Under the term Large Scale network (LSN) we will keep

in mind a network with no less than 105 − 106 nodes. Re-
searchers, taking in consideration such scale, had to use queu-
ing theory techniques for mathematical model development
with statistical averaging of many network operation param-
eters. An averaging was used to simplify the model to reduce
its size. The price of this simplification is a precision of pre-
diction of real network operation.

The approach to the SDN network emulation based on light
virtualization techniques called the Hi-Fi approach and de-
scribed in the paper [2]. The Hi-Fi approach was proposed
to the network environment emulation for the SDN controller
application development. The proposed approach allows an
emulator for the SDN network to be developed with high level
of confidence (this is why it called the Hi-Fi approach).

In this paper we propose how the Hi-Fi approach can be
used for the LSN simulation for both SDN and traditional
network, like TCP/IP based one.

A simulation system has to have the following compo-
nents: run-time environment, modeling time management
subsystem, model description and validation subsystem,
modeling experiment data repository and analytic tools, mod-
eling experiment data visualization subsystem, model com-
ponents library, model composer [3]. In the paper in hand we
focus on the following components: run-time environment or-
ganization and modeling time management subsystem.

2. RELATED WORK
A network operation model consists of three main parts:

the description of network topology and resources; the de-
scription of traffic flows and workload; the description of traf-
fic processing.

Considering the Large Scale Network (LSN) topology we
have to keep in mind an enormous complexity of such net-
work. Let us remind that we consider network to be LSN,
if it has no less that 106 nodes. There are several ways to
manipulate with the LSN topology. However in some cases
there is no topology description at all, e.g. classical epidemic
simulation model of computer worm propagation [4]. Usu-
ally network topology is represented as a graph (EmuLab [5],
NS-3 [6], SSFnet [7]).

A traffic representation is a trade-off between accuracy and



complexity of the model. On the level of the high accuracy
(fine granularity) we represent traffic as flow of packets. In
this case traffic is represented as a set of parameters (rate,
losses, delays and etc.). The specific values of these param-
eters can be generated by mathematical functions or taking
from real network traces. As a consequence the traffic pro-
cessing should be described on packet level, too. Such de-
scription is not so easy and painstaking.

A traffic processing is usually represented as traffic agent
like in NS-3, SSFnet systems. The main goal of this agent
is to generate traffic forwarding rules and to simulate traffic
exchange service (network protocols of some level) among
other traffic agents (including time delay caused by traffic
processing service).

Following [2] a network simulation system which allows
a precise description of network topology and resources, a
precise simulation of network traffic and its processing on a
packet level, we will define as the Hi-Fi system. Such systems
are a convenient instruments of network operation analysis,
because network simulation models made by it do not require
a correctness proof or simplifying it greatly. This fact could
have a significant boost effect on the research, because some-
times model correctness proof could require a comparable or
even greater effort than building of model itself.

The LSN simulation requires a lot of computational re-
sources. This requirement leads to the need of the distributed
simulation system, which requires the time synchronization
problem solution [8].

The Hi-Fi Network Prototyping Simulator (NPS) is in-
vented to simulate LSN [9] as a sandbox for:

• LSN operation analysis (malware propagation, forward-
ing network protocols convergence research, network
performance testing (ex. maximum throughput, average
delay/loss level));

• developing network applications (software for network
devices, L5-L7 level applications).

It is assumed that the mathematical model of simulated LSN
is based on the formal model of LSN [10]. The current version
of NPS allows simulate network operation with more than
30.000 vertexes in topology. It should be noted that in the
original paper [10] the Hi-Fi approach was applicable only to
small networks (up to 2000 vertex in a graph).

In [9] there is a detailed description of the NPS architec-
ture. In recent paper we focus only on time management prob-
lem.

3. TIME IN LSN FORMAL MODEL
In this section we consider the time representation in the

formal model [10] and time synchronization service in the
run-time environment. In the formal model mentioned above

Figure 1. Virtual topology mapping scheme.

it was assumed that the network has a single observer [11]
with a unique discreet clock. Now let us consider the case
with several observers, and each of them has its own clock.
The indications of these clocks may be different. Let us recall,
that the LSN formal model [10] is assumed to be divided into
domains. A domain is a set of hosts linked with one another.
It is assumed that the sets of hosts in different domains do not
overlap. For example, let the domains are distributed between
several machines; each has its own clock. We will assume
that for each two observers is true that there is no difference
between their clock indications at initial time.

