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ABSTRACT

The modified size-dependent Einstein’s and Brinkman’s solutions are established for the effective shear viscosity of rigid particle suspensions
taking into account the micropolar effects in the base fluid. Solutions are obtained based on the homogenization approach and allow us to
take into account the influence of the particle size. Two non-classical parameters arise in the considered micropolar solutions: the length scale
parameter and the coupling (micropolarity) number of the base fluid. The solutions developed are validated using tests performed with poly-
dimethylsiloxane based TiO2 nanofluids as well as other published data on the size-dependent shear viscosity of different nanofluids. Good
agreement between the predictions and the experimental data is established across a wide range of volume fractions and size of nanoparticles.
The possibility for unique identification (at given temperature) of the micropolar parameters of the base fluids is shown. Temperature-
dependent values of non-classical rotational and spin viscosities of polydimethylsiloxane, ethylene glycol, and water are evaluated.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0208850

I. INTRODUCTION

Nanofludis are engineered liquid suspensions containing nano-
sized solid particles that can be used in a wide class of applications
related to heat transfer, hydraulics, lubricants, medicine, energy har-
vesting, etc.1 The physical properties of nanofluids are strongly affected
by their volume fraction and size, as well as their shape, Brownian
motion, and interactions (agglomeration), temperature and pH value
of the base fluid.2,3 Different theoretical models have been suggested
for evaluating the effective properties of nanofluids within the contin-
uum mechanics, molecular dynamics, and semi-empirical methods
(for review, see Refs. 4–7). The main peculiarity of these models is the
capturing of size effects, i.e., change in their effective properties with
change in the particles size, that have been widely investigated for
effective thermal conductivity and shear viscosity of nanofluids.2,8

One of the main factors playing a predominant role in the nature
of size effects in nanofluids is the adsorption of base fluid molecules on
the surface of particles.3,9–11 The adsorbed layers have modified physi-
cal properties in comparison to the base fluid. Since the surface of
nano-sized particles becomes extremely large, the influence of the
adsorbed layers on the overall properties of nanofluids becomes signifi-
cant. In theoretical models, the structure of adsorbed layers can be
directly studied within the molecular dynamics method,3,10 or it can be

introduced as the “third phase” between the particles and the base flu-
ids in continuummodels.9,12,13

In the present study, we show that an alternative approach for the
analysis of the size-dependent shear viscosity of nanofluids can be used
considering micropolar effects in the base fluid. The micropolar theory
of fluids has been developed by Dahler14 and Eringen,15 and it is also
known as the theory of polar fluids16 or the extended Navier–Stokes
theory.17 The micropolar theory considers an independent rotational
velocity of a fluid particle in addition to the standard translational
velocity. The formulation of the micropolar theory and the basic theo-
retical results in this field can be found elsewhere.15–19 Over the last
decades, it has been shown that the micropolar theory can be effec-
tively used for the refined analysis of fluid flows at the nano-scale since
the independent field of rotation can be related to the self-spinning of
fluid molecules.20–23 The extended definition of boundary conditions
with constrained rotations in addition to standard no-slip conditions
allows one to evaluate the behavior of liquids at scales that are compa-
rable to the size of their molecules.22 Such generalized adhesive condi-
tions can be used to simulate the presence of adsorbed layers of fluid
molecules on the solid surfaces.15

The constitutive equations of micropolar theory contain addi-
tional material constants that are the so-called rotational and spin
viscosities.16,24 The non-dimensional analysis is usually performed in
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terms of related parameters: the coupling (micropolarity) number and
the length scale parameter.16 Experimental methods for the determina-
tion of these parameters based on the measurements of the apparent
flow rate in small-scale channels have been proposed.25,26 Validation
of the micropolar theory of fluids via the molecular dynamics simula-
tions for nano-scale flows has also been shown.20,24

Applying micropolar theory to simulate the effective shear viscos-
ity of suspensions relies on solving the problem of the creeping shear
flow past a sphere.27,28 A classical solution was developed by Einstein,
who obtained his famous formula for the effective viscosity of dilute
suspensions of rigid particles.29 A generalization of Einstein’s formula
for concentrated suspensions has been provided by Brinkman via dif-
ferential approach.30 Other variants of generalized Einstein’s solution
for concentrated suspensions were developed later.4 Nevertheless, these
solutions within classical fluid mechanics are self-similar, i.e., they do
not contain the length scale parameters and do not depend on the
sphere size. In contrast, the corresponding solution for flow past a
sphere within the micropolar theory does contain such parameters and
allows consideration of the size effects.27,28

The closed-form solutions of micropolar theory for the effective
viscosity of suspensions containing spherical particles have been previ-
ously developed by Erdogan,31 Avudainayagam,32 and Niefer and
Kaloni.33 However, in these works the authors used approximate
ansatz for the velocity field31 (this Erdogan’s solution can be used only
for relatively small values of coupling number) or approximate assess-
ments on the amount of dissipated energy32,33 around the particles
embedded in the micropolar fluid. Application of a closed-form solu-
tion for the Poiseuille flow in a pipe for an assessment of apparent vis-
cosity of suspensions has been proposed in Ref. 34.

