POSTER SESSION

SYNTHESIS AND PHOTODYNAMIC ACTIVITY OF NEW TETRACATIONIC ZINC PHTHALOCYANINATES

<u>Monich S.V.</u>,^{a,b} Akasov R.A.,^{c,d} Bunin D.A.,^b Martynov A.G.,^b Gorbunova Yu.G.,^{b,e} Tsivadze A.Yu.^{b,e}

^a Lomonosov Moscow State University, Chemistry Department, Leninskie gory, 1, building 3, Moscow, 119991, Russia, e-mail: monich.msv@gmail.com
^b Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, building 4, Moscow, 119071, Russia
^c Federal Scientific Research Center «Crystallography and Photonics», Russian Academy of Sciences, Leninsky pr., 59, Moscow, 119333, Russia
^d Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Troubetskaya st., 8, building 2, Moscow, 119991, Russia
^e Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, Moscow, 119071, Russia.

Phthalocyanines are promising photosensitizers for photodynamic therapy (PDT). In our work, new non-aggregating water-soluble tetracationic zinc phthalocyaninates were obtained using reductive amination (Fig. 1)¹.

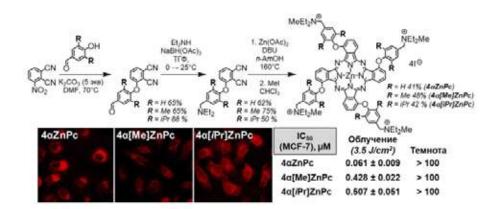


Figure 1. Synthesis, intracellular accumulation and PDT activity of of new tetracationic zinc phthalocyaninates.

The obtained complexes $4\alpha ZnPc$, $4\alpha [Me]ZnPc$ and $4\alpha [iPr]ZnPc$ exhibit high photodynamic activity against MCF-7 cells. Thus, they can be considered prototypes of effective photosensitizers for PDT.

References

1. Bunin D. et al. Dye Pigm., 2022, 207, 110768.

This work was financially supported by Russian Science Foundation (№ 24-13-00479).