The LSN simulation model unlikely to be calculated on a
single machine. The only way to solve it is to build a dis-
tributed simulation system that consists of cluster machines.
We would call these machines — cluster nodes. One of the
major problem of distributed simulation is time synchroniza-
tion among components of the simulation model. It is impor-
tant because the whole simulation model ought to operate in
a unique time, but in a distributed system there is no global
clock to synchronize with. The model time speeds in a vari-
ous cluster nodes are different because of different load, per-
formance and other characteristics of cluster nodes [12].

The main goal of the simulation system time management
service is a correct ordering of events in a model time. Ac-
cordingly to the problem examined in this paper, the clocks
in the components of the LSN simulation model placed in dif-
ferent cluster nodes (fig. 1) or in a single cluster node have to
be synchronized. E. g. we need this service when the parame-
ters of the physical link do not fit the parameters of the link in
simulation model (logical link) mapped on the physical one.

The time difference among of the different cluster nodes
could be synchronized by using the optimistic time synchro-
nization approach for distributed systems (in it simplified ver-
sion). The main drawback of an optimistic scheme is a roll-



back [12]. Instead of rollback we propose to interpret the time
differences violation as a packet lost or drop. Let ti, t j — clock
indications on cluster nodes i and j correspondingly. We as-
sume that at the initial time moment every cluster node clocks
starts simultaneously (∆0

i j = t0
i − t0

j = 0). For the time syn-
chronization between domains placed on a different cluster
nodes we will use the following rules:

A if the timestamp of packet, received by i cluster node
from j cluster node, is grater then clock indication of i
cluster node plus link delay between these cluster nodes,
i cluster node will wait for the time interval equal to
”∆i j + dllink” to communicate with j node, where dllink
- link delay between i and j cluster nodes;

B if the timestamp of packet, received by i cluster node
from j cluster node, is less then clock indication of i
cluster node plus link delay between these cluster nodes,
i cluster node will drop packets, because for node j there
will be event from the past;

C if the timestamp of packet, received by i cluster node
from j cluster node, is equal to clock indication of i
cluster node plus link delay between these cluster nodes,
there is no necessity for time synchronization.

To cover above described time management gap in the for-
mal model let us add the Time Agent (TA) to the every do-
main in the LSN model. The time agent is responsible for the
time synchronization between two communicating domains.
Our time synchronization algorithm has two steps:

1. Once the mapping logical links onto physical ones is
done, the maximum ratio physical link delay to logical
link delay is calculated (Let us use Rmax for the maxi-
mum ratio).

2. Apply the normalizing transformation to all logical links
of a model as follows: Rmax ·dllog, where dllog — logical
link delay.

It is proved that with proposed algorithm all packets in the
simulated network will be arrived in a correct order. Saying
”correct order” we mean the packet order during simulation
will be the same like a real network operation. It is worth
to note that this approach to time management in simulation
model let us cover the simulation of a timeout waiting in net-
work protocol.

4. NPS TIME MANAGEMENT SERVICE
The Network Prototyping Simulator (NPS) is developed as

the upper level software over Mininet that could combine sev-
eral separate instances of the Mininet system into one cluster
(fig. 2).

Figure 2. NSP cluster scheme.

Mininet is a rapid prototyping system [13]. The major
goal of this system is fast development of OpenFlow con-
troller applications. An OpenFlow controller is a core of
Software-Defined Network [14] [15]. The main advantage of
the Mininet is a network prototype implemented by it can be
placed in a single laptop.

The NPS architecture consists of four main parts: NPS Su-
pervisor Console; NPS OpenFlow Controller; NPS Cluster
Node; NPS Network Service Library.

The NPS Supervisor Console is the mean to configure, to
send commands and to show outputs from several instances
of Mininet via the SSH protocol. To establish the SSH con-
nection with each Mininet instance the Paramiko library [16]
is used.

