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ABSTRACT:
Acoustic radiation force (ARF) is a nonlinear phenomenon resulting from the wave momentum transfer to an

absorbing or scattering target. ARF allows objects to be remotely manipulated, pushed, trapped, or pulled, which is

used in medical applications such as kidney stone expulsion or acoustic tweezers. Such applications require

development of methods for precision ARF measurements and calculations. The purpose of this paper is to present a

method for direct measurement of the axial component of the ARF exerted by an ultrasound beam on its axis acting

on a millimeter-sized spherical particle in a liquid. The method consists of weighing a rigid frame with a scatterer on

electronic scales, similar to the radiation force balance method of measuring the total acoustic beam power. The

capabilities of the method are demonstrated by applying it to spheres of different diameters (2–8 mm) and composi-

tions (steel, glass). The additional objective is to provide experimental validation of the theoretical model of

Sapozhnikov and Bailey [J. Acoust. Soc. Am. 133, (2013)], previously developed to calculate the ARF of an arbi-

trary acoustic beam on an elastic sphere in a liquid or gaseous medium based on the angular spectrum approach.
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I. INTRODUCTION

The phenomenon of acoustic radiation force (ARF) has

been studied for many decades.1 One of the strongest drivers

of this development is the wide range of biomedical applica-

tions, such as the capture and manipulation of small par-

ticles, cells and larger objects (acoustic tweezers), acoustic

levitation, elastography, biofabrication of tissue spheroid

constructs, and more.2–5 There is a rapidly developing field

related to the expulsion and directional movement of kidney

stones and their fragments in the human body using focused

ultrasound.6–9 Because of the evolving research in remote

object manipulation, a quantitative study is of interest to

investigate the ability of megahertz ultrasound to exert force

on millimeter-sized scatterers. This requires the develop-

ment of methods to calculate the ARF acting on objects of

any shape and composition in different acoustic beams and

accurately measure the force of small magnitude.

To date, various theoretical models have been developed

to calculate the ARF acting on different scatterers in different

media. Some works are limited to the case of plane wave anal-

ysis or absolutely rigid or soft scatterers.10,11 In Ref. 12, a

spherical object is analyzed in a soft elastic medium.

Approximate models are also used.13 The present study consid-

ers the situation of an arbitrary acoustic beam in liquid falling

on a spherical scatterer whose dimensions are comparable to,

or larger than, the wavelength. For this case, Sapozhnikov and

Bailey have derived analytical expressions for calculating the

ARF acting on a sphere using the angular spectrum method

(marked below as the SB model), which is convenient for cal-

culating the radiation force based on the acoustic hologram.14

An alternative approach using the spherical coordinate system

has also been suggested for this case.15 As shown in Ref. 16,

these approaches lead to the same results.

Despite the large number of theoretical models proposed,

the number of experimental papers providing verification is

much smaller. The majority of experiments described in the lit-

erature concerning the measurement of ARF magnitude acting

on spherical scatterers in liquid were based on the determina-

tion of the angle of deflection of a sphere suspended on a

thread from its equilibrium position.17–22 Although these tech-

niques are effective in measuring force accurately, they have a

number of disadvantages due to the displacement of the sphere

from its original position. The measurement results remain

largely unaffected by a change in spatial location if the struc-

ture of the acoustic field is similar to that of a plane wave.

However, for focused ultrasound beams, where the focal beam

waist can be as small as 1 mm or less, strong field inhomogene-

ity leads to a correspondingly pronounced ARF inhomogene-

ity. Under these conditions, small changes in the position of

the scatterer during force measurements result in the inability

to accurately determine the position of the sphere in the field,

making force measurement along any predefined axis a

challenge.

a)The basic concept of this article and preliminary results have previously

been published by O. Sapozhnikov, L. M. Kotelnikova, D. A. Nikolaev,

and S. A. Tsysar [Proc. Mtgs. Acoust. 48(1), 045005 (2022)].
b)Email: oleg@acs366.phys.msu.ru

J. Acoust. Soc. Am. 157 (2), February 2025 VC 2025 Acoustical Society of America 1391

ARTICLE...................................

https://orcid.org/0000-0002-4979-7706
https://doi.org/10.1121/10.0035939
mailto:oleg@acs366.phys.msu.ru
http://crossmark.crossref.org/dialog/?doi=10.1121/10.0035939&domain=pdf&date_stamp=2025-02-21


Some experimental techniques have previously been

proposed for the ARF measurement in liquid for beams with

complex structures. For example, a method has been devel-

oped to measure the transverse (lateral) ARF component of

the vortex beam by positioning a sphere on a flat platform

attached to a rotational stage.23 The force magnitude was

determined from the maximum angle of rotation of the plat-

form at which the sphere was held stationary by counterbal-

ancing forces acting on it. The accuracy of this method was

10%–20%. To measure the axial component of the ARF

exerted by a focused beam on a millimeter-sized spherical

scatterer, a method has been suggested based on the balance

between the ARF, gravity, and buoyancy forces during the

levitation of the particle under study.24,25 The numerical and

experimental results were found to agree within 10% in the

post-focal and pre-focal regions. Force oscillations were

observed in the focal region due to the occurrence of stand-

ing waves between the scatterer and the transducer surface.

Despite positive results, the process of implementing this

method was quite labor-intensive and time-consuming. To

calibrate the axial stiffness of a single-beam acoustic twee-

zers, an experimental method for measuring the axial com-

ponent of the radiation force acting on millimeter spheres in

air was investigated.26 The method consisted of observing

the axial oscillations of a trapped bead in a microgravity

environment and estimating the ARF value from their fre-

quency. The experimental results showed a systematic over-

estimation of the theoretical model by a factor of about 2

due to experimental uncertainties (20%–30%) and theoreti-

cal model assumptions. Thus, existing methods allow the

magnitude of the radiation force acting on a sphere to be

estimated, but are difficult to use and not very accurate.