In the present study, we derive a new variant of a closed-form
solution for the effective shear viscosity of rigid particle suspensions in
micropolar fluids. We obtain this solution in a more simple (in com-
parison to Refs. 31–33) though also rigorous way: by using the analogy
between the theory of creeping incompressible flow of micropolar flu-
ids and the corresponding micropolar theory for incompressible solids.
This analogy has been discussed, e.g., in Ref. 35. From the micropolar
theory of solids, we use the known solution for the homogenization
problem for the composite with spherical inclusion at dilute concentra-
tions.36,37 Following the mentioned mathematical analogy between the
theories, we convert the solution for micropolar solids to the general-
ized Einstein’s formula for the case of micropolar fluids. Such a stan-
dard approach is well known in classical micromechanics, where the
Einstein formula can be obtained based on the dilute solution for the
effective shear modulus of composites with spherical inclusions.38 In
our recent work,39 a similar approach has been used to obtain the size-
dependent solution for the shear viscosity of nanofluids within the the-
ory of high-grade hydrodynamics.40

In the present study, we derive the generalized variants of size-
dependent solutions within the micropolar theory and provide its
experimental validation. In our tests, we consider the widely used sili-
cone oil (polydimethylsiloxane) with TiO2 nanoparticles. Nanofluid
samples at various volume fractions and particle sizes are tested at dif-
ferent temperatures to provide validation of the developed solutions.
Similar known experimental data for the other types of nanofluids41–43

are also processed by using derived solutions. Good agreement
between theoretical and experimental results is obtained, and the
unique values of the micropolar model parameters are identified.

This makes the derived solutions preferable to our previous size-
dependent models,39 where we had to adjust the length scale parame-
ters to describe size effects across a broader range of particle diameters.
In comparison to the known semi-empirical size-dependent solutions,4

the presented model has rigorous theoretical foundation and can also
be used in inverse identification problems for the case of non-classical
rotational and spin viscosities of base fluids. The corresponding exam-
ples of identification are given in this paper.

II. SIZE-DEPENDENT SOLUTIONS FOR THE EFFECTIVE
VISCOSITY

In this section, we give a brief derivation of the size-dependent
solutions for the effective shear viscosity of nanofluids within the
micropolar theory. We follow an approach that is traditionally used in
micromechanics and based on the analogy between the steady-state
formulation of micropolar theory of fluids (for creeping flow) and
micropolar elasticity. Moreover, we discuss the meaning of non-
classical parameters that arise in the developed solutions and suppose
a method for its identification.

A. Known results from micromechanics

We start with the known closed-form solution for the effective
shear modulus of solid composite materials with spherical inclusions
at dilute concentration. This solution is given by44

l� ¼ lþ f l

2S1212 þ l
li � l

; (1)

where l and li are the shear moduli of isotropic matrix and isotropic
inclusions, respectively, l� is the effective shear modulus of the com-
posite material, f is the volume fraction of inclusions, and S1212 is the
component of the Eshelby tensor that should be found from the solu-
tion for the corresponding Eshelby problem with spherical inclusion
embedded in infinite matrix.44

The representation for the Eshelby tensor depends on the theory
under consideration, though in any kind of solution it contains only
the material properties of the matrix and data on the shape and the
size of the inclusion (the last one within the generalized continuum
theories). In classical elasticity, the value of S1212 depends only on the
Poisson ratio of the matrix phase � as follows:45

S1212 ¼ 4� 5�
15ð1� �Þ : (2)

Substituting (2) into (1) and evaluating the limit value for incom-
pressible matrix (� ! 1=2; S1212 ! 1=5) and rigid inclusions
(li ! 1), one can obtain the classical Einstein’s formula for compo-
sites with incompressible matrix and rigid inclusions:

l� ¼ l 1þ 5
2
f

� �
: (3)

Taking into account the well-known mathematical analogy
between the formulation of elasticity theory and the steady-state prob-
lem of fluid mechanics (for the creeping flow), we can consider this
result (3) as the solution for the effective shear viscosity (l�) of a dilute
suspension comprised of an incompressible base fluid with intrinsic
shear viscosity l, along with rigid particles at a volume fraction f.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 062004 (2024); doi: 10.1063/5.0208850 36, 062004-2

Published under an exclusive license by AIP Publishing

 07 June 2024 12:52:49

pubs.aip.org/aip/phf


Within the non-classical generalized continuum theories of sol-
ids, representation for the effective shear modulus remains the same as
presented in Eq. (1), when one considers direct homogenization meth-
ods.46,47 However, the value of the component of the Eshelby tensor
S1212 should be treated as the average over the inclusion volume. This
fact arises from the position-dependent solutions for Eshelby tensor
within the generalized continuum theories, such that the strain gradi-
ent elasticity,46 the surface elasticity48 and the micropolar elasticity.37,49

Precise capturing of the effects related to the nonuniform strain and
stress states inside the inclusions (even for the homogeneous boundary
conditions at the far field) can be performed only using the energy-
based homogenization approaches within the generalized continuum
theories.50,51 Nevertheless, the direct homogenization methods and the
presented relation (1) allow one to obtain simplified closed-form solu-
tions that provide rather accurate assessments of the effective size-
dependent properties of composites with volume fractions of inclu-
sions that are not very large.50

Thus, let us consider the known solution of micropolar elasticity
for the Eshelby tensor in the case of spherical inclusion. The compo-
nent of the Eshelby tensor S1212 averaged over the volume of spherical
inclusion of diameter d is given by37

S1212 ¼ 4� 5�
15ð1� �Þ þ

3
5

N2

�d
3 4� �d

2 � ð2� �dÞ2 e�
�d

� �
; (4)

where we do not introduce a new definition for the averaged quantity
to simplify our presentation; N is the so-called non-dimensional cou-
pling (micropolarity) number of the matrix material and �d ¼ Nd=‘ is
the normalized diameter of sphere evaluated via the length scale
parameter ‘ that is also the non-classical property of the matrix
material.

Relation (4) presented here is expressed using slightly different
notations compared to those utilized in the original paper.37 The pro-
posed notations are more useful for the following analysis and are also
common in applied problems of the micropolar theory.16,19 The rela-
tion between representation (4) and the one in Ref. 37 is given in
Appendix B.