The NPS cluster node is a machine with Linux OS (Ubuntu
13.04) with several packages installed from public repository:
the Python language interpreter [17]; Scapy-Python [18] —
the library for Python for custom network packets generat-
ing and sniffing; and Mininet system [19]. The NPS cluster
node should have two active Ethernet interfaces. The first one
is to communicate with the NPS supervisor console, another
one is to communicate with other cluster nodes. The NPS su-
pervisor console uses the SSH protocol to control the NPS
cluster nodes. The connection among NPS cluster nodes is
deployed via an external interface mechanism, e.g. described
in ”hwintf.py” in Mininet distribution kit.

The NPS OpenFlow controller is used to set up traffic pro-
cessing (forwarding policy) on links inside the NPS cluster
node, and links that are mapped on physical links between
cluster nodes. It is worth to mention that the NPS cluster
nodes could be allocated between several OpenFlow con-
trollers. This allocation mechanism is important for load bal-
ancing of traffic in the control plane among virtual switches



in network model.
The main stages of the NPS run-time environment opera-

tion are:

1. Initiate SSH session for each NPS cluster node.

2. Configure external interface among connected cluster
nodes.

3. Parse input script with description of network topology,
resources and network traffic.

4. Prepare and send specially generated input scripts to
each cluster node. So the network graph is cutting into
pieces and deploy each piece on separate cluster node.

5. Send network services configuration scripts to each clus-
ter node.

6. Run the experiment.

7. At the end of the experiment, the NPS console sends
exit-command to each cluster node and closes all SSH
sessions.

8. (Optional) Visualizing results.

There are two possible cases of mapping of communicating
domains Di,D j on cluster nodes:

1. Domain Di and domain D j placed in the same cluster
node.

2. Domain Di and domain D j placed in the different cluster
nodes.

Generally speaking, there is the third case, when hosts from
one domain are placed in different cluster nodes. But this case
is not accepted by LSN formal model [10].

In the case ”1” above the logical link between domain is
placed in that cluster node. Inside cluster node there is a
unique clock for all hosts, links, switches placed in this node
which is local operating system clock. A link inside the clus-
ter node represent as a pipe and this pipe always operate faster
than any network connection through network interface, con-
sequently case ”A” from section 3. is not possible. As a result
there is no need for time synchronization if communicating
domains placed in the same cluster node.

In the case ”2” above the logical link between domain is
mapped on the physical link between cluster nodes. The Phys-
ical link can operate slower that the logical one and become
the reason of time desynchronization. To solve this problem
we developed the Time Agent (TA) that operates as the fol-
lowing:

• The TA sends several packets thought certain links be-
tween external interfaces of different cluster nodes and
calculates average round trip time (RTT).

• Average RTT is divided by two and compared with the
logical link delay.

• If the link satisfy the delay, the model operation continue
in normal mode.

• If the link does NOT satisfy the delay, the TA calculates
the ratio between the physical link delay and the logical
one.

• The maximum ratio is calculated among all external in-
terfaces

• All links increase the delay on maximum ratio (inside
the cluster node and between cluster nodes).

It should be mentioned that the TA is a optional module
and in experiments where an NPS user does not need time
synchronization, it could be turned off. In this mode the NPS
system will only notify an NPS user about potentially incor-
rect links, but will not take any actions to manage the time.

During preparing complex experiments an NPS user faces
with the problem of network services configuration on each
host in the domain. There are several difficulties:

• Services configuring on each host is time-consuming
process.

• There are some technical challenges to launch several
instances of network service daemon (ex. DHCP, FTP)
that belong to different network namespaces on a single
cluster node.

To solve that problem we developed a special framework,
called Network Service Configuration framework (NSC), to
automatize this configuration process. This framework is
represented as a network services library. The NSC allows
running plenty of preconfigured network services (such as
DHCP, NTP, HTTP, MTA agent, FTP, etc) on the same clus-
ter node. Using this framework provides time saving for NPS
users who need to prepare the complex experiment with pre-
configured network services.

