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Abstract—We analyze the scheme of an experiment in which, by examining suppression effects of the cross
correlation of photons in a beamsplitter and by preparing squeezed states, it is proven that the phase difference
of photons in Fock states cannot acquire a certain value, since, otherwise, the simultaneous existence of these
two effects would be impossible. We show that this reveals an intrinsic inconsistency of the nonlocal classical
interpretation of quantum mechanics on the basis of nonlocal classical “realism.”
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INTRODUCTION

There are many quantum effects that do not have
classical analogs, are paradoxical, and cannot be
interpreted from the viewpoint of macroscopic “com-
mon sense.” The latter term is commonly enclosed in
quotation marks in order to show its inconsistency
with substantially nonclassical phenomena. Research-
ers also call it “local realism.” Local, because, in this
case, models are used that obey spatiotemporal
restrictions that we usually observe in the macroworld.
Realism, because, as in classical physics, it is believed
that physical quantities that are measured in an exper-
iment have quite certain values prior to the moment of
their measurement.

The first doubts as to the adequacy of local realism
have already been created by the consideration of
interference of single photons in a double-slit Jung
interferometer [1] and Michelson and Mach—
Zehnder double-beam interferometers (see, e.g., [2, 3]
and references therein). In these experiments, an indi-
visible quantum is simultaneously present in two
channels and interferes with itself, and, up to the
moment of its detection, its particular location is not
determined.

Further, the effect of three-beam interference [4]
proves a priori the absence of a certain number of pho-
tons in the electromagnetic field, i.e., prior to the
measurement of their number. Experiments to verify
the Bell inequalities [5], who formalized the Einstein—
Podolsky—Rosen paradox [6] (including the very lat-
est ones [7, 8]) reliably refuted the local theory of hid-
den parameters, albeit its complete inadequacy was
evident since the time of first tests [9—11] (see also [3,
12, 13]). In this case, the locality hypothesis assumes
that, if two independent observers detect a pair of cor-

related particles, either of them his own, then the
observers are not related in any way to one another,
and the readings of the measuring instrument of one of
them do not affect the readings of the other (see, e.g.,
[14, 15]). However, the validity of this assumption
cannot be proven in experiments on testing the Bell
theorem.

Therefore, the only “lead” of supporters of classi-
cal realism and, in fact, of the reduction of quantum
theory to ordinary classical statistical physics, remains
in understanding nonlocality as an unknown mysteri-
ous interaction, which is not subject to either spatial or
temporal (within the light cone) restrictions. In addi-
tion, it would seem, an argument in favor of these
views is the phenomenon of quantum nonlocality,
which has already been experimentally proven not
only for a pair or more of entangled particles, but, also,
for a single photon [16—18]. In addition, the result of
any experiment with quantum systems can be calcu-
lated on a computer, of course, in a probabilistic sense.
The computer operates with particular values of quan-
tities to be measured, which are certain completely
prior to the moment of measurement (as in classical
statistical physics). Therefore, it is rather difficult to
refute nonlocal realism absolutely.

At the same time, no physicist who is engaged in
specific quantum calculations, on the basis of his own
experience and his inner intuition, will ever believe in
nonlocal realism. Therefore, to refute it, researchers
have followed the path of development of new experi-
mental schemes that would progressively increase the
absurdity of models constructed on the basis of various
types of nonlocal theories of hidden parameters.
Indeed, how, for example, could the effects of two-
beam interference be explained taking into account
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experiments to verify the “deferred choice” or three-
beam interference [4] within the framework of nonlo-
cal realism? Only by nonlocal “hopping” of photons
between optical channels separated from each other,
even through opaque walls [19].

A significant step in testing nonlocal realism has
been taken in [20—27]. In those works, objective crite-
ria were proposed (in the form of mathematical
inequalities), which allowed one, in particular, to
refute one type of nonlocal theory that admitted a
nonlocal connection between measuring instruments
that detect a pair of quantum particles in a state that is
entangled in polarization. The corresponding experi-
ment, which was performed by the group of
A. Zeilinger [23], refuted nonlocal realism of this type,
though with the assumption that the Malus law is
observed. However, to doubt the validity of the latter
law means to further increase the degree of absurdity
of the nonlocally realistic interpretation. They pro-
ceeded from the following assumptions:

(i) all measurement results are determined by the
preexisting properties of particles, which are indepen-
dent of the measurement;

(ii) physical states are statistical mixtures of suben-
sembles with a certain polarization; and

(iii) the polarization is defined such that the values
of the mathematical expectations taken for each sub-
ensemble obey the Malus law (i.e., follow the well-
known cosine-law dependence of the intensity of the
polarized beam behind the ideal polarizer).