From thermodynamic considerations,16 it is known that the cou-
pling number can take values in the range 0 � N < 1, while the
length scale parameter should take real positive values, ‘ � 0. It is
easy to see that relation (4) will be reduced to the classic definition (2)
in the case of zero coupling number, N¼ 0. This result corresponds
to the case when the internal rotational motions of the material’s
particles have no effect on their overall response, i.e., the micro- and
macro-scale deformations become uncoupled. The classical solution
will also be obtained from (4) when we consider an infinitely small
length scale parameter ‘ ! 0 (or equivalently, �d ! 1). This case
corresponds to media with relatively large inclusions or with very
fine internal microstructure that becomes negligible at the macro-
scale.

B. Solutions for incompressible micropolar media
with rigid spherical inclusions

In the interest of the present study, let us consider the case of
an incompressible matrix (� ! 1=2) and obtain the following result
from (4):

S1212 ¼ 1
5
FðN; �dÞ; FðN; �dÞ ¼ 1þ 3

N2

�d
�3 4� �d

2 � ð2� �dÞ2 e�
�d

� �
;

(5)

where we denote by FðN; �dÞ the non-classical size-dependent group of
parameters.

Substituting (5) into (1) and assuming rigid behavior of inclu-
sions (li ! 1), we derive Einstein’s formula generalized for the
micropolar theory:

l� ¼ l 1þ 5

2FðN; �dÞ f
� �

: (6)

Based on the analogy between formulation of steady-state the-
ories of micropolar fluids (for creeping flow) and micropolar solids,
we can use solution (6) for assessing the effective shear viscosity of
suspensions consisting of the incompressible base fluid and the
rigid particles. This analogy for micropolar theories has been dis-
cussed by Cowin16 and is also emphasized in Appendix A. Similar
to classical theories, the effective shear modulus l� in (6) should be
treated as the effective shear viscosity and l should be the shear vis-
cosity of the base fluid, while f is the volume fraction of spherical
particles of diameter d. The micropolar parameters N and ‘ that
arise in the definition of FðN; �dÞ become the intrinsic properties of
the base fluid.

Then, the solution for the effective viscosity of concentrated sus-
pensions in micropolar theory can be obtained based on relation (6)
and a differential method.44 Thus, we can evaluate the increase in
effective viscosity dl� due to addition of a small amount of particles df
as follows:

lþ dl� ¼ l�ðdf 0Þ; (7)

where df 0 ¼ df =ð1� f Þ is the actual volume fraction of the added
inclusions that takes into account the corresponding decrease in base
fluid volume. This value (df 0) should be used in the definition of l� (6)
instead of f and the result should be used in (7) to obtain the following
differential relation:

dl�

df
¼ 5l

2ð1� f ÞFðN; �dÞ : (8)

Solution of Eq. (8) together with the initial condition l�jf¼0 ¼ l
provides us the final result for the Brinkman formula within the micro-
polar theory:

l� ¼ l

ð1� f Þ 5
2FðN;�d Þ

: (9)

The classical solutions, i.e., the standard Einstein’s formula (3)
and classical Brinkman’s formula,30 can be recovered from (6) and (9)
in the case of absence of coupling [N¼ 0, Uð0; �dÞ ¼ 1] or in the case
of relatively large particles [�d ! 1; UðN;1Þ ¼ 1], as mentioned
above. Our previous solutions obtained within high-grade theories39

can also be derived from (6) and (9) assuming unit value for the cou-
pling number, N¼ 1, corresponding to the well-known relation
between the micropolar and the couple stress theory.15 In solid
mechanics, the last one is the particular variant of strain gradient elas-
ticity and its solution for incompressible composites coincides with the
general theory.39
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To the best of the authors’ knowledge, the presented solutions (6)
and (9) have not been derived previously. The effective viscosity of dilute
suspensions was evaluated in a form similar to (6) in Refs.
31–33. However, in these works the authors used an approximate ansatz
for the velocity field31 or approximate assessment of the amount of dissi-
pated energy.32,33 The solution presented here is also approximate, akin
to the classical Einstein’s formula (3), where it is expressed up to the lin-
ear term in concentration f. The use of differential method (9) allows us
to extend its applications to higher concentrations. We also mention
Ref. 52, where the authors suggested a correction to the standard
Brinkman’s solution in the form l� ¼ lð1� f Þ�5e=2, where e > 0 is
some coefficient, which is responsible for the influence of particle inter-
actions (e.g., magnetic interactions52). As follows from the presented
result (9), a similar correction also arises in Brinkman’s solution due to
certain intrinsic properties of the liquid.

C. Physical meaning of micropolar parameters
and its experimental identification

The physical meaning of the non-classical micropolar parameters,
N and ‘, was discussed, e.g., in Refs. 16, 21, and 53. Both of these
parameters naturally arise in the non-dimensional formulation of the
governing equation of the micropolar theory (see Appendix A). The
coupling (or micropolarity) number, N, formally defines the coupling
of the conservation laws for the linear and angular momentum in
micropolar media. This parameter can also be treated as a ratio of vis-
cous forces of relative rotation to the standard Newtonian viscous
forces.16 The length scale parameter, ‘, can be related to some charac-
teristic size of the fluid inner microstructure, e.g., the size of molecules
or the length of polymer chains.18,20 The value of ‘ also defines the
length of boundary layers that arise in micropolar solutions with addi-
tional restriction on rotations at the boundaries (no-spin condi-
tion).15,16,22 From this point of view, the value of ‘ characterizes the
length of adhesive interactions and the thickness of adsorbed molecu-
lar layers that arise at the solid/liquid boundary. Note that the initial
solution for the Eshelby tensor (4) has been developed assuming conti-
nuity of the rotations at the boundary of inclusion and the surrounding
material.36,37 Thus, under the condition of rigid inclusion we obtain
the solution that corresponds to the no-spin condition at the boundary
of the particle.