5. EXPERIMENT RESULTS AND DISCUS-
SION

In this section we described capabilities of the time man-
agement service. The idea is to prevent the packets dropping
caused by link delays and network services time characteris-
tics scaling. The expected results of this experiment are:

• alerting about packet reordering or drop;

• correcting link delays and network services time charac-
teristic (using the TA) to prevent packets reordering or
drop.



Let us take a simple topology (fig. 3) that will be loaded to
the cluster with two nodes connected by the physical link with
delay dlphy = 0.11 ms (pic. 2). According to the NPS run-
time environment operation step from section 4. the network
graph will be separated on two parts and mapped on different
cluster nodes. In this case the one of the logical links will be
mapped on physical link between cluster nodes. In the figure
4 green vertex are mapped on first cluster node, blue ones —
on second cluster node; the black edge defines the logical link
that is mapped on the physical link between cluster nodes.
We suppose that an NPS user set the given logic link delay
dllog = 0.018 ms (pic. 1). It is important to note that ping
on loopback interface and ping between virtual hosts in the
network model have an equal RTT value.

Figure 3. Network graph.

Figure 4. Mapped Network graph.

Picture 1. Logical link ping output
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.104 ms
64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.035 ms
64 bytes from 127.0.0.1: icmp_seq=3 ttl=64 time=0.036 ms
64 bytes from 127.0.0.1: icmp_seq=4 ttl=64 time=0.034 ms
64 bytes from 127.0.0.1: icmp_seq=5 ttl=64 time=0.032 ms

Picture 2. Physical link ping output
PING n001 (10.0.2.7) 56(84) bytes of data.
64 bytes from n001 (10.0.2.7): icmp_seq=1 ttl=64 time=0.250 ms
64 bytes from n001 (10.0.2.7): icmp_seq=2 ttl=64 time=0.208 ms
64 bytes from n001 (10.0.2.7): icmp_seq=3 ttl=64 time=0.213 ms
64 bytes from n001 (10.0.2.7): icmp_seq=4 ttl=64 time=0.233 ms
64 bytes from n001 (10.0.2.7): icmp_seq=5 ttl=64 time=0.222 ms

As first case, we run the experiment when the TA is turn
off and the NPS system operates without time management.
We put the DHCP server in one part of network graph (on
concrete host) and turn on DHCP clients on other hosts in the
graph. The DHCP server timeout is set equal to the biggest
RTT among hosts in network graph. The RTT value calcula-
tion based on logical links delays defined by an NPS user on
every edge (dllog = 0.018 ms).

The mostly interesting point is dlphy > dllog. That’s why
the physical RTT will be bigger then the logical one. The re-
sult in this case (no time management) is:

• All hosts, that are placed in the same with the DHCP
server part of graph, received new IP addresses from
1.2.5.∗ subnetwork.

• All hosts, that are placed in another part of graph, did
NOT receive IP addresses and stayed with old IP ad-
dresses from 1.2.3.∗ subnetwork.

As the effect we have the inconsistency between expected be-
havior and real behavior during the simulation, because the
network model configuration presupposed that all hosts ought
to receive IP addresses from the DHCP server, but some hosts
do not receive (pic. 3). This inconsistency caused, by the link
delay between cluster nodes do not satisfy to the requirements
of the logical link, defined by an NPS user.

As the second case, we repeat the experiment with the time
management (the TA is turn on). During the network model
initialization we determine the maximum ratio Rmax =

dlphy
dllog

≈
6.1 between physical and logical links. After that, we make
normalizing transformation to all logical links of the model as
follows: Rmax ·dllog, where dllog — logical link delay, even on
links that are inside the cluster nodes. Also we would normal-
ize, using Rmax, all time characteristics in all configured net-
work services (in recent experiment there is only the DHCP
server connection timeout). Here the result of the experiment
(pic. 4).