The current paper describes a new method for the direct

measurement of the axial component of the acoustic radia-

tion force exerted by an ultrasound beam on its axis acting

on a millimeter-sized elastic sphere in a liquid. The sphere

is fixed in a system of thin fishing lines attached to a rigid

frame that surrounds the tank walls without touching them

and rests on an electronic balance. By weighing the frame

with the scatterer, the value of the vertical component of the

radiation force is determined. The preliminary results

obtained with this method have previously been published.27

The purpose of this paper is to demonstrate the validity of

the proposed method as well as to validate the theoretical

approach for calculation of the radiation force of an arbi-

trary acoustic beam on an elastic sphere in liquid based on

the angular spectrum approach (SB model).

II. MATERIALS AND METHODS

A. Theoretical model

1. ARF of an arbitrary beam on an elastic sphere

The analytical expressions obtained in the SB model

were used for the numerical calculation of the ARF. A brief

description is given below.

Consider a monochromatic acoustic beam directed

along the z axis falling on an isotropic elastic sphere of

radius a immersed in an ideal fluid. Cartesian x; y; zð Þ and

spherical r; h;uð Þ coordinate systems are introduced, the

origin of the coordinate systems is set at the center of the

sphere, and the angle h ¼ 0� corresponds to the direction of

the z axis, z ¼ r cos h. The ARF exerted by the beam on

the scatterer has three Cartesian components:

Frad ¼ Fx;Fy;Fzð Þ. Each component of the force depends

on three spatial coordinates x; y; zð Þ: The force acting on the

scatterer will vary in magnitude and direction if the scatterer

is placed at different points in the field. The lateral compo-

nents (Fx and Fy) when the sphere is placed on the beam

axis are small in a beam that is close to axisymmetric. The

axial (vertical) component considered in this paper is

defined by the following expression:

Fz ¼ �
1

4p2qc2k2
Re

X1
n¼0

Wn

Xn

m¼�n

BnmHnmH�nþ1;m

( )
:

(1)

Here, c is the speed of sound in the immersion fluid (water),

q is the density of the fluid, k ¼ x=c ¼ 2pf=c is the wave

number, f is the frequency, Re �½ � indicates the real part of

the term in brackets, the asterisk denotes a complex

conjugate,

Bnm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ mþ 1ð Þ n� mþ 1ð Þ

2nþ 1ð Þ 2nþ 3ð Þ

s
(2)

are the known numerical coefficients, and

Wn ¼ 1þ 2cnð Þ 1þ 2c�nþ1

� �
� 1 (3)

are coefficients determined by the elastic properties of the scat-

terer and the surrounding medium. Auxiliary coefficients are

cn ¼ �
Cnjn kað Þ � ka j0n kað Þ

Cnh 1ð Þ
n kað Þ � ka h 1ð Þ0

n kað Þ
; (4)

where the primes indicate differentiation with respect to the

argument, characterize the scattering and depend on the

known properties of the fluid and the sphere material,

namely, on the speed of sound c and the density q of the

fluid, the density of the sphere material q�, and the combina-

tions kla, kta, where kl ¼ x=cl, kt ¼ x=ct, and cl and ct are

the velocities of the longitudinal and transverse waves in the

sphere. hð1Þn nð Þ ¼ jn nð Þ þ inn nð Þ are spherical Hankel func-

tions of the first kind, where jn nð Þ and nn nð Þ are spherical

Bessel and Neumann functions, respectively. Coefficients

Hnm ¼
ð ð

k2
xþk2

y�k2

dkxdkyS kx; kyð ÞY�nm hk;ukð Þ (5)

fully specify the incident field with an angular spectrum

S kx; kyð Þ, and Ynm h;uð Þ are spherical harmonics. Expressions
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for full forms of coefficients Cn as well as the angles hk and uk

are given in Ref. 14. The angular (spatial) spectrum of the

beam is determined by the formula

S kx; kyð Þ ¼
ðþ1
�1

ðþ1
�1

dx dy p x; yð Þe�ikxx�ikyy; (6)

where p x; yð Þ is the acoustic pressure complex amplitude of

the harmonic wave of specified frequency f in the plane of

the position of the center of the sphere.

For the analysis, it is convenient to introduce a dimen-

sionless ARF.25 In particular, the axial component of the

dimensionless radiation force is calculated as follows:

Yz ¼
Fzc

W
: (7)

Here, W is the total acoustic beam power, which can be cal-

culated from the angular spectrum of the beam:14,28

W ¼ 1

8p2qc

ð ð
k2

xþk2
y�k2

dkxdky S kx;kyð Þ
�� ��2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

k2
x þ k2

y

k2

s
: (8)

2. Finding the angular spectrum of an acoustic beam

In order to numerically calculate the ARF exerted by a

linear acoustic beam, it is essential to determine the spatial

structure of the beam, specifically its angular spectrum. The

field structure of the focusing source used in this study can

be calculated using the Rayleigh integral, assuming that the

amplitude of the normal component of the vibration velocity

is uniform across its surface (piston model).29 However, the

actual nature of the surface vibration is non-uniform due to

various factors, such as Lamb wave excitation in the piezo-

ceramic plate rim30 and design features of the plate mount-

ing, making such a description only approximate. Therefore,

a more accurate method is used in this study: measurement

of the transient acoustic hologram of the source followed by

processing using the standard method.31,32

3. Minimizing sound reflection from a piezoelectric
transducer (PT)

When conducting measurements of the radiation force

acting on a spherical scatterer from a focusing PT, standing

waves are generated between the surfaces of the PT and the

sphere due to multiple reflections of waves from these two

surfaces. These standing waves become particularly signifi-

cant when the sphere is within the focal area.25 Similar

oscillations have been studied in a number of papers by

other authors.33,34 To minimize their effect on the force

measurements, the approach outlined in Ref. 35 was used to

reduce the reflection coefficient from the PT surface by

adjusting the electrical impedance of its load. Initially, the

method was developed and experimentally tested for a setup

with a large-diameter flat source and a flat reflector installed

parallel to each other, producing the plane wave mode.

Theoretical analysis has demonstrated that at frequencies

where the imaginary part of the PT impedance vanishes

(e.g., at the antiresonance frequency), it is possible to

completely eliminate the sound reflection from the PT by

using an electrical load with a purely active impedance

equal to the impedance of the PT.