Nevertheless, nonlocality of a stronger form,
namely, the nonlocal relation between the results of
measurements obtained by spaced measuring devices
rather than between the devices themselves, cannot be
refuted in this way [23, 28]. However, as it seems, non-
local realism in the sense of the impossibility of aban-
doning the quantum superposition of all possible val-
ues of some quantity (in contrast to a certain value of
it) can be refuted by the experiment described below.
The meaning of this experiment is that, upon para-
metric creation of entangled photon pairs, two effects
can be observed: the suppression of the cross correla-
tion of photons [29] and the preparation of squeezed
states of light [30—33]. The only parameter that could
predetermine these observed effects prior to their
measurement would be the phase difference between
the photons of the entangled pair, if, of course, it
exists. Thus, if we proceed from the hypothesis that
hidden parameters do exist, including those that have
a nonlocal nature, then the phase difference men-
tioned above may be such a hidden parameter in this
case. However, the two effects cannot simultaneously
exist at the same phase difference. Consequently, this
parameter does not have a specific value, just as the
Copenhagen School interprets it, and nonlocal real-
ism receives a completely substantiated refutation.
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ON THE UNCERTAINTY OF THE PHASE
OF PHOTONS IN FOCK STATES

It is well known that, by virtue of the Heisenberg
uncertainty principle, the phase of Fock states with a
certain number of photons (including its cosine and
sine, which are measurable observables and are
described by Hermitian operators) is completely
uncertain, i.e., is in the superposition of all its possible
values from 0 to 27 (see, e.g., [4, 13] and references
therein). How can this indisputable fact be interpreted
by nonlocal realism? Only by the statement that the
phase of a photon in some state, e.g., 1), still exists,
but nonlocally “adapts” to a particular experimental
situation, as if “knowing” in advance all the subse-
quent history of transformations and measurements of
the photon. This can explain not only the violation of
the Bell inequalities, but also all possible interference
quantum effects. We will try to refute these ideas by
analyzing the effects of suppression of the correlation
of photocounts [29] and preparation of squeezed states
upon parametric light scattering (see, e.g., [30—33]).

The effect of suppression of the correlation of pho-
tocounts is a suprising phenomenon, which demon-
strates the specifics of quantum theory. It consists of
the following. If a single photon is sent to one of the
inputs of a 50% beamsplitter, then it will appear at one
of the outputs with a probability of 1/2, thus exhibiting
typically corpuscular properties. But what if either of
the beamsplitter inputs does receive simultaneously a
single photon? It would seem that, with probabilities
of 1/4, two photons should simultaneously appear at
one of the outputs, or, with a probability of 1/2, a sin-
gle photon should appear at either output. In fact, this
is not the case: the probability of the second event
turns out to be zero, while the photons at the outputs
appear only in pairs. How can this be verified? In the
experiment of [29], the signals from two detectors that
were installed at the outputs of the beamsplitter and
operated in the regime of counting single photons were
directed to the coincidence circuit (the scheme on the
left). Up to the accuracy of technical noise, the signal
from the coincidence circuit turned out to be zero.

Theoretically, this result can be described in the
representations of both Heisenberg and Schrodinger.
In the Heisenberg representation, the photon annihi-
lation operators are introduced, which describe two

input plane monochromatic modes, a and b. In this
case, the operators of output modes are given by
¢ = (& + 5)/\/5 and d = (& - l;)/«/i Further, we find
the operators of photon numbers 7, =¢'¢ and
fiy = d'd, and then, their correlation function (#,,)
by averaging over the initial state, |1) |1),. As a result,

we obtain (1|, (1|¢*éd™d|1),|1) =0.
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In the Schrodinger representation, it is necessary to
introduce the matrix of the beamsplitter,

B= (Bll Blzj _ [T _pJ

B, By, pt)
where p and 7T are the amplitude reflection and trans-
mission coefficients, respectively, which, in our case,

are l/x/i. The transformation of the Fock states, n1>

and |n,), at the inputs of the beamsplitter is described
[34] by the action of the beamsplitter operator,

LN cice BB By B
n1n2 kl’kz

X \J(ky + k) (my + 1y — ky — k)
X |k1 + kz,nl + n2 _kl _k2>

é|nl’nZ> =

(1)

For state |1, 1) at the input, there are two terms with

states|1,1) at the output, but the coefficients in front of
them are identical and have opposite signs:

L1) - p?[1,1).

