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Abstract—A method for extrapolating the results of variational calculations to the case of the infinite basis
using an ensemble of artificial neural networks is proposed. Extrapolations of the no-core shell model
results obtained with the nucleon–nucleon interaction Daejeon16 for the ground state energies, as well as
for the root-mean-square (rms) point-proton, point-neutron, and point-nucleon (matter) radii of the 6Li
and 6He nuclei, are performed.
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1. INTRODUCTION

In recent years, neural network machine learning
methods have become a part of the arsenal of theo-
reticians and experimentalists in the field of nuclear
physics (see review [1]). A special class of problems
in this field, which has not been fully explored and
requires the development of new algorithms, is the
extrapolation of the results of variational calculations
to the case of the infinite basis.

Modern studies of the properties of light nuclei are
carried out in ab initio (first principles) approaches
using realistic nucleon–nucleon (NN ) forces. One
such approach is the no-core shell model (NCSM)
[2], in which all nucleons of the nucleus are spec-
troscopically active. The parameters of the many-
body oscillator basis of the NCSM are the number of
oscillator excitation quanta Nmax taken into account,
which determines the size of the model space, and the
oscillator energy �Ω.

Models of realistic NN interactions have long
been constructed within the meson exchange the-
ory. Currently, NN potentials constructed within the
chiral effective field theory are used more often. A
detailed review of modern models of nucleon–nucleon
forces is given in [3]. Realistic NN potentials repro-
duce nucleon–nucleon scattering data and deuteron
properties with high accuracy. Three-nucleon forces
are additionally taken into account when studying
nuclei.

*E-mail: amazur.pnu.khb@mail.ru

The number of NCSM basis functions grows
exponentially with increasing Nmax, which leads
to a sharp increase in the required computing re-
sources. Modern supercomputers allow calculations
in NCSM to be carried out with reasonable accuracy
for light nuclei with a mass number up to A � 20;
moreover, while for the lightest s-shell and the
beginning of the p-shell nuclei (3He, 3H, 4He, 6He,
6Li) calculations with Nmax � 20 are possible, for the
nuclei in the middle of the p-shell the calculations
are available only with Nmax ≤ 14. As a result,
the NCSM calculations of observed atomic nuclei
typically fail to achieve full convergence.

To predict converged results corresponding to
the infinite basis, various phenomenological extrap-
olation methods have been proposed [4–12]. The
method [13] in which the extrapolation results are
determined by localizing the poles of the S matrix for
bound states seems to be the most justified one.

Another interesting possibility of using machine
learning methods for extrapolating variational calcu-
lations to the case of the infinite basis was proposed
in [14]. Subsequently, works [15–18] were published
where other approaches to extrapolating NCSM re-
sults using machine learning were considered.

In continuation of the study [14], to obtain final
predictions, we proposed [19] to use a more complex
topology of the artificial neural network and formu-
lated strict criteria for the selection of trained net-
works. As a result, there is no need to divide all the
data used into training and test sets in our approach:
all data are used for training, since our approach has
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no problem of overfitting. This is very important, since
it allows us to significantly increase the statistical
reliability of our predictions by taking into account
the selection of trained networks on the basis of the
formulated criteria.

The aim of this work is to continue research in
this direction. We apply the method of training an
ensemble of neural networks and selecting trained
networks developed in [19] to the problem of extrapo-
lating the energies and root-mean-square (rms) radii
of the distributions of point protons rp, point neutrons
rn, and point nucleons (matter) rm in the ground
states of 6He and 6Li nuclei on the basis of NCSM
calculations with the NN interaction Daejeon16 [20],
constructed within the chiral effective field theory. The
off-shell properties of this potential are determined by
fitting to the properties of light nuclei using phase-
equivalent transformations, which allows description
of nuclei without using three-nucleon forces.

In [14], the extrapolations of the energy and rms
radius rp of the ground state of the 6Li nucleus was
carried out using machine learning methods on the
basis of the same NCSM results. Of interest is also a
comparison with the results of the two-dimensional
phenomenological extrapolation of the rms radii rp,
rn, and rm of the ground states of the 6He and 6Li
nuclei based also on the NCSM calculations with the
Daejeon16 potential [12, 21].

2. BRIEF DESCRIPTION OF THE METHOD.
NEURAL NETWORK TOPOLOGY

The neural network used in this work is a multi-
layer perceptron with three hidden layers. The input
layer contains two neurons, the output layer contains
one neuron, and each of the hidden layers contains
ten neurons. This neural network has been tested on
the problem of extrapolating results of variational cal-
culations of the ground state energy of atomic nuclei
with different NN potentials [19]. The topology of the
neural network is shown in Fig. 1.