In this study, the aforementioned method is applied to

minimize the coefficient of reflection from a concave PT

with an air backing, which is used in ARF measurements.

An elastic sphere placed at the focus of the source acts as a

reflector. It can be assumed that the propagation, reflection,

and re-reflection of spherical waves are analogous to those

of plane waves in the one-dimensional case. Various resis-

tances are considered as the electrical load of the PT to min-

imize the reflection coefficient in the vicinity of the

antiresonance frequency.

B. Experimental arrangement

This section presents a precise method for measuring

the ARF acting on finite-size millimeter scatterers. This

method can be applied to scatterers of any shape (ellipsoids,

cylinders, polyhedrons, etc.), but in this paper it is consid-

ered for elastic spheres. The source of sound waves can also

be of any type.

1. Elastic targets

The characteristics of the targets are summarized in

Table I. Steel (grade AISI 440-C stainless steel) and glass

(sodium–calcium–silicate glass, i.e., crystal glass) spheres

were used.

The diameters and masses of the spheres were measured

using a micrometer with a 0.01 mm graduation and an elec-

tronic balance with an accuracy of 0.004 g. The deviation

from sphericity did not exceed 10–20 lm. Knowledge of the

mass and diameter of the sphere was used to calculate its

density, q�. The final density error was less than 5%.

Varying the densities within this error did not affect the

value of the ARF.

In addition to density, the magnitude of the radiation

force also depends on the value of parameters characteriz-

ing the elastic properties of the scatterer material (longi-

tudinal and shear wave velocities). The study of the ARF

therefore requires a knowledge of these elastic properties

as accurately as possible. Since the elastic constants of

the scatterers of interest are not always known exactly,

and their value varies according to the chemical composi-

tion and internal structure determined by manufacturing

and processing methods, we have previously carried out

research to determine the elastic parameters of spheres.

They were determined from experimental measurements

of the frequency dependence of the forward scattering

amplitude.36 The values obtained (cl, ct) are also listed in

Table I. Errors in the determination of the longitudinal

and shear wave velocities do not exceed 2% and 1%,

respectively.
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2. Experimental setup

The schematic diagram of the experimental setup devel-

oped in this paper for measuring the ARF by the weighing

method is shown in Fig. 1. A concave piezoceramic source

(with an air backing) in the form of a spherical bowl with a

focal length of 70 mm and a diameter of 100 mm was placed

in a 300� 300� 300 mm tank with degassed water. The res-

onant frequency of the piezoceramic plate was 1.072 MHz,

and the bandwidth was approximately 0.15 MHz. A ther-

mometer was used to measure and control the consistency

of the water temperature during the experiments. The source

was rigidly mounted on a positioning system (VP9000;

Velmex, Inc., Bloomfield, NY) that allowed it to be trans-

lated in three mutually perpendicular directions with a posi-

tioning accuracy of 2.5 lm. The orientation of the source

was pre-aligned with the water surface to direct the axis of

the generated beam vertically downwards. A continuous

wave harmonic signal (at a selected frequency in the vicinity

of the resonance frequency of the source) was fed from the

generator (Agilent 33250A; Agilent Technologies, Santa

Clara, CA) through an amplifier (210L; Electronics &

Innovation, Ltd., Rochester, NY) to the source. An elastic

spherical target (a bead) was positioned at some distance

from the source on its acoustic beam axis in the center of a

large-diameter plastic auxiliary ring. The sphere was fixed

using a system of four stretched thin fishing lines (Berkley

Nanofil, Pure Fishing, Inc., Columbia, SC). Because of the

small diameter of the lines (35.7 lm) their influence on the

acoustic field was negligible.36 The fishing lines were

stretched tightly enough to reduce the possibility of spatial

shift and vibration of the bead. According to the measure-

ments, the displacement of the sphere did not exceed 0.3 mm

at the maximum value of the radiation force achieved, which

gives an estimate of more than 1 N for the tension of the fish-

ing lines. The plastic ring was attached to a rigid frame that

encircled the water tank without touching its walls and trans-

ferred the force applied to the bead directly to the surface of

an electronic balance (VI-3mg; Acculab USA, Central Islip,

NY). This construction enables to measure the vertical com-

ponent of the ARF acting on the scatterer. The levels of preci-

sion of the balance and the scale division were 4 mg and

1 mg, respectively. In order to suppress the influence of

hydrodynamic flows (acoustic streaming) induced by the

ultrasound beam, a thin polyethylene film (food wrap with a

thickness of less than 10 lm) was stretched over the scatterer

at a distance of about 1 cm, acting as a thin sound-transparent

membrane. The low membrane thickness ensured that the

ultrasound beam was not absorbed or modified as it passed

through. An acoustic absorber (HAM-A; Precision Acoustics,

Dorchester, UK) was placed at the bottom of the tank to elim-

inate wave reflection from the bottom of the tank. The influ-

ence of reflections from the side walls was negligible, which

was verified by comparing force measurements at different

transverse positions of the transducer and the target. (The

results were the same.) The signal at the source was measured

by means of an oscilloscope (TDS5034B; Tektronix,

Beaverton, OR).

TABLE I. Geometric and elastic properties of spherical targets used in experiments. The errors in the determination of q�, cl; and ct do not exceed 5%, 2%,

and 1%, respectively.

Sample name Material Diameter (mm) Density q� (kg/m3) Longitudinal velocity, cl (m/s)a Shear velocity, ct (m/s)a

S2.8 Steel 2.77 7480 5930 3340

S4.8 Steel 4.75 7490 5850 3190

S6 Steel 5.99 7710 5930 3245

S8 Steel 7.93 7693 5850 3350

G4 Glass 3.97 2552 5950 3300

G6.1 Glass 6.10 2653 5750 3410

G8 Glass 7.98 2477 5700 3410

aData acquired from Ref. 36.