Picture 3. Fail dhclient output.
n001 dhclient: Internet Systems Consortium DHCP Client 4.2.4
n001 dhclient: Copyright 2004-2012 Internet Systems Consortium.
n001 dhclient: All rights reserved.
n001 dhclient: For info, please visit https://www.isc.org/software/dhcp/
n001 dhclient:
n001 dhclient: Listening on LPF/h9-eth0/de:a7:d7:dd:34:bf
n001 dhclient: Sending on LPF/h9-eth0/de:a7:d7:dd:34:bf
n001 dhclient: Sending on Socket/fallback
n001 dhclient: DHCPDISCOVER on h9-eth0 to 255.255.255.255 port 67 interval 2 (

xid=0x9454a18)
n001 dhclient: No DHCPOFFERS received.
n001 dhclient: No working leases in persistent database - sleeping.

Picture 4. Success dhclient output.
n001 dhclient: Internet Systems Consortium DHCP Client 4.2.4
n001 dhclient: Copyright 2004-2012 Internet Systems Consortium.
n001 dhclient: All rights reserved.
n001 dhclient: For info, please visit https://www.isc.org/software/dhcp/
n001 dhclient:
n001 dhclient: Listening on LPF/h8-eth0/8a:04:6d:e0:45:e6
n001 dhclient: Sending on LPF/h8-eth0/8a:04:6d:e0:45:e6
n001 dhclient: Sending on Socket/fallback
n001 dhclient: DHCPDISCOVER on h8-eth0 to 255.255.255.255 port 67 interval 2 (

xid=0x11e23d19)
n001 dhclient: DHCPREQUEST of 1.2.5.96 on h8-eth0 to 255.255.255.255 port 67 (

xid=0x11e23d19)
n001 dhclient: DHCPOFFER of 1.2.5.96 from 1.2.3.21
n001 dhclient: DHCPACK of 1.2.5.96 from 1.2.3.21
n001 dhclient: bound to 1.2.5.96 -- renewal in 280 seconds.

It should be emphasized that the simulation model behavior
completely corresponds to expected network operation and
all hosts received their IP addresses from the DHCP server
because time scaling of the simulation events (pic. 5) .The
price of that correctness is the increasing time of the experi-
ment. In our experiment time needed for simulation increased
from 88.35 sec to 187.6 sec. Taking in consideration that the
part of this time was spent for the network graph deployment
on cluster nodes, we achieved the expected network model
behavior.

Picture 5. Hosts network interface configuration.
h28-eth0 Link encap:Ethernet HWaddr c6:29:c0:57:16:00
inet addr:1.2.5.90 Bcast:1.2.255.255 Mask:255.255.0.0
inet6 addr: fe80::c429:c0ff:fe57:1600/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:412 errors:0 dropped:4 overruns:0 frame:0
TX packets:14 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:46378 (46.3 KB) TX bytes:1820 (1.8 KB)

...

...
h20-eth0 Link encap:Ethernet HWaddr c2:e7:26:13:6e:c0
inet addr:1.2.5.77 Bcast:1.2.255.255 Mask:255.255.0.0
inet6 addr: fe80::c0e7:26ff:fe13:6ec0/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:367 errors:0 dropped:6 overruns:0 frame:0
TX packets:14 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:36766 (36.7 KB) TX bytes:1820 (1.8 KB)

Finally, we can mention that the ratio Rmax is a constant.
Therefore, the time-stamps of all network events can be easily
recalculated from the result model output traces.

6. CONCLUSION
In this paper we presented the improvements of the for-

mal LSN model concerning the time synchronization between
model components and the proof their correctness. We pre-
sented the scalable NPS (Network Prototyping Simulator)
system, which was improved with the time management al-
gorithm specific to LSN (Large Scale Network) simulation.
Also we showed, by the experiment, the use-case where such

time synchronization was critical. These improvements were
developed as the TA (Time Agent) in the NPS system.

The developed NPS system provides a Hi-Fi approach to
simulate an LSN network correct representation of network
structure, traffic and traffic procession. There are two main
advantages of the NPS system:

1. The NPS allows to simulate LSN network. There is no
necessity for proving correctness of network model, pro-
duced by the NPS system;

2. The NPS can produce the time synchronization between
cluster nodes, that helps to prevent errors during net-
work simulation on cluster architecture. Such algorithm
retains the advantages of the Hi-Fi approach even in the
LSN simulation, where several cluster nodes are used.