The action of our neural network can be described
by the formula

y = l4 (W43 ◦ σ3 (W32 ◦ σ2 (W21 ◦ l1 (W10 ◦ x)))) ,
(1)

where x are the values of Nmax and �Ω of neurons of
the input layer, and y takes the values of E, or rp,
or rn, or rm from the training set. The action of the
operator Wpq is as follows: each neuron xip of the layer

p collects all input signals xjq of the previous layer q
and calculates their weighted sum:

xip =
∑

j

ωij
pq · xjq + bip. (2)

hidden layers

Fig. 1. Neural network topology.

The obtained signal xip is transformed by the ac-
tivating function fp

(
xip

)
and is transmitted to all

neurons of the next layer. Weights ωij
pq and biases bip

are the trainable parameters of the neural network.
Training the neural network consists in fitting the
trainable parameters in such a way as to minimize the
loss function: in our case, the mean square deviation
of the neural network predictions from the training
dataset.

In our network, the linear activating function
fp (x) ≡ l (x) = x (p = 1, 4) is used in the first hidden
and in the output layer, and the sigmoid function
fp (x) ≡ σ (x) = 1/ (1 + exp (−x)) is used in the
other layers (p = 2, 3). Training is performed by the
gradient descent method using the Adam algorithm
[22]. The total number of trainable parameters for the
topology presented in Fig. 1 is 261.

It is important to note that the initialization of the
training parameters for each network ensemble of the
model occurs randomly. As a result, when retrain-
ing on the same training dataset, the loss function
falls into a different local minimum, and the result
of the neural network prediction differs. In order
to obtain reliable predictions, an ensemble of neural
networks is trained (in our case, 1024 neural net-
works). That is, the extrapolation method consists
in training an ensemble of neural networks on a set
of NCSM calculations of a particular observable of
an atomic nucleus, carried out with different values of
the oscillator parameter �Ω in model spaces Nmax up
to Nu

max. The input data of the neural network are the
NCSM parameters Nmax and �Ω, and the output data
are the corresponding observable values obtained in
the NCSM. The set of these data, Nmax, �Ω, and E
(or rp, or rn, or rm), form a training set. Using the
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trained neural networks, the observables are calcu-
lated in higher model spaces up to a certain maximum
value of Nf

max at which convergence is assumed to be
achieved.

The trained neural networks are next selected ac-
cording to the criteria discussed below. The predicted
value and the uncertainty of extrapolation of the ob-
servable are determined as a result of statistical pro-
cessing of the distribution of predictions of selected
neural networks. A more detailed description of the
method is given in [19].

3. INITIAL DATA AND THEIR
PREPROCESSING

Figures 2a, 2b and 3a, 3b show the results of
NCSM calculations with NN interaction Daejeon16
of the ground state energies and rms radii of 6He and
6Li nuclei. It was shown in [13] that stable extrap-
olation results by the SS-HORSE–NCSM method
are achieved only when using data lying to the right
of the minimum of the energy dependence on �Ω
in each model space. The experience with numeri-
cal calculations has shown that such data selection
significantly improves the energy extrapolation using
machine learning as well [19]. Therefore, data in
the ranges of the oscillator parameter from the vari-
ational minimum for each model space up to �Ω =
40 MeV are included the training set in the energy
extrapolation problem. To study the convergence
of the method, we expanded the number of training
data by successively increasing Nu

max and utilizing
the NCSM results from model spaces from Nmax = 4
to Nu

max.
In problems of extrapolation of rms point radii rm,

rn, and rp, we included data from the range 12.5 ≤
�Ω ≤ 40 MeV in the training set. Before training the
neural network, all quantities of the training set—
Nmax, �Ω, and E (or rp, or rn, or rm)—are scaled
linearly to equal intervals [0, 1].

4. CRITERIA FOR SELECTION OF TRAINED
NEURAL NETWORKS AND STATISTICAL

PROCESSING OF RESULTS
As already noted, the loss function for each neu-

ral network from the ensemble falls into its local
minimum because of the random initialization of the
training parameters and the stochastic nature of the
training process. Therefore, the predictions obtained
using the neural networks ensemble differ and are
described by a certain distribution, and require sta-
tistical processing.