FIG. 1. Diagram of the experimental setup for measuring the ARF on an

elastic sphere in water. (1) Source (fixed in a positioning system), (2) water

tank, (3) spherical target, (4) ring construction for mounting the scatterer,

(5) fishing lines, (6) a rigid frame resting on a balance, (7) electronic bal-

ance, (8) anti-streaming membrane, (9) absorber.
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3. Techniques for ARF measurement and processing

To find the reference position of the sphere (position at

the beam focus), a pulsed mode of operation was used. By

moving the transducer both vertically and transversely, the

amplitude of the pulsed signal reflected from the sphere sur-

face back to the transducer (echo signal) was observed on an

oscilloscope. The position of the sphere at the source focus

was found by searching for the maximum of the reflected

signal amplitude. To ensure the sphere was in focus, the

delay time of the reflected signal was measured and com-

pared with the calculated delay time tdelay ¼ 2 F� d=2ð Þ=c,

where F is the focal length of the source, d is the sphere

diameter, and c is the speed of sound in water. The rates of

accuracy of finding the focus were 0.7 mm along the vertical

axis (equal to half a wavelength, caused by the uncertainty

in determining the start of the acoustic signal from which

the delay time is measured) and about 0.05 mm along the

transverse axes (determined by the ability to detect on the

oscilloscope the deviation of the amplitude of the pulse

reflected from the sphere from its maximum value, which

indicates that the sphere is off-axis).

The ARF measurements were carried out with the trans-

ducer in different positions in relation to the sphere. To mea-

sure the force on the beam axis, the transducer was moved

along the vertical axis z in increments of 0.25 mm or 0.1 mm

(for detailed results in the focal area).

In order to rule out the possibility of the sphere being

accidentally displaced in the fishing lines by radiation force

during measurements (which alters the coordinate of the

sphere) or its falling out of the lines, a strong signal was

applied to the transducer prior to ARF measurements, when

the sphere was placed in the focus, generating a force

slightly greater than the maximum force measured in experi-

ments. This ensured that the sphere was securely and

steadily fixed in fishing lines during further measurements.

The magnitude of the ARF was determined by the dif-

ference between the balance readings (mrad) before and after

the electrical signal was applied from the generator to the

source. The formula

Y exp
z ¼ mrad gc

W
(9)

was used to convert the weighting result mrad into a dimen-

sionless ARF, Y exp
z . Here, g ¼ 9:81 m/s2 is the gravitational

acceleration, c ¼ 1480 m/s is the speed of sound in water,

and W is the total acoustic beam power, calculated using

Eq. (8).

For the experimental data processing and numerical

calculations, MATLAB (MathWorks, Natick, MA) was

used.

4. Measuring the field of the focused transducer

To calculate the ARF numerically, it is necessary to

know the pressure angular spectrum of the source used in

experiments. A transient acoustic hologram of the source

was measured to determine the angular spectrum of the field

incident on a sphere.32 Here is a brief description of the

method used. A pulsed electric voltage signal in the form of

a tone burst, consisting of 5 cycles of a 1.072 MHz sinusoid

with an amplitude of 5 V, was applied to the transducer

from the generator. The acoustic signals of the radiated field

were measured with a needle-type hydrophone (HNA-0400;

Onda, Sunnyvale, CA) with a sensor diameter of 0.4 mm.

The hydrophone was moved along three perpendicular axes

(positioning accuracy 5 lm) by means of a computer-

controlled positioning system (UMS-3; Precision Acoustics,

Dorchester, UK). An acoustic hologram was recorded at a

distance of zH ¼ 55 mm from the center of the source in the

plane perpendicular to the beam axis. During the measure-

ments, the hydrophone was moved with a spatial step of

0.5 mm between the points of the square grid

x; yð Þ 201� 201. (The aperture of the hologram was

100 mm.) An electric voltage signal in the time domain was

recorded at each grid point. Fast Fourier transform was used

to find the frequency spectrum of the time signal at each

point of the hologram x; yð Þ. Next, the complex amplitude of

the electric voltage at the frequency of interest, x0 ¼ 2pf0;
was extracted from the spectrum. This value was normalized

to the complex amplitude of the electrical signal at the

source, at the same frequency, x0. The value obtained,

U x; y;x ¼ x0ð Þ; describes the distribution of the complex

amplitude in the measurement plane corresponding to the

monochromatic mode of the source at the frequency x0 with

a voltage amplitude of 1 V. The spatial spectrum of the sig-

nal was then calculated using the formula

SU kx;ky;x0ð Þ ¼
ðþ1
�1

ðþ1
�1

dxdyU x;y;x0ð Þe�ikxx�ikyy: (10)

This spectrum was further corrected for known hydrophone

directivity, D kx; ky;x0ð Þ; and sensitivity, M0 x0ð Þ:32

Scorr kx; ky;x0ð Þ ¼
SU kx; ky;x0ð Þ

M0 x0ð ÞD kx; ky;x0ð Þ
: (11)

To obtain the true pressure angular spectrum,

S kx; ky;x0ð Þ, for ARF calculations, the corrected spatial

spectrum, Scorr; was multiplied by the value of the complex

amplitude of the electrical signal, Utr x0ð Þ; applied to the

transducer during ARF measurements:

S kx; ky;x0ð Þ ¼ Utr x0ð ÞScorr kx; ky;x0ð Þ: (12)

The true structure of the field produced by the source

can be reconstructed from this spectrum:

p x; y; z;x0ð Þ ¼
1

4p2

ð ðþ1
�1

dkxdkyS kx; ky;x0ð Þ

� eikxxþikyyþi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2

x�k2
y

p
z�zHð Þ: (13)

The pressure angular spectrum S kx; ky;x0ð Þ calculated

from the hologram can be used to calculate the ARF at
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different sphere positions in the beam.14 The expression for

the angular spectrum when the sphere is located at the point

with the coordinates xs; ys; zsð Þ relative to the position

0; 0; zHð Þ, corresponding to the position of the measured

hologram, is as follows:

S kx; ky;x0ð Þj xs;ys;zsð Þ

¼ S kx; ky;x0ð Þj 0;0;zHð Þe
ikxxsþikyysþi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2

x�k2
y

p
zs�zHð Þ:

(14)

5. Control of the wave reflection from the transducer

An empirical study was carried out to analyze the coef-

ficient of sound reflection from a piezoceramic transducer as

a function of frequency and active impedance of the electri-

cal load of the transducer, following a similar experimental

technique described in Ref. 35.