Definitions for N and ‘ can be given in terms of standard and
non-classical viscosity parameters of the fluid (see Appendix A and
also Refs. 16, 19, and 22),

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
j

lþ j

r
; ‘ ¼

ffiffiffiffiffi
c
4l

r
; (10)

where l (Pa s) is the standard shear viscosity, while j (Pa s) and
c (Pa sm2) are the so-called rotational and spin viscosities,24 i.e., the
non-classical micropolar properties of the medium. In the present case
of suspensions, these are the properties of the base fluid.

In the following, we will provide an assessment of the values of N
and ‘ by using the experimental data on the dependence of the effec-
tive shear viscosity of suspensions l� on the mean size of filler par-
ticles. Illustrations for the size effects that can be captured within the
derived solutions (6) and (9) are presented in Figs. 1 and 2. In Fig. 1,
we show the predicted dependence of the normalized effective viscosity
l�=l on the volume fraction. Different curves in this figure correspond

to different values of the coupling number, N, and relative size of inclu-
sions, d=‘. It can be seen that the classical Einstein’s and Brinkman’s
solutions (N¼ 0, black lines in Fig. 1) always predict lower viscosity
than the micropolar solutions. The difference between the micropolar
and classical solutions become even more pronounced at higher cou-
pling and for smaller particles (green and yellow curves in Fig. 1). In
this figure, it can be also seen that the range of volume fractions where
the generalized Einstein’s (dotted lines) and Brinkman’s (solid lines)
solutions give close predictions become narrower in comparison to
classical theory. For the strong micropolar effects, close results are
obtained for volume fractions not higher than f ¼ 2%–3%. Therefore,
in the following, we will use the solution for concentrated suspension
(9) for the processing of experimental data, where we will consider the
volume fractions of nanoparticles up to 5%.

In Fig. 2, we show the dependence of effective viscosity on the
diameter of particles for different coupling numbers and length scale
parameters of the base fluid. This dependence is incorporated into the
developed solutions via the group of parameters denoted by FðN; �dÞ
(5). For these plots, we used the absolute values of diameter and length
scale parameter (in nanometers) to make more visual the type of size
effects that can be described within the micropolar theory. We use typ-
ical ranges of these parameters for nanofluids. It can be seen that the
micropolar theory can be used to describe the so-called positive size
effects, i.e., the rise of nanofluid viscosity with decrease in the particle
size. Such effects are rather common in nanofluids, though negative
size effects and non-monotonic dependences are also known.2 Thus,
considering the micropolar theory without additional assumptions
(e.g., on the possible agglomeration of particles), we should restrict our
attention to experiments, where the positive size effects were observed.

FIG. 1. Dependence of the effective shear viscosity of suspensions on the volume
fraction of particles predicted by generalized Einstein’s solution (6) (dotted lines)
and Brinkman’s solutions (9) (solid lines). Classical solutions are presented in black
color.
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In Fig. 2(a), one can see that the value of the coupling number, N,
controls the maximum possible rise of the suspension viscosity. For
small values of N, the change in viscosity can be negligible, and it may
have almost constant value as in classical solutions [N¼ 0, black line
in Fig. 2(a)]. For the case N¼ 1, effective viscosity shows infinite rise
for the smallest particles, i.e., d ! 0. This case (N¼ 1) corresponds to
the high-grade theory that was considered in our previous work.39

This solution becomes less flexible for describing size effects in nano-
fluids since it always predicts very rapid increase in viscosity for the
smallest particles.

In Fig. 2(b), it is shown that the value of the length scale parame-
ter ‘ influences the “rate” of size effect. For small values of ‘, the
increase in viscosity arises only for very small particles of the same
order of ‘, and it rapidly tends to the classical value with increase in
particles size [blue line in Fig. 2(b)]. Conversely, for large values of ‘,
the size effect becomes very gradual and extends over a wide range of
particle diameters [purple line in Fig. 2(b)].

To identify the non-classical parameters N and ‘, we propose to
fit the micropolar solutions (6) and (9) to the experimental data on the
dependence of the effective shear viscosity of nanofluids on the average
size of particles. Since two non-classical parameters persist in these sol-
utions, we need at least two different experimental points. However,
we cannot use the data for the viscosity of suspensions with different
volume fraction of particles of the same size, since the identification of
micropolar parameters will be non-unique in this case. This is illus-
trated in Fig. 3, where we show that the values of the effective viscosity
of suspensions with different volume fractions (placed at the intersec-
tions of blue and yellow curves, d � 24 nm) can be described using
two different sets of parameters, N and ‘, in the micropolar solution
(9). In the general case, there arise infinite combinations of possible
values of N and ‘ that can be identified from the experiment with the
same particle size.

Thus, for unique identification of micropolar parameters, experi-
ments need to be conducted for suspensions with different size of par-
ticles (even at constant volume fraction). In Fig. 3, it can be seen that

the curves that correspond to different sets of parameters N and ‘
(blue and yellow colors) cannot be overlapped in the whole range of
particle size. Moreover, they have a single intersection, so even two
tests with different average sizes of particles will be enough for the
identification of N and ‘. These results can also be proved based on the
formal analysis of nonlinear equations that follow from the form of
presented solutions (6) and (9) for the range 0 � N � 1 and ‘ > 0.