How to interpret this result? According to [34], it
can be regarded as a manifestation of corpuscular—
wave dualism. Indeed, on the one hand, photons
behave themselves as particles, demonstrating discrete
photocounts, while, on the other hand, it seems that
they interfere at the beamsplitter as waves with a cer-
tain phase difference. With what? Obviously, with 0 or
T, so that either two or zero photons would always
appear at the outputs of the beamsplitter. Thus, it is
assumed, in fact, that the phase difference of photons
mixed on the beamsplitter is certain. Otherwise, there
will be no effect of suppression of the correlation of
photocounts. Whereas, the occurrence of this certain
phase difference is precisely the hidden parameter,
which predetermines completely the result of the
experiment; i.e., we dealing with nonlocal realism in
the explicit form. Let us consider the consequences to
which this interpretation leads.

2
T

How state |1, 1) at the input of the beamsplitter can
be obtained? It is very simple: this can be done as a
result of parametric scattering [31—33]. This is exactly
what the experimenters of [29] did. But what will hap-
pen when the signal and reference beams of the para-
metric process are mixed in the beamsplitter?
Squeezed states of light will be prepared, which are
characterized by the suppression of quantum fluctua-
tions of one of their quadrature field components to
the detriment of the other (see, e.g., [30—33] and ref-
erences therein). And will this preparation be consis-
tent with the assumption that there should always be a
phase difference of 0 or  between the signal and ref-
erence beams, as it follows from the above interpreta-
tion of the result of the experiment of [29]?

Let us introduce the annihilation operators of pho-

tons of the signal and reference beams, g and b. They
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are described by the Bogolyubov transformation of the
operators of seed vacuum modes a4, and 50,

a=Wd, +vby, b =ub, +vag .

(2

In one of the channels, we add a phase delay. It is
clear that it will not affect in any way the effect of sup-
pression of the cross-correlation. This follows easily
from the above consideration in terms of the Heisen-
berg representation. But how will the phase delay
affect the preparation of squeezed states? The mode
annihilation operator of one of the beamsplitter out-

puts will still be denoted as ¢ = (& + l;eie)/«/i. Corre-
spondingly, the quadrature component is equal to

X = (é + 6+)/2. Let us find its dispersion,

. 0], (0] X7[0), 0),
= (||,L|2 + [V +uve” + u*v*e"e)/4
= (1+2v(v + Lcos6))/4

at real u and v. Here, we averaged over the initial vac-
uum state of seed modes, and also used the equality

3)

|p,L|2 - |V|2 =1, which follows from the commutation
relations [&,é*] = [5,51 =1.

Thus, we found that the effect of squeezing
depends on phase 0. This is clear, because, at one out-
put of the beamsplitter, the light is in a squeezed state,
while, at the other output, on the contrary, its quadra-
ture is increased by the dispersion, which corresponds
to a phase change by 7. But is this consistent with the
assumption that the phase difference between the sig-
nal and reference beams oscillates with a probability of
1/2, taking the values of 0 or ? Yes, it is quite possible,
because photons with a phase difference of 0 go into
one output channel of the beamsplitter, while those
with a phase difference of &t fly into the other channel.
How can we prove the impossibility of the simultane-
ous existence of the two effects?

Let us introduce the system of phase delay 0 in one
of the input channels of the beamsplitter (Fig. 1). The
effect of squeezing of the cross-correlation does not
depend on this phase delay: photons that previously
traveled in pairs to the output channels of the beam-
splitter will still travel in pairs. But the orientation of
the ellipse of squeezing (the region of uncertainty of
the quadrature components on the phase plane) will
vary (see, e.g., [32, 33]). This can be registered exper-
imentally. However, if the ellipse of squeezing has
turned, then the phase difference in the channels has
ceased to be 0 or 7, and, therefore, the effect of sup-
pression of the cross-correlation should, at least par-
tially, vanish if photons are incident on the beamsplit-
ter do interfere. And this fact can also be verified
experimentally. Therefore, the effects of preparation
of squeezed states and suppression of the cross-cor-
relation of photons cannot exist simultaneously if the
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Fig. 1. Scheme of observation of the suppression of cross-correlation of photons (left) and simultaneous registration of a squeezed
state (right). Under the action of coherent laser radiation, a pair of photons is generated in a nonlinear crystal. They are directed
to a beamsplitter and are detected. A coincidence circuit registers the simultaneous arrival of photons at the both photodetectors
(the scheme on the left). For a 50% beamsplitter, the probability of these events is zero. This means that photons arrive at the
detectors only in pairs. On the right, using the scheme of a balanced homodyne detection, fluctuations of the quadrature com-
ponent of the field are simultaneously recorded. To this scheme, the radiation is directed by a mode selection switch. To match
the frequencies to be mixed in front of the nonlinear crystal, the frequency of the coherent radiation is doubled.