The experimental setup is similar to that used for ARF

measurements. An elastic sphere was located at the focus of the

PT. A sinusoidal signal of 5 V amplitude consisting of 5 periods

at the antiresonance frequency was applied to the source. The

PT emitted an acoustic wave that propagated towards the

sphere, reflected from it, and returned to the PT. After reflection

from the PT, the wave propagated back to the sphere and

reflected from it once more. An oscilloscope was used to record

electrical signals on the PT: reflected and re-reflected waves.

The ratio of amplitudes of frequency spectra of these waves,

Reff
refl; is proportional to the reflection coefficient from the PT

and also takes into account wave reflection losses from the

sphere material and diffraction losses associated with the diver-

gence of the wave.35 For the purposes of this work, it is not nec-

essary to know the exact values of losses, as we look for

parameters (frequency and electrical load resistance) that ensure

the minimum reflection from the PT, taking into account all the

losses (also present in ARF measurements). Therefore, the

experimental quantity of interest is the magnitude of the value

Reff
refl, which is henceforth referred to as the coefficient of effec-

tive reflection from the PT.

The internal resistance of the generator was 50 X and

acted as an electrical impedance loaded on the conducting

sides of the piezoelectric plate when operating in the receive

mode. Different resistances were additionally connected in

series or parallel to the generator to obtain different values of

the total electrical impedance Zel loaded on the piezoelectric

transducer. To ensure a minimum inductive component, 10,

51, and 100 X precision resistors (metal film resistors, MF-25

(C2–23) 0.25 W, 1% accuracy; Synton-Tech, Taiwan) were

used. By connecting them in series and parallel in various

combinations, different resistance values were obtained.

According to theory, the minimum reflection coefficient

from the PT should be expected at the connected electrical

load with an impedance equal to the complex conjugate of

the PT impedance (which is real at the antiresonance fre-

quency). The deviation from this value will be the greater

the more the operation of a real PT differs from that of the

ideal theoretical model,35 and the load impedance will also

be affected by the presence of electrical and mechanical

losses in the piezoceramics, diffraction losses due to the

finite size of the piezoelectric plate and the setup, inhomoge-

neity of the piezoelectric plate, etc.

III. RESULTS AND DISCUSSION

A. Holographic reconstruction of the acoustic beam
structure

Figure 2 illustrates the measured magnitude and phase

of the acoustic pressure field p x; y;x0ð Þ in the acoustic holo-

gram plane at the frequency of f0 ¼ x0=2p ¼ 1:072 MHz

(top row), the magnitude and phase of the angular spectrum

(middle row) calculated for this field, and the field of the

source in the axial plane, calculated by Eq. (13) (bottom).

As expected, the field structure of the source is not strictly

axisymmetric, as would be the case for an ideal piston radia-

tor, so measuring the acoustic hologram is essential for

accurate ARF calculation.

B. Numerical calculation of ARF

Equations (1)–(8) were used to calculate the ARF on an

elastic sphere for the acoustic beam used in the presented

experiments, with the angular spectrum determined from

hologram measurements. The number of terms in the infinite

series in Eq. (1) was Nmax ¼ 3–5ð Þka, which was sufficient

for convergence.37 Figure 3 shows the results of calculations

of two-dimensional distributions of the axial force compo-

nent for the scatterers S6 and G6.1 in the (x, z) plane. It can

be seen that the maximum value of the force is reached in

the focal region, and its magnitude decreases rapidly with

distance from the focus. The ARF distribution for S6 is

smoothly decreasing in the pre-focal region, while the

sphere G6.1 has a non-uniform force distribution; i.e., a

dependence on the azimuthal angle appears. During the

experiments, the force was measured along the acoustic

beam axis (along the z axis at x¼ 0, y¼ 0).

C. Selection of the electrical load of the transducer to
suppress the reflection coefficient from its surface

The frequency dependence of the impedance of the pie-

zoelectric transducer was measured, and the antiresonance

frequency 1.072 MHz and the real part of the impedance at

this frequency 13 X (the imaginary part becomes zero) were

determined from these data.

For spheres larger than 6 mm in diameter, the effective

reflection coefficient from the PT Reff
refl was measured. The

value of the electrical load of the transducer Zel was varied

from 2 to 100 X in steps of 1.3 to 20 X (17 different values

in total), depending on the theoretically assumed rate of

change of the reflection coefficient [see Eq. (4) in Ref. 35].

The left graph in Fig. 4 shows the experimentally

obtained distribution of jReff
reflj as a function of frequency f

and the value of the resistance of the electrical load R using

sphere S6 as a scatterer. The experimental plot is smoothed

for clarity. The right graph in Fig. 4 shows the same value

jReff
reflj for three representative frequencies as a function of
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the electrical load resistance R. The minimum value of

jReff
reflj ¼ 0.017 is achieved at 1.071 MHz with a 20 X electri-

cal load of the PT. (The load is obtained by connecting a

combination of resistors with a total resistance of 33 X in

parallel with a generator with an internal resistance of 50 X.)

Consequently, by applying the same electrical load during

ARF measurements, it is possible to reduce the coefficient

of reflection from the transducer of the waves scattered by

the sphere located at the focus and to minimize the influence

of standing waves on the force measurement results.