FIG. 2. Dependence of the effective shear viscosity of suspensions on particle size (d) at constant volume fraction f ¼ 5% predicted by the generalized Brinkman’s solution
(9). (a) Results for various coupling numbers and fixed length scale parameter ‘ ¼ 10 nm and (b) results for various length scale parameters and fixed coupling number
N¼ 0.9.

FIG. 3. Illustrations for the possible nonunique identification of micropolar parame-
ters of size-dependent solution (9), when one considers nanofluids with different vol-
ume fractions (f) but with the same average size of particles.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 062004 (2024); doi: 10.1063/5.0208850 36, 062004-5

Published under an exclusive license by AIP Publishing

 07 June 2024 12:52:49

pubs.aip.org/aip/phf


In the following, we will analyze the experimental data for the vis-
cosity of nanofluids with three or more distinct average particle sizes.
The fitting will be performed by using micropolar solution for concen-
trated suspensions (9) using a least squares approximation. Different
volume fractions of inclusions are also considered. These results are
used to validate the model and to show that the identified values of N
and ‘ remain unique for the considered combination of the base fluid
and the particle material at different concentrations. Additionally, we
consider the tests at various temperature such that the temperature-
dependent micropolar parameters can be found. The value of the shear
viscosity of the base fluid, l, is also measured separately at various
temperatures. This value, l, is used in solution (9) as an input parame-
ter along with the prescribed volume fraction, f, and average size of
particles, d. Values of N and ‘ are found (identified) from the fitting
procedure. Finally, the non-classical rotational viscosity, j, and spin
viscosity, c, of the base fluid will be found (at given temperature) using
the relations that follow from (10):

j ¼ l
N2

1� N2
; c ¼ 4l‘2: (11)

The definition for coupling number N (10)1 is generally consis-
tent across published works in the field of micropolar theory. In con-
trast, there are various definitions for the length scale parameter,
ranging from renormalization16 to the utilization of inverse quantities
(� ‘�1).37 Nevertheless, in the following analysis we will use the pre-
sented form of definitions (10) and (11).

Previously, identification of micropolar parameters has been per-
formed for several kinds of liquids considering size effects for the appar-
ent flow rate in small-scale channels.22,25,26,53 For water, it was found that
the coupling number is N¼ 0.84, while the length scale parameter has
the order of 35nm.25 However, this value is not directly equivalent to
‘ (10)2, as the authors have utilized a renormalized quantity. Nevertheless,
the order ‘ for water can be assessed as several dozens of nanometers,
which is in line with our results of identification (see Sec. IV).

In the present study, we will provide validation of the derived sol-
utions and experimental identification of micropolar parameters for
silicone oil based TiO2 nanofluids. Assessments for water and ethylene
glycol will also be given based on processing of the known experimen-
tal data with the other types of nanofluids.

III. MATERIALS AND METHODS USED IN
EXPERIMENTAL TESTS

Suspensions were prepared by using polydimethylsiloxane
(PDMS)-400 (analogue to XIAMETER PMX-200 Silicone Fluid 400
cSt) as a base fluid. PDMS-400 has a molecular weight 162.38 g/mol,
density of 980 kg/m3, kinematic viscosity at room temperature of
400 cSt, and boiling point >300 �C. This silicone oil is widely used in
different applications related to oil and polymer industries and in
lubricants and medicines.

The titanium dioxide nanoparticles were used as a filler. Three
kinds of TiO2 powders with average diameters of particles, d¼ 47, 114,
and 386 nm, were used in the tests. In the following, these powders will
be referred to as P47, P114, and P386, respectively. The powders P47
and P114 were produced using plasma-chemical synthesis,54,55 while
P386 was supplied (by TYTANPOL R-210, Grupa Azoty).

The particles size was measured by using transmission electron
microscopy (TEM) and image analysis. Transmission electron

microscope JEOL JEM-1400 PLUS (Akishima, Japan) was used at an
accelerating voltage of 120 kV. Examples of TEM microphotographs
for the used TiO2 powders are presented in Fig. 4. TEMwas performed
in ethanol solution on a perforated copper substrate. In Figs. 4(a)–4(c),
we show the images of the powders captured at identical magnifica-
tions to highlight the variations in particle sizes. In Figs. 4(d) and 4(e),
higher magnification is used to show the shape of particles in P47 and
P114 powders. It can be seen that particles have approximately spheri-
cal shape. The distributions of particle diameters obtained based on
image analysis are presented in Fig. 5.

The crystalline structure of the powders was analyzed using x-ray
diffractometer Aeris (Malvern Panalytical B.V., UK) equipped with a
copper anode and linear detector PIXcel1D. It was found that the pow-
ders have mixed rutile/anatase composition with percentage 25/75
(P47), 46/54 (P114), and 100/0 (P386). The rutile/anatase structure
may slightly affect the viscosity of nanofluids with TiO2 fillers,
although it has been shown56 that these effects are not higher than
10%–15%. Thus, the observed strong change in viscosity in our experi-
ments can be attributed primarily to the size effect.

The nanofluids were prepared with three volumetric concentra-
tions of particles, f ¼ 1, 2, and 5 vol. %, and three kinds of TiO2 pow-
ders, P47, P114, and P386. In total, nine variants of nanofluid
compositions were considered. The prepared suspensions were soni-
cated in an ultrasonic bath for 30min at room temperature to stabilize
the suspensions and to prevent the agglomeration of particles.