Not all trained networks produce reasonable re-
sults, so it is necessary to perform a selection before
statistical processing. For the problem of the ground
state extrapolation, we formulated and used the fol-
lowing criteria [19]:

• “Soft variational principle”: energy predictions
for consecutive Nmax should satisfy the varia-
tional principle with the allowance for its small
violation due to numerical errors by no more
than 0.1 keV for predictions in neighboring
model spaces.

• “Convergence criterion,” which is as follows.
First, model spaces N c

max (Nu
max < N c

max <

Nf
max) are found that simultaneously satisfy

two conditions: 1) the condition of weak
dependence of the ground state energy on
the oscillator parameter �Ω (the difference
between the maximum and minimum energy
values in the model space N c

max should not
exceed ε1 = 0.02 MeV), and 2) the differ-
ence between the minimum energy values in
adjacent spaces N c

max and N c
max + 2 should

not exceed ε2 = 0.001 MeV. Then 80% of the
fastest converging networks are selected from
the obtained distribution of neural networks
over N c

max.

• “Straightness criterion”: the requirement of
a weak dependence of the predictions of the
observable on the oscillator parameter �Ω in a
given interval for Nmax = Nf

max. We use εs =
0.002 MeV as the permissible deviation due to
numerical errors for the difference between the
maximum and minimum values of the extrap-
olated energies in the selected interval �Ω.

Only the last criterion is used in problems of the
extrapolation of rms point radii, we use εr = 0.002 fm
for the difference between the maximum and mini-
mum values of the extrapolated radii.

The neural network is discarded and does not par-
ticipate in further statistical processing if at least one
of the criteria is not met.

In addition, to exclude obvious outliers in the
training quality, we discarded 5% of neural networks
with the highest loss function values at the end of
training, i.e., after the selection according to the
specified criteria.

A prediction is calculated for a sufficiently larger
Nmax = Nf

max (we use Nf
max = 300) for each neu-

ral network that has passed the selection described
above. Further the mean value of the predictions
of the observable obtained with different oscillator
parameters �Ω is found in the model space Nf

max. The
Ē, or r̄m, or r̄n, or r̄p values obtained in this manner
are subjected to statistical processing.

Unlike [19], we use the method [24] for statistical
processing of neural network predictions that have
passed the selection, which allows one to take into
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Fig. 2. Energies of the ground states of 6He (a) and 6Li (b) nuclei calculated within NCSM with the NN interaction
Daejeon16. Dashed lines are experimental values [23]; solid horizontal lines are our extrapolation results (the error in energy
predictions is of the order of 10 keV and does not exceed the line thickness).

account more correctly the deviation of the results
from the normal distribution, including the asymme-
try of the distribution. The essence of this method is
that the distribution of results on their magnitude is
divided into four areas, each of which contains 25%
of the results. The boundaries of these areas are
shown by dashed vertical lines in Fig. 4a, where as
an example, the distribution of energy predictions for
the ground state of the 6He nucleus is given with a
training set from model spaces up to Nu

max = 12.

The dotted line in the center, the median, divides
the distribution into two parts equal in the number
of results and does not coincide with the mean value
in the case of an asymmetric distribution [24]. The
energy value corresponding to the median is denoted
by Ē(1). The left-hand dashed line, located at a

distance of ΔE
(1)
1 from the median, cuts off 25% of

the results with the lowest energies, and the right-

hand one, located at a distance of ΔE
(1)
2 from the

median, cuts off 25% of the results with the highest
energies obtained in the selected networks. The en-
ergy interval between the dashed lines is denoted by

ΔE(1) = ΔE
(1)
1 +ΔE

(1)
2 . Owing to the asymmetry

of the distribution, ΔE
(1)
1 �= ΔE

(1)
2 .

Next, the obvious outliers of the results are fil-
tered out according to their magnitude. The filtering
method is quite simple [24]: before the final statis-
tical processing, all results to the left of the energy

value Ē(1) −ΔE
(1)
1 − 1.5ΔE(1) and to the right of the

energy value Ē(1) +ΔE
(1)
2 +1.5ΔE(1) are discarded;

the filtering boundaries are indicated in Fig. 4a by
solid vertical lines. Typically, the number of outliers
(in this figure, the outliers are mainly to the left of

the left-hand filtering boundary) is small and ranges
from 10 to 40 selected networks. Thus, the filtering
procedure allows one to refine the predictions of the
observables, while hardly reducing their statistical
reliability.