Similar measurements were conducted with glass

(G6.1, G8) and steel (S8) spheres. The load and frequency

values at which the effective reflection coefficient is mini-

mal were found to vary slightly between different spheres

(1.074 MHz and 20 X for S8, 1.074 MHz and 25 X for G6.1,

1.072 MHz and 20 X for G8). This discrepancy can be attrib-

uted to the fact that the initial assumption made in the the-

ory, namely that a spherical wave is incident upon a

spherical transducer, is only approximately fulfilled. First,

the wave scattered on an elastic sphere will have an inhomo-

geneous angular distribution of the scattered field structure

(which will vary for different sphere diameters and materi-

als),38 second, the acoustic beam that falls on the sphere is

not perfectly axisymmetric and does not have an ideal spher-

ical front. Thus, in a real situation, the assumption of spheri-

cal character of the reflected wave is violated, different parts

of the piezoelectric plate vibrate differently, and the theoret-

ical effect of complete reflection cancellation is not

achieved. Furthermore, the structure of the scattered wave

incident on the transducer changes significantly when the

sphere is positioned at different points in the field. A dis-

tance of 1 mm from the focus reveals a marked divergence

from the spherical wave front [proved by calculations car-

ried out according to the Eq. (8) from Ref. 36]. It can thus

be concluded that the suppression of the reflection coeffi-

cient from the PT at the aforementioned parameters (load

resistance and frequency) will be realized only in a small

vicinity of the focus.

D. ARF measurements

ARF measurements were performed for the spheres

listed in Table I. The parameters used for each sphere are

listed in Table II. In most cases, ARF measurements were

performed at the center frequency of the transducer

(1.072 MHz). In certain cases, frequencies close to the cen-

ter frequency were used due to the prior selection of

FIG. 2. (Top) Transverse distribution of the magnitude and phase of the

pressure field at a frequency of 1.072 MHz from acoustic hologram mea-

sured at a distance zH ¼ 55 mm. (Middle) Magnitude and phase of the cor-

responding angular spectrum. (Bottom) Distribution of the acoustic

pressure magnitude in the axial plane in water, reconstructed from the

acoustic hologram. The pressure magnitude is normalized by the corre-

sponding magnitude of the voltage applied to the transducer. The white ver-

tical dashed line depicts the plane of the hologram measurement. Spheres

used in ARF experiments (S8, S6, S4.8, S2.8) are shown to scale.

FIG. 3. Spatial distributions of the axial component of the dimensionless

acoustic radiation force Yz for steel S6 (top) and glass G6.1 (bottom)

spheres positioned at any point in the xz plane at y ¼ 0.
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parameters (frequency and load resistance) that would mini-

mize the reflection from the piezotransducer (see Sec. III C).

In this case, measurements were carried out both with and

without the additional PT load at the same selected fre-

quency. (The resistance of the resistor to be connected in

parallel to the generator is given in Table II.)

The water temperature did not change during a single set of

measurements, which usually lasted several hours and ranged

from 21 to 23 �C for different sets. The source voltage was

selected to ensure that the uncertainties in the measured force

(because of the balance error 4 mg) at the beam focus would be

less than 1%, with the absolute balance error, DY balanceð Þ
z ; at all

points being less than 0.02. The balance readings during the

ARF measurements ranged from 10 mg (0.1 mN) for ARF far

from the focus to 200–650 mg (2–6.5 mN) at the beam focus,

while the acoustic power ranged from 3.1 to 6.2 W.

Figure 5 shows a typical time dependence of the scale

readings during an ARF measurement. The record is made

when the balance is connected to a computer. First, before

the generator was switched on, the scale readings were

recorded. After switching on the generator, a short period of

time (usually less than 2 s) was required to establish a

constant force value (which was also recorded) and to

dampen any possible oscillations of the bead within the fish-

ing lines excited by the impact of the incident beam. The

end of the oscillation damping could also be observed by the

establishment of a stable signal amplitude on the oscillo-

scope. The difference (mrad) between the two force values

was then converted to the dimensionless radiation force Y exp
z

by means of Eq. (9). After switching off the signal, the scale

readings were compared with those before switching on.

The cases of inequality indicated a sudden change in the

external conditions during a single act of measurement (e.g.,

bubbles forming or floating on submerged structural ele-

ments) and the necessity for the repetition of measurement

at this point. It has been verified that repeated ARF measure-

ments at the same point (both in and out of focus area) give

the same result to within 1 mg; i.e., repeatability of measure-

ments under constant conditions was observed.

The results of experimental measurements of the verti-

cal ARF component as a function of distance z along the

acoustic beam axis are presented in Fig. 6 for steel spheres

and in Fig. 7 for glass spheres of different diameters. The

black dots in Figs. 6 and 7 represent the results of direct

ARF measurements with a step along the z axis of 0.25 mm

out of focus and 0.1 mm in focal area. These points were

then connected by a continuous smooth curve using the

“spline” function (in MATLAB). Yellow curves correspond to

experimental results for ARF measurement without addi-

tional PT load (without compensation for sound reflection

from PT). The black curves are calculated numerically.

In the focal region, significant discrepancies with the

theoretical curves are observed. Oscillations of 30%–60%

amplitude (relative to the average level) appear, associated

with the occurrence of standing waves between the trans-

ducer and the scatterer surfaces. In this case, the oscillation

period should be equal to half the wavelength, i.e., approxi-

mately 0.7 mm. This period can be resolved by the step size

used (0.1–0.25 mm).

In regions where the conditions for standing wave genera-

tion are not well fulfilled (out-of-focus regions where the

FIG. 4. (Left) Magnitude of the coefficient of effective reflection from the focused piezoelectric transducer jReff
reflj as a function of the frequency f and the

value of the active load of the transducer R with a steel sphere, S6, positioned in focus and used as a reflector. The white dashed lines indicate the frequen-

cies at which this distribution is shown in the right graph. (Right) Magnitude of the coefficient of effective reflection jReff
reflj as a function of the value of the

active load of the transducer R at different frequencies: A frequency of 1.071 MHz provides a minimum reflection coefficient jReff
reflj ¼ 0.017 at a 20 X load.

The circles represent the values of the active loads realized in the experiment.

TABLE II. Parameters of the electrical part of the setup used during ARF

measurements.