The viscosity of the nanofluids was measured using a RheoStress
RS150 rheometer (HAAKE, Germany) with a cone spindle (cone angle
2�, gap 0.105mm, radius 35mm). Viscosity measurements were con-
ducted for the shear rates 50–100 s�1. In this range, the nanofluids
exhibited typical Newtonian behavior. The temperature was adjusted
in 10 �C increments, ranging from 20 to 60 �C, and was tracked using
a HAAKE thermocontroller DC50. The required temperature was
maintained during test with an accuracy of 60.1 �C. The effective vis-
cosity was determined by averaging the results of three repeated tests
performed for the nanofluid samples of the same composition. Across
all types of nanofluids, the variation in effective viscosity among the
repeated tests did not exceed 7%.

IV. RESULTS AND DISCUSSION

The results of the performed tests and the fitted micropolar solu-
tion (9) for the effective viscosity of PDMS-400/TiO2 nanofluids are
presented in Figs. 6(a)–6(e). In these plots, we show all experimental
data (by points) obtained at various temperatures, T ¼ 20–60 �C. It
can be seen that a typical positive size effect is observed: the shear vis-
cosity of the nanofluid, l�, increases for smaller particles. An increase
in l� also arises for larger volume fractions, while it decreases at higher
temperature. The fitted micropolar solution (9) is shown by the curves
in Figs. 6(a)–6(e). The identified values of the micropolar parameters
N and ‘ are denoted on these plots. Note that these parameters are
found in a least squares approximation for the set of experimental data
points at given temperature. It can be seen that rather good agreement
with experimental data is achieved, implying that only two additional
parameters (N, ‘) allow us to correctly describe nine experimental
points for the size effect at given temperature. The mean deviation of
the fitted solution from experimental points is not higher than 10% for
all temperatures. For comparison, we show the results of least squares
approximation of the couple stress theory [solution (9) with N¼ 1] in
Fig. 6(f). It is evident that for a relatively high volume fraction of
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particles [red curve in Fig. 6(f)], the couple stress solution cannot be
precisely matched with the experimental data unless some additional
assumptions are incorporated for the remaining model parameter ‘.

The identified values of micropolar parameters are collected in
Fig. 7(a). It can be seen that the coupling number, N, of PDMS-400
remains almost independent of temperature and takes values in the
range 0:972� 0:976. The identified length scale parameter has value
‘ � 140 nm at room temperature and approximately 10% increase for
the highest testing temperature T ¼ 60 �C. The viscosity properties of
PDMS-400 are presented in Fig. 7(b). The blue line here corresponds
to the values of standard shear viscosity, l, that was measured for
PDMS-400 without nanoparticles. The presented values of non-
classical rotational viscosity, j, and spin viscosity, c [red and yellow

curves in Fig. 7(b)] are evaluated by using the identified values of
micropolar parameters N and ‘ [Fig. 7(a)] and formulas (11). It is
notable that all viscosity coefficients l, j, and c decrease for higher
temperature, though some non-monotonic dependences are observed
for parameters N and ‘. The rotational viscosity, j, of PDMS-400 is
about one order higher than its shear viscosity, l. The spin viscosity, c,
has a different dimension, and its values lie in the range 22–
32kPa s nm2.

In Fig. 7, we also give the uncertainties in the fitted data/curve. To
evaluate the uncertainties, we took the subsets of experimental data
points with the same volume fraction and different size of particles. For
each subset, we found the values of the micropolar parameters based on
the fitting of solution (9). In this way, we found the dependence of the

FIG. 4. TEM microphotographs of TiO2 powders used for the preparation of nanofluids. Powders have different average diameters of particles: (a) and (d) P47 sample,
d¼ 47 nm, (b) and (e) P114 sample, d¼ 114 nm, and (c) P386 sample, d¼ 386 nm.

FIG. 5. Distribution of particle diameters in TiO2 powders P47 (a), P114 (b), and P386 (c).

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 062004 (2024); doi: 10.1063/5.0208850 36, 062004-7

Published under an exclusive license by AIP Publishing

 07 June 2024 12:52:49

pubs.aip.org/aip/phf


FIG. 6. Dependence of the effective shear viscosity of PDMS-400/TiO2 nanofluids on the average size of particles, volume fraction, and temperature. Points—experimental
data. Lines—fitted micropolar solution (9). Identified micropolar parameters are denoted on the plots. (a) T ¼ 20, (b) T ¼ 30, (c) T ¼ 40, (d) T ¼ 50, (e) T ¼ 60 �C, and
(f) example of fitting of couple stress theory (N¼ 1) for T ¼ 20 �C.

FIG. 7. (a) Identified temperature-dependent values of micropolar model parameters of PDMS-400. (b) Temperature-dependent shear viscosity l, rotational viscosity j, and
spin viscosity c of PDMS-400.
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identified micropolar parameters on the volume fraction of particles.
Then, we calculated the mean value and standard deviation of the iden-
tified micropolar parameters across all subsets. The mean values were
close to our initial results of identification, which were performed for
the whole set of data points (for all volume fractions and particle sizes).
The standard deviations were used to define the uncertainties (error
bars) in plots in Fig. 7. The same approach is applied below for the plots
in Fig. 10.

All the temperature-dependent parameters of the micropolar
model for PDMS-400 are collected in Table I. In this table, we also give
the identified parameters of ethylene glycol and water that we obtained
based on the processing of experimental data for the other kinds of
nanofluids taken from Refs. 41–43.

The data for ethylene glycol based nanofluid with Fe nanoparicles
were taken from Ref. 41. In this paper, the authors found the depen-
dence of the shear viscosity of nanofluid on volume fraction, particle
size, and temperature. The processing of these experimental data with
the micropolar model (9) is illustrated in Figs. 8 and 9. In Fig. 8(a), we
show the experimental data points and the fitted curves of solution for
different temperature conditions. Good agreement is obtained for all
the data points, while the absolute values of the effective viscosity of
these nanofluids is two orders lower than in our PDMS-400 based
nanofluids. This means that the presented solutions can also be applied
to the suspensions with relatively low viscosity. Note that for each tem-
perature, we found unique values of micropolar parameters N and ‘
and used them to plot the curves in Fig. 8(a). The identified values of

TABLE I. Properties of the base fluids determined by fitting of micropolar solutions to the experimental data for the shear viscosity of nanofluids.