The median Ē and scatter ΔE = ΔE1 +ΔE2 are
then calculated from the filtered sample, which are
taken as our prediction and its uncertainty, obtained
using the neural networks that have passed the selec-
tion. We present the final result as E = Ē+ΔE2

−ΔE1
with

asymmetric errors, since, generally speaking, ΔE1 �=
ΔE2. The uncertainty of predictions indirectly char-
acterizes the uncertainty in the trained parameters of
the machine learning model.

Statistical processing of results for rms radii is
carried out in a similar way.

Note that the final number of selected trained net-
works after filtering depends on the specific problem,
but, as a rule, exceeds half of the original ensemble
(more than 500). Thus, the statistical reliability of
our predictions is higher than in [14], where the fi-
nal predictions are made on the basis of 50 selected
networks.

5. EXTRAPOLATION RESULTS

The extrapolation results for the ground state en-
ergy of 6He and 6Li nuclei obtained using an ensem-
ble of 1024 neural networks are shown in Figs. 5a
and 5b. The training sets include NCSM calculations
in the range of �Ω values from the local minimum
in the �Ω dependence of E (�Ω) to �Ω = 40 MeV
in model spaces Nmax from N l

max = 4 to Nu
max (the

Nu
max values are plotted along the horizontal axis). In
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Fig. 3. NCSM calculations with the NN interaction Daejeon16 of rms point radii rm, rn, and rp in the ground states of 6He (a)
and 6Li (b) nuclei. The horizontal shaded areas are our extrapolation results together with their uncertainties. The labeling of
the model spaces is as in Fig. 2.

the same figure, for comparison, the energies corre-
sponding to the minima of variational calculations in
model spaces with Nmax = Nu

max, as well as energies
obtained by simple phenomenological extrapolation B
[5], are presented.

The energy predictions for both nuclei show good
convergence. The uncertainty of the results decreases

with Nu
max and for maximum values of Nu

max = 18 is

less than 7 keV for the 6He nucleus and less than
3 keV for the 6Li nucleus, which is comparable with
the accuracy of NCSM calculations, which is 1 keV,
and does not exceed the extrapolation uncertainty for

the 6Li nucleus in [14].
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Fig. 4. Distribution of ground state energy predictions before (a) and after (b) outlier filtering. The number of neural networks
is plotted vertically. The dotted lines show the medians, and the dashed lines show the boundaries corresponding to the interval
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Fig. 5. Convergence of the ground state energy predictions of (a) 6He and (b) 6Li nuclei as the training data increases by
including of the model spaces up toNu

max. Empty circles are our calculations, pluses are the variational minimum of calculations
in NCSM, solid squares are extrapolation B results, and triangles are the results of extrapolation based on machine learning
in [14]. Oblique crosses correspond to the experimental energies of the ground states of 6He (Egs = −29.269 MeV) and
6Li (Egs = −31.995 MeV) nuclei [23].

The 6Li nucleus is of particular interest to us,
since the extrapolation of the energy and the rms
radius of the distribution of point protons rp in this
nucleus was studied using machine learning methods
in the pioneering work [14]. Moreover, the authors of
[14] and we use training sets based on the results of
NCSM calculations with the same NN interaction
Daejeon16. However, the topology of the neural
network, the selection of input data (e.g., we did not
divide them into training and test sets), and indi-

vidual aspects of the machine learning extrapolation
methodology differ. The differences between the two
approaches are described in detail in [19].

Our predictions are below the results of extrapo-
lation B for the 6Li nucleus, but above the extrap-
olation results using machine learning in [14]. The
uncertainties of these methods in calculations with
the same Nu

max do not overlap. Thus, approaches
based on neural network training methods—ours and
the one presented in [14]—lead to different predic-
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Fig. 6. Convergence of neural networks predictions for the rms radii rm, rn, and rp of the ground states of 6He (a) and 6Li (b)
nuclei with increasing Nu

max. Empty circles are our calculations; experimental values (oblique crosses) with error bars are taken
from [25]. Empty diamonds are the results of phenomenological two-dimensional exponential extrapolation for 6He [12] and
6Li [21] nuclei. Empty triangles are the rms radius rp for the 6Li nucleus based on machine learning from [14].

tions. However, we emphasize that because of the
use of a larger ensemble of trained neural networks
and more precise selection criteria, our results have
higher statistical reliability and demonstrate a weaker
dependence on Nu

max.