Sample

Frequency

(MHz)

Source

voltage (V)

Acoustic

power W (W)

Additional

PT loada

S2.8 1.072 9.02 3.10 —

S4.8 1.072 10.99 4.61 —

S6 1.071
10.87 3.58 —

10.67 3.45 33 X

S8 1.074
9.04 3.12 —

9.59 3.51 33 X
G4 1.072 12.74 6.20 —

G6.1 1.074
10.94 4.56 —

11.67 5.19 51 X

G8 1.072
10.99 4.61 —

10.71 4.38 33 X

a�, no additional load.
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wavefront of the incident wave does not coincide with the sphere

surface), the influence of oscillations is much smaller and their

amplitude is comparable to the measurement error (40lN).

1. Comparison of experimental results with theory

Measurement results were compared with numerical

calculations of ARF. As can be seen from Figs. 6 and 7, the

theoretical (black) curves overlap well with the experimen-

tal curves on average.

Sometimes the theoretical curves in the prefocal region

slightly exceed the experimentally measured values, which

may be due to the small inclination of the source from the verti-

cal orientation, resulting in a tilt of the axis along which the

measurements were made relative to the acoustic beam axis.

For measurements with different spheres, this tilt was estimated

by finding the central point (with maximum force) of the trans-

verse force distribution in the plane perpendicular to the verti-

cal axis, before and after the focus, where the force oscillations

were small. The tilt angle for all measurements was about

5�–8�. This slight tilt is due to the way the transducer is

mounted and the challenge of aligning it more accurately.

Another source of errors of the same type is the misalignment

of the normal to the hologram with the direction of the acoustic

axis of the source. The impact of the tilt between the calcula-

tion and measurement axes on the calculation of the dimension-

less ARF was investigated. The maximum observed error was

DYtilt
z ¼ 0:1 (marked in the plot for S4.8 in Fig. 6). This error

can explain the small discrepancy between the experimental

and theoretical force values in the pre-focal region. Taking into

account the ARF inhomogeneity in the pre-focal region (depen-

dence of the force on the azimuthal angle), the influence of tilt

on the force measurements will be more pronounced for glass

spheres compared to steel spheres (see Fig. 3). For a steel

sphere, S6, the theoretical curve in Fig. 6 is calculated for a line

inclined at 8� to the z axis.27 It is therefore possible to slightly

improve the agreement between experiment and theory by

varying the axis tilt in calculations or by more accurate posi-

tioning and orientation of the transducer in space.

2. Averaging of the experimental data

For the steel spheres S2.8 and S4.8 (Fig. 6), the blue

dashed lines show the results of averaging of the

experimental curves (averaging of the oscillations); i.e., the

Fourier transform of the extrapolated experimental curve

was performed and the high frequency spectrum responsible

for the oscillations was zeroed (low pass filtering). The

results of averaging are quite close to the theoretical curves.

Nevertheless, the averaging procedure is not entirely cor-

rect, as it requires extrapolation of the data to the outer

domain (beyond the z axis measurement limits), and the

result of the averaging depends on the averaging parameters

(on the selected cutoff frequency). In addition, the complex

field structure between the transducer and the scatterer

changes radically with a small displacement of the scatterer.

This can affect the shape and amplitude of the force oscilla-

tions in unpredictable ways. Thus, averaging can only pre-

sent the data in a more convenient form close to the real

one, but it does not provide the true distribution of ARF on

the axis in the absence of standing waves.

3. ARF measurement with an additional electrical load
to suppress the reflection from the PT

In order to reduce the influence of standing waves on

the results of the ARF measurements (and consequently to

reduce the amplitude of the force oscillations on the z axis),

FIG. 5. Typical time dependence of balance readings during ARF measure-

ments. The black dots before and after turning on the generator indicate the

values used to calculate the force mrad . The error DY balanceð Þ
z (related to the

balance accuracy) is comparable to the size of the circles that correspond to

the measurement points.

FIG. 6. Distributions of the vertical (axial) component of the dimensionless

ARF Yz along the beam axis z for steel spheres of different diameters. The

sample names of the spheres used as the target are shown at the top right of

each plot. The error of experimental measurements DY balanceð Þ
z is compara-

ble to the linewidth. The black dots represent the results of direct ARF mea-

surements at each coordinate point.
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the electrical part of the experimental setup was modified: A

resistor of selected resistance (see Table II) was connected

in parallel to the generator to reduce the reflection of acous-

tic waves from the PT surface. 33 and 51 X metal oxide film

resistors (MOX Jantzen metallized, 5 W, 5%; Jantzen

Audio, Praestoe, Denmark) were used.

In Figs. 6 and 7, the red curves correspond to the results

of ARF measurement experiments with additional PT load

(with compensation for sound reflection from PT). The use

of an additional PT load reduced the amplitude of force

oscillations by an average of 1.5–4 times. Furthermore, for

the S8 and G8 spheres, the suppression becomes particularly

noticeable near certain points: at the focal point (70 mm)

and behind the focal point (73–74 mm). It can be reasonably

assumed that at these points, the sphericity conditions for

the wave incident on the PT are best fulfilled. At the bottom

graph in Fig. 6, there is an inset with an enlarged section of

the graph showing the region where the suppression of oscil-

lations proved to be almost complete. In general, due to the

complex inhomogeneous structure of the beam incident on

the scatterer and the scattered field, the suppression of stand-

ing waves (selection of the electrical load) strongly depends

on both the size/material of the sphere and its position in

space relative to the transducer. Therefore, a selected resis-

tor can help to reduce oscillations, but the extent of the

reduction depends on the specific case.

Overall, despite the lack of complete suppression of

standing waves generated between the surfaces of the scat-

terer and the PT, a significant reduction in the amplitude of

oscillations was achieved in the focal region where standing

waves are most effectively formed. Consequently, the

method of reducing the coefficient of reflection from the

transducer, associated with the selection of its electrical

load,35 can be used to some approximation for the spherical

piezoelectric transducer as well.