phase difference between them is certain. Thus, the
basic premise about the presence of a certain phase
difference of photons leads to a logical contradiction,
which indicates its inadequacy.

Although the obtained result is absolutely clear and
transparent, it can also be interpreted in terms of
opposite mutually exclusive notions. From the point
of view of the Copenhagen interpretation, no particu-
lar values of the phase difference (its sine and cosine)
do exist a priori. But nonlocal realism may well cope
with the situation in question in terms of only its own
positions. Indeed, if there is an instantaneous nonlo-
cal relation between all the objects that participate in
the experiment, as well as between the measurement
results, then the phase difference of photons of an
entangled pair can acquire quite particular values, with
them being such that they would correspond to the
obtained result of the experiment. That is, upon regis-
tration of the effect of suppression of the cross-cor-
relation, the phase difference will supposedly acquire
one value, while, in the case of the preparation of
squeezed states, it will acquire another value, depend-
ing on the detection scheme. To show the inadequacy
of such an interpretation, we will modernize the exper-
imental scheme such that these two effects could be
observed simultaneously.

OPTICS AND SPECTROSCOPY  Vol. 123

MODERNIZATION
OF THE EXPERIMENTAL SCHEME

Let us introduce a mode switch in the scheme of
the experiment (see Fig. 1, the scheme on the right),
which switches the direct detection of the right detec-
tor to a balanced homodyning. The latter registers
fluctuations of the quadrature component of the field
(see, e.g., [32, 33] and references therein), and, if their
level is below the level of the vacuum state, we can
state that the squeezed state is prepared. In the first
stage of the experiment, along with the fixation of the
cross-correlation suppression of photons, we register
the rate of photocounts of either of the photodetectors
and the arrival of photons at them only in pairs. Then,
we switch the scheme to the second mode, when a
squeezed state is observed, and register the region of
uncertainty of quadrature components (the so-called
ellipse of squeezing), varying phase delay @ in the
homodyne channel. Further, as distinct from [35], we
introduce phase delay 0. The ellipse of squeezing
should change its orientation on the phase plane. And
if this is the case, then the phase difference between
photons has changed from jumps by 0 or T to some
other difference. It must necessarily, at least partially,
suppress the effect of cross-correlation of photocounts
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if we proceed from the model of interference of pho-
tons of an entangled pair with a certain phase differ-
ence. But this should change the rate of photocounts
in the left detector, and photons will cease to arrive at
it only in pairs. However, this will hardly occur. It is
quite clear that the rate of photocounts will not
change, and photons will still arrive only in pairs, since
by changing the conditions of registration of radiation
emerges from one channel of the beamsplitter, we can-
not affect in any way the results of registration in the
other channel. This merely follows from the principle
of causality and elementary quantum calculations.
Therefore, no particular phase difference between
photons is incapable of describing the result of obser-
vations obtained using the right scheme in the figure.
And this means only that such a phase difference sim-
ply does not exist, which does not fit into the frame-
works of any classical realism, including the nonlocal
one, precisely because of the mutually exclusive nature
of the observed effects at a certain phase difference.
The a priori absence of a certain value of a quantity to
be measured means that this quantity is in the state of
quantum superposition of its all possible values. But
this fact—the quantum superposition—is just not rec-
ognized by any theory of the classical realism. These
theories are focused on any alternatives that attempt to
explain the results of quantum experiments without
invoking the phenomenon of quantum superposition.

The rigorous substantiation requires the following
formal conditions. In fact, we prove from the contrary
the absence of a hidden parameter—a certain phase
difference. We assume that the following postulates
are correct.

1. All measurement results are determined by the
preexistent properties of particles, which are indepen-
dent of the measurement.

2. Physical states are statistical mixtures of suben-
sembles of pairs of single photons with a certain phase
difference.