Base fluid Particles T (�C) N ‘ (nm) l (mPa s) j (mPa s) c (Pa s nm2) Source

PDMS-400 TiO2 (1%–5%) 20 0.9749 138.7 420 8000 32 100 This work
30 0.9752 141.7 360 6900 28 600
40 0.9749 147.9 310 5900 26 900
50 0.9744 152.3 270 5000 24 600
60 0.9725 154.3 230 4100 22 100

Ethylene glycol Fe (0.5%–3%) 26 0.8834 46.73 19.5 69.3 170.3 Ref. 41
35 0.89 36.9 11.2 42.7 61.1
45 0.9031 31.19 8.3 36.7 32.3
55 0.8741 38.7 5.2 16.8 31.2

Water, pH 5.5 SiO2 (0.1%–2%) 25 0.9755 18 0.9 17.7 1.2 Ref. 42
Water, pH 9.4 SiC (4.1%) 15 0.9198 18.8 1.15 6.3 1.6 Ref. 43

25 0.9182 23.8 0.9 4.8 2.0
35 0.9180 25.0 0.72 3.9 1.8
45 0.9323 19.1 0.6 4.0 0.88
55 0.9320 17.0 0.5 3.3 0.58

FIG. 8. (a) Dependence of the effective shear viscosity of ethylene glycol/Fe nanofluids on average size of particles, volume fraction, and temperature. Points—experimental
data from Ref. 41. Lines—fitted micropolar solution (9). (b) Example of fitting of couple stress theory (N¼ 1) for T ¼ 26 �C.
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these parameters and related values of the non-classical rotational and
shear viscosities (11) of ethylene glycol are presented in Fig. 9 and in
Table I. The values of standard shear viscosity of ethylene glycol that
were used in calculations are marked by a blue line in Fig. 9(b). An
example of fitting of the couple stress theory (with unit value of cou-
pling number, N¼ 1) for the nanofluid properties at T ¼ 26 �C is
given in Fig. 8(b). It can be seen that, similar to our experiments with
PDMS-400/TiO2 [Fig. 6(f)], this high-grade theory cannot be used for
suspensions with relatively high volume fractions of particles.

The data for the water based nanofluids with SiO2 particles were
taken from Ref. 42. In this work, the authors used the de-ionized water
(pH 5.5) and presented the results of viscosity measurements for nano-
fluids with different sizes (7–40 nm) and volume fractions of particles

(up to 2%) at room temperature (T ¼ 25 �C). A comparison of the
experimental data with the Brinkman’s micropolar formula (9) is given
in Fig. 10. Comparison with the corresponding couple stress solution
(with N¼ 1) is given in Fig. 10(b). It is seen that the micropolar model
provides accurate description of experimental data in the whole range
of volume fractions and size of particles. The identified micropolar
parameters for de-ionized water are N ¼ 0:9755 60:0056 and
‘ ¼ 18 62:9 nm (the standard deviation is evaluated as discussed
above). The related values of non-classical viscosities estimated by
using relations (11) are given in Table I.

The last considered set of experimental results was taken from
Ref. 43, where the authors investigated the viscosity of water based
nanofluids with 0.22 vol. % SiC particles of different sizes and at

FIG. 9. (a) Identified temperature-dependent values of micropolar model parameters of ethylene glycol. (b) Temperature-dependent shear viscosity l, rotational viscosity j, and
spin viscosity c of ethylene glycol.

FIG. 10. (a) Dependence of the effective shear viscosity of water/SiO2 nanofluids on average size and volume fraction of particles. Points—experimental data from Ref. 42.
Lines—fitted micropolar solution (9). (b) Example of fitting of the couple stress theory (N¼ 1).
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different temperatures. The authors used distilled water and adjusted
its pH level up to 9.4 using solutions of ammonium hydroxide. The fit-
ted micropolar solution to these data is given in Fig. 11. It can be seen
that the two-parametric solution allows us to describe the whole exper-
imental data with high accuracy (solid lines in Fig. 11). The identified
temperature-dependent micropolar parameters of water are given in
Fig. 12 and also in Table I. It can be seen that, similar to our previous
results, the classical and non-classical viscosities have a tendency to

decrease at higher temperature. Note that the error bars are not shown
in Fig. 12 as only a single value of the volume fraction was considered
in these tests. Consequently, it is not possible to estimate the standard
deviations among the identification results for different volume frac-
tions as suggested above. At the same time, from Fig. 12(a), it is seen
that the micropolar parameters do not exhibit significant variation
with changes in temperature (N ¼ 0:92460:0075 and ‘ ¼ 20:763:5
for T ¼ 15–55 �C).