4. Experimental linearity of the ARF with acoustic
power

According to theory [see Eqs. (1)–(8)], the radiation

force (Fz ¼ mrad g) is linearly proportional to the total

acoustic beam power W. Deviations from the linear depen-

dence may indicate, for example, the presence of nonlinear

effects in the acoustic beam propagation, hydrodynamic

flows, cavitation or incorrect operation of the setup. To ver-

ify this, the dependence of the vertical ARF component Fz

on the magnitude of the total acoustic beam power was mea-

sured. Figure 8 shows the results of the ARF measurements

at four different points on the acoustic axis of the beam

together with the dashed lines obtained using least squares

method (LSM). In the region behind the focus (point coordi-

nates 76.0 and 78.0 mm), where the force oscillations due to

standing waves are weak, a good linear dependence was

observed for the whole power range investigated. Both lines

obtained with LSM (black and blue dashed lines on the

graph) have a very good correlation of R2 ¼ 0:999. Force

measurements in front of the focus showed similar results.

Force measurements in the focal region (point coordinates

69.8 and 70.1 mm) showed a linear dependence on total

acoustic power only at low power levels (up to 3–6 W,

depending on the coordinate and the sphere used). As the

power was increased, small deviations from linearity were

observed, both up (70.1 mm) and down (69.8 mm), depending

on the coordinate of the sphere position. Studies have shown

that these deviations are caused by the displacement of the

sphere together with the fishing lines under the action of the

ARF (greater than about 1.5 mN) to the point where the ARF

value, due to standing waves, differs from the ARF value at

the initial point. Depending on whether the force at this point

is greater or less, deviations from linearity are observed in the

greater or lesser direction, respectively. Taking into account

the presence of strong oscillations of the force in the focal

area, it can be considered that this phenomenon does not

have a discernible influence on the overall character of the

force dependence measured along the axis. Therefore, in

accordance with the theoretical model used, it can be con-

cluded that the ARF is linear over the range of powers used.

To reduce the relative error of the balance, it is neces-

sary to increase the power of the signal applied to the

source, thereby increasing the magnitude of the ARF.

However, the role of nonlinear effects (causing higher har-

monics to appear) in wave propagation increases with

increasing power. To assess the influence of higher harmon-

ics, the frequency spectrum of the acoustic field in the focal

area was examined. The acoustic signals were measured by

a needle-type hydrophone (Onda HNA-0400; Onda,

Sunnyvale, CA). It was found that for the maximum voltage

at the source used in experiments, the second harmonic

FIG. 7. Distributions of the vertical (axial) component of the dimensionless

ARF Yz along the beam axis z for glass spheres of different diameters. The

sample names of the spheres are shown at the top left of each plot. The error

of experimental measurements DY balanceð Þ
z is comparable to the linewidth.

The black dots represent the results of direct ARF measurements at each

coordinate point.
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amplitude at the focus does not exceed 24% of the first har-

monic amplitude, and it is less than 12% (2%) at a distance

of 10 mm behind (before) the focus. Since the ARF is qua-

dratic to the amplitude of the incident wave, the contribution

of the second harmonic to the ARF is less than 6% at the

focus and less than 1.5% at a distance of 10 mm. Since the

higher harmonics are effectively generated only at the beam

focus, the beam width of the second harmonic is much

smaller than the first harmonic beam width, which also

reduces the expected magnitude of the ARF of the second

harmonic. Thus, for the source voltages used, the generation

of higher harmonics is negligible and does not affect the

ARF value.

5. Acoustic streaming

In addition to acting on the scatterer, the acoustic wave

can act directly on the propagation medium. High-intensity

acoustic waves in liquids (and gases) produce directional

motion of the medium itself, called acoustic streaming.39

Acoustic streaming can affect the measured force in unpre-

dictable ways, so a sound-transparent anti-streaming mem-

brane was placed directly above the scatterer.

The effect of the membrane on the force measured was

investigated. It was found that the presence of the membrane

and the change in its position relative to the sphere did not

affect the magnitude of the force (the difference is within

the error of the balance) and its invariance over time.

Hence, for a given experimental setup configuration, mea-

surement time, and power levels used, acoustic streaming

values are weak or absent and the use of a membrane is not

essential. Nevertheless, the membrane was left to exclude

cavitation regimes, as well as cases where bubble nuclei

adhere to the surface of the sphere (these bubbles would

later float to the membrane surface).

6. Comparison of identical targets

To demonstrate the reliability of the method, additional

experiments were also performed for identical scatterers (of

the same material and diameter). The curves obtained for

different identical spheres (G4 and S4.8) overlapped well,

providing indirect evidence of the reproducibility of the

experimental results. This also indicates a good equivalence

of the scatterers used, in particular the homogeneity of their

internal structure.

IV. CONCLUSIONS

In this study, a precise method is described for measur-

ing the axial component of the acoustic radiation force of an

acoustic beam of arbitrary shape acting on an elastic sphere

of millimeter diameter placed on the beam axis. The force

value is determined from the results of the weighing, similar

to the radiation force balance method of measuring the total

power of an acoustic beam incident on an extended

absorber. The results obtained have demonstrated the valid-

ity and the reliability of the proposed method. An accuracy

of 40 lN was achieved with the electronic scales used. In

the axial distribution of the measured radiation force, strong

oscillations were observed in the focal region due to the

generation of standing waves between the surface of the pie-

zoelectric transducer and the target. It is shown that at a cer-

tain electrical load (active load when considering the

vicinity of the antiresonance frequency) of the piezoelectric

transducer, the reflection coefficient from the transducer

decreases, reducing the amplitude of the force oscillations

by an average of 1.5–4 times near the focus and improving

the accuracy of the radiation force measurements.

Experimental results are compared with numerical calcula-

tions using the SB model based on angular spectrum decom-

position. For different sphere diameters and materials,

overall agreement is shown.
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FIG. 8. Dependence of the ARF Fz on the total acoustic beam power W.

The results are presented for different points on the beam axis. Coordinate

points 76.0 mm and 78.0 mm correspond to the region behind the focus.

Coordinate points 69.8 and 70.1 mm correspond to the focal area. The dots

indicate the results of experimental measurements. Error bars show the

error of the experimental measurements DF balanceð Þ
z . Dashed lines are

obtained using the least squares method (LSM). For measurements behind

the focus (76.0, 78.0 mm), the LSM is applied to all points. For points from

the focal region, the LSM is applied to points corresponding to low power

levels.
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