3. Monochromatic light beams interfere upon mix-
ing. The result of the interference depends on the
phase difference mentioned above, with this depen-
dence being such that beams with a zero phase differ-
ence (with an accuracy of up to 2ntn) yield a maximum
of the intensity, while those with a phase difference of
1t (with an accuracy of up to 2ntn) yield a minimum. In
intermediate cases, the result of the interference is
such that the values of the mathematical expectations
taken for each subensemble obey the law of the well-
known harmonic dependence of the intensity of radi-
ation on the phase difference.

4. Quantum squeezed states are formed by mixing
the signal and reference beams of parametrically scat-
tered light by a 50% beamsplitter. And the squeezing
efficiency depends on the phase difference of the
beams such that beams with a zero phase difference
(with an accuracy of up to 2rn) yield a maximum of
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the squeezing efficiency in one output channel of the
beamsplitter and a minimum in the other.

By accepting these postulates, we arrive at the
above-described logical contradiction when analyzing
the scheme of the experiment shown on the right in
the Fig. 1.

It is interesting that, in order to refute the local the-
ory of hidden parameters, John Bell should use only
the postulate of locality and the probability theory.
However, when using detectors with a nonideal quan-
tum efficiency, the Bell theorem had to be supple-
mented with the description of this real detection,
which can also be considered as an additional postu-
late [3, 12, 13]. To solve the same problem with respect
to the nonlocal theory of hidden parameters in the
sense of the interaction of spaced detectors, three pos-
tulates, including the law of Malus, had to be admit-
ted. And, to prove the inadequacy of nonlocal realism
in a more general sense, four postulates related to
physical phenomena are already required. Therefore,
the advance toward the rejection of a “stronger” non-
locality occurs at the expense of lowering the general-
ity of the evidence. As it seems, this should not weaken
their reliability, since the postulated physical phenom-
ena with their known laws (interference of light and
the preparation of squeezed states) have the irrefutable
experimental confirmation.

Thus, the phase difference of a correlated photon
pair indeed does not have a certain value, but, rather,
is in a superposition of all its possible values from 0 to
21. How, then, should the results of the experiment be
interpreted [29], if neither a certain phase of single
photons, nor their phase difference exists? It seems,
the point is that, in accordance with the Feynman
interpretation of quantum theory [36], it is not pho-
tons that interfere with each other, but, rather, their
alternative trajectories. Indeed, how is state |L,1)
formed at the output of the beamsplitter? It can occur
in two ways: either the two photons pass through the
beamsplitter, or both of them are reflected. But, in the
latter case, because one of the photons is reflected
from a denser medium, it acquires a phase shift © (see
also [37]). The operator of the phase shift (of the accu-

—i0n

mulated phase difference), U g =e , transfers state
|1,1) to state —|1,1). Therefore, the two possible alter-
native trajectories interfere destructively, suppressing
cross-correlations. This simple and pictorial approach
allows us to solve even more complex problems related
to the conversion of Fock states by beamsplitters,
without using complicated and cumbersome for-
mula (1).

CONCLUSIONS

The result that was obtained in this work is import-
ant because the absence of certain values of quantities
to be measured prior to the moment of their measure-
ment is the fundamental inference of quantum theory
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in the Copenhagen interpretation. The experimental
evidence of this fact known so far can be challenged by
invoking nonlocal interactions of types that are
allegedly unknown to us, which are not restricted by
any areas of the light cone, and, correspondingly, by
the speed of light. These are various kinds of nonlocal
theories (see, e.g., [38] and references therein), which,
purely in formal terms, can explain both the violation
of the Bell inequalities and numerous quantum para-
doxes. For example, the interference of single photons
on a double-slit Jung’s screen is interpreted as a non-
local “knowledge” of a photon that passes through
one slit about the existence of the other slit. In the
experiment described in this work, there are solid
grounds to refute statements of this kind. No nonlocal
“knowledge” of the photon about its future life can
explain the constancy of the rate of photocounts on
the left detector and the arrival of photons on it only in
pairs (Fig. 1). Therefore, the absence of a certain value
of the phase difference of single photons can in no way
be challenged by any hypothesis of nonlocal realism.
This significantly narrows the circle of possible inter-
pretations of quantum theory, clearly, not reducing
them only to the Copenhagen interpretation. An ade-
quate explanation can also be given in terms of the
relational paradigm (see, e.g., [39]).
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