Figures 6a and 6b shows convergence of extrap-
olated rms radii rm, rn, and rp of the ground states
of 6He and 6Li nuclei with increasing Nu

max. The
relative uncertainty of predictions of the rms radii rn
and rm in calculations with Nu

max = 18 are larger than
the relative uncertainties of energies. The relative
uncertainty of energy predictions εE ∼ 0.01% for the
6Li, while uncertainties εn, εm ∼ 1.3% for rms radii rn
and rm. We note, however, that the relative prediction
uncertainty rp is noticeably smaller: εp ∼ 0.2%. For
the 6He nucleus, the relative uncertainties are εE ∼
0.02%, εn, εm ∼ 1.4%, and εp ∼ 1%. In a number of
cases, the asymmetry of the distribution of predictions
of the selected networks (ΔE1 �= ΔE2) is clearly ev-
ident. Nevertheless, the overall convergence is quite
good. We note that the results of predictions for the
point-proton rms radius rp of the 6He nucleus are
the most stable ones starting from Nu

max = 12. The

convergence of the predictions of the rms radii rn and
rm for the 6He nucleus is somewhat worse, as well as
the convergence of the predictions of rn and rm in the
ground state of the 6Li nucleus.

The extrapolation results for rms radii obtained us-
ing neural networks coincide within the uncertainties
with the experimental data [25] for the 6He nucleus,
but for the 6Li nucleus they are somewhat higher. Our
predictions are generally close to the results of the
two-dimensional phenomenological exponential ex-
trapolation of the radii of 6He [12] and 6Li [21] nuclei
also obtained on the basis of NCSM calculations with
NN interaction Daejeon16. However, in the case of
the 6He nucleus, the results of [12] are lower than
both ours and experimental data, while for the 6Li
nucleus, the results of [21] are between ours and ex-
perimental values. The predictions of the rms radius
rp for the 6Li nucleus obtained by machine learning
methods with different Nu

max in [14], are above ours
and above the experimental value [25].

The region of intersection of the �Ω dependences
r (�Ω) obtained in different model spaces is often
used to estimate the radius on the basis of NCSM
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calculations and its uncertainty [20]. It can be seen
from Figs. 3a and 3b that these regions are localized
at �Ω ∼ 10 MeV. The same figure shows the results
of our predictions together with uncertainties. In all
cases, except for the point proton radius of the 6He
nucleus, the extrapolation results are slightly above
the regions of intersection of the dependences r (�Ω).

6. CONCLUSIONS
Using the machine learning method of the neural

networks ensemble proposed in [14] and modified in
[19], an extrapolation has been carried out to the case
of the infinite basis of the energies E and distributions
of rms radii of point protons rp, point neutrons rn, and
point nucleons (matter) rm in the ground states of 6Li
and 6He nuclei. Neural networks have been trained
on training datasets Nmax, �Ω, and E (or rp, or rn,
or rm), calculated in NCSM with the NN interaction
Daejeon16 in model spaces up to Nmax = 18.

The predictions of the ground state energies of 6Li
and 6He nuclei show good convergence and in calcu-
lations with the largest training data set (Nu

max = 18)
are Ē(6Li) = −32.036 ± 0.003 MeV and Ē(6He) =
−29.429+0.007

−0.005 MeV. The prediction uncertainties are
comparable with the accuracy of NCSM calculations
(1 keV) and do not exceed the uncertainties of ex-
trapolations based on machine learning in [14], but
our results for all Nu

max values lie higher and the
uncertainties of two machine learning extrapolations
do not overlap. Thus, the use of different extrapolation
methods based on machine learning methods can
lead to different results. It is important to emphasize
that because of the larger number of trained neural
networks that passed the selection, the statistical
reliability of our predictions is higher than in [14].

The uncertainty of the predictions of the rms point
radii rp, rn, and rm is slightly worse—about one
percent, but, in general, the convergence of the re-
sults is also quite good. Our results for the radii
are close to the experimental data [25] for the 6He
nucleus and are slightly larger than the experimental
values for the 6Li nucleus. The obtained predictions
are generally consistent with the results of the two-
dimensional phenomenological exponential extrapo-
lation of the rms point radii of the 6He [12] and 6Li
[21] nuclei based on the NCSM results with the same
NN interaction Daejeon16. The prediction of the
rms radius rp obtained by machine learning in [14]
suggests larger value than ours and the experimental
one.

The considered method for extrapolation is uni-
versal and can be applied to other observables, such
as the quadrupole moment and the probabilities of
electromagnetic transitions in nuclei.
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