The NPS system offers an excellent opportunity for LSN
operation analysis, network forwarding protocols developing
and network control application (ex. the SDN controller ap-
plications) developing, to gain sandbox for complex experi-
ments. The NPS system is scalable solution and perform the
simulation of tens of thousands hosts in a single experiment.
It is the great alternative between network emulators and the
LSN analytic models.

The NPS development was accompanied by the develop-
ment of NSC (Network Service Configuration framework).
This framework allows to automatize network services (ex.
FTP, DHCP, SSH, SMTP) configuration and launching in
complex experiments. The architecture of the NSC makes it
easy to expand this library due to other specialized network
services.

Finally, Network Prototype Simulator is an open-source
project. Walkthrough, installation instructions and examples
could be find in [20].

REFERENCES
[1] D. Henclewood, W. Suh, M. Rodgers, M. Hunter, and

R. Fujimoto, “A case for real-time calibration of data-
driven microscopic traffic simulation tools,” in Pro-
ceedings of the Winter Simulation Conference, WSC
’12, pp. 148:1–148:12, Winter Simulation Conference,
2012.

[2] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown, “Reproducible network experiments us-
ing container-based emulation,” in Proceedings of the
8th International Conference on Emerging Network-
ing Experiments and Technologies, CoNEXT ’12, (New
York, NY, USA), pp. 253–264, ACM, 2012.

[3] A. G. Bakhmurov, A. P. Kapitonova, and R. L. Smelian-
sky, “Dyana: An environment for embedded system
design and analysis.,” in TACAS (R. Cleaveland, ed.),



vol. 1579 of Lecture Notes in Computer Science,
pp. 390–404, Springer, 1999.

[4] C. C. Zou, D. Towsley, and W. Gong, “Modeling and
simulation study of the propagation and defense of in-
ternet email worm,” IEEE Transactions on Dependable
and Secure Computing, vol. 4, 2007.

[5] “Emulab homepage.” http://www.emulab.net/.

[6] “Ns-3 homepage.” http://www.nsnam.org/.

[7] “Scalable simulation framework homepage.” http://
www.ssfnet.org/homePage.html.

[8] R. Smelyansky, “Model of distributed computing sys-
tem operation with time,” Programming and Computer
Software, vol. 39, no. 5, pp. 233–241, 2013.

[9] V. Antonenko and R. Smelyanskiy, “Global network
modelling based on mininet approach.,” in Proceedings
of the Second ACM SIGCOMM Workshop on Hot Top-
ics in Software Defined Networking, HotSDN ’13, (New
York, NY, USA), pp. 145–146, ACM, 2013.

[10] V. A. Antonenko and R. L. Smelyanskiy, “Simulation
of malicious activity in wide area networks,” Program.
Comput. Softw., vol. 39, pp. 25–33, Jan. 2013.

[11] R. L. Smelyanskiy, “On the theory of functioning of dis-
tributed computer systems,” pp. 161–182, 2001.

[12] R. Smelyansky and Y. Kazakov, “Organization of
synchronization algorithms in distributed simulation,”
vol. 2, p. 45, 1994.

[13] B. Lantz, B. Heller, and N. McKeown, “A network in
a laptop: rapid prototyping for software-defined net-
works,” in Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, Hotnets-IX, (New
York, NY, USA), pp. 19:1–19:6, ACM, 2010.

[14] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner, “Openflow: enabling innovation in
campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, pp. 69–74, Mar. 2008.

[15] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado,
and S. Shenker, “e.a.: Extending networking into
the virtualization layer,” in In: 8th ACM Workshop
on Hot Topics inNetworks (HotNets-VIII).New YorkC-
ity,NY(October 2009.

[16] “Paramiko module main site.” http://www.lag.
net/paramiko/.

[17] “Python 2.7 documentation.” http://www.
python.org/doc/.

[18] “Python-scapy module main site.” http://www.
secdev.org/projects/scapy/.

[19] “Mininet github repo.” https://github.com/
mininet/mininet.

[20] “Network prototype simulator home-
page.” http://anvial.github.io/
MininetClusterEdition/.