Now, we can compare the identified values of the micropolar
parameters of different fluids. From Table I, one can see that the high-
est value of the length scale parameter has silicone oil PDMS-400
(‘ � 145 nm), while the ethylene glycol has a smaller value
(‘ � 40 nm) and the smallest is found for water (‘ � 20 nm). This can
be attributed to the molar mass of these fluids, which are 162.38 g/mol
(PDMS-400), 62.07 g/mol (ethylene glycol), and 18.01 g/mol (water),
respectively. Therefore, we can suppose that the length scale parameter
is larger in fluids with higher molar mass, where the larger molecular
aggregates (or polymer chains) make the micropolar effects more pro-
nounced. Generally, the higher values of the length scale parameter
can also be attributed to the stronger adhesion interactions existing
between the fluid and the solid particles.15 For the coupling number,
there are no such obvious dependencies. We can only note that the
found rotational viscosity, j, is 5–20 times higher than the classical
shear viscosity, l, for all the considered fluids (see Table I). This rota-
tional viscosity defines the coupling number, N [see (10)], which took
values of about 0.9–0.98 in all the considered tests. Perhaps, the values
of N are influenced by the pH level and polarity of the liquid, as well as
the zeta potential of the particles, but this requires additional research.

Note that the identified micropolar parameters of water, found
from different experimental tests from Refs. 42 and 43, are rather close
to each other and to the previously known results.25 The experiments
with nanofluids42,43 were performed with different kinds of particles
and at different pH levels. Nevertheless, from Table I, it is seen that the
values for the length scale parameter at room temperature are very
close for both the tests: ‘ � 20 nm. The coupling number has values
�0.97 and �0.92 in these experiments, which can be related, e.g., to

FIG. 11. Dependence of the effective shear viscosity of water/SiC nanofluids on
average size of particles and temperature. Points—experimental data from Ref. 43.
Solid lines—fitted micropolar solution (9). Examples of fitting of couple stress theory
(N ¼ 1) are shown by dashed lines.

FIG. 12. Identified temperature-dependent values of micropolar model parameters (a) and shear viscosity l, rotational viscosity j, and spin viscosity c (b) of distilled water
(pH 9.4).
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the change in pH level (from 5.5 to 9.4, respectively). As a result of
nonlinear relation between N and j (11), the latter shows much stron-
ger change and its values become three times smaller at higher pH 9.4.
The previously reported micropolar properties of water were N¼ 0.84
and ‘0 ¼ 35 nm.25 In the present study, we identified somewhat higher
values for the coupling number, while the length scale parameter has
the same order. We can evaluate the value of ‘0 following its definition

used in Ref. 25: ‘0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c
j

lþj
2lþj

q
. By using established values of viscosi-

ties l, j, and c (Table I), we found that this re-normalized length scale
parameter at T ¼ 25 �C takes the value ‘0 ¼ 7:9 [de-ionized water, pH
5.5 (Ref. 42)] and ‘0 ¼ 18 [distilled water, pH 9.4 (Ref. 43)]. Therefore,
the identified micropolar properties of distilled water are closer to
those presented in Ref. 25, where the identification was performed
based on the analysis of apparent flow rate in small-scale channels.
Note that these results can also be influenced by the scattering and
uncertainties of experimental data as well as the characteristics of the
solid material (channel walls).

Regarding temperature effects, we can note that all viscosity coef-
ficients, l, j, and c, decrease with increasing temperature. However,
this effect is primarily associated with decrease in the classical shear
viscosity, l. As indicated by relations (11), the non-classical coeffi-
cients j and c are proportional to l, and therefore they also decrease
with increasing temperature. The impact of temperature effects on the
micropolar parameters, which persist in the dimensionless formulation
of the model (N and ‘), cannot be unambiguously identified based on
the available data due to the influence of identification uncertainties
[see Figs. 7(a) and 9(a)]. It can only be stated that the variation of
parameters N and ‘ is relatively small compared to the relative change
in the classical viscosity coefficient l.

V. CONCLUSION

In this paper, we propose a new variant of size-dependent solu-
tions for the effective viscosity of rigid particle suspensions. We show
that these solutions allow to describe the experimental data on the
dependence of the nanofluid’s effective viscosity on the volume frac-
tion and average size of particles. We show that accurate description of
the size effects can be obtained by using two additional non-classical
parameters: the coupling number and the length scale parameter.
These micropolar properties of the base fluids are identified based on
the performed tests with PDMS-400/TiO2 nanofluid and based on the
known data for ethylene glycol/Fe, water/SiO2, and water/SiC nano-
fluids. Temperature-dependent values of non-classical rotational and
spin viscosities are also assessed. It is shown that these viscosities as
well as the classical shear viscosity of the base fluid have a tendency to
decrease with increase in temperature. For the previously derived solu-
tions within the couple stress theory,39 it is shown that it can be used
for the relatively small volume fractions of inclusions, while the micro-
polar effects cannot be ignored for the more concentrated nanofluids
with f> 2%.

Future works should be related to the analysis of a wider class of
nanofluids with more data points for different volume fractions and
size of particles. The influence of particle material and the surface state
of the particles on the identified micropolar properties of the base flu-
ids should be investigated. The influence of particle size distribution
and possible agglomeration effects should be included in the theoreti-
cal analysis.

ACKNOWLEDGMENTS

This work was performed with the support of the Russian
Science Foundation Grant No. 23-11-00275 issued to IAM RAS (for
model, testing, analysis) and within the framework of state
Assignment No. 124013000757-0 in FRC PCP MC RAS (for
powder production).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

R. Bondarenko: Data curation (equal); Formal analysis (equal);
Writing – review & editing (equal). Yu. Bukichev: Investigation
(equal); Resources (equal); Writing – review & editing (equal). A.
Dzhaga: Data curation (equal); Investigation (equal); Visualization
(equal); Writing – review & editing (equal). G. Dzhardimalieva:
Methodology (equal); Resources (equal); Supervision (equal); Writing
– review & editing (equal). Y. Solyaev: Conceptualization (equal);
Investigation (equal); Methodology (equal); Software (equal); Writing
– original draft (equal).

DATA AVAILABILITY

The data that support the findings of this study are available from
the corresponding author upon reasonable request.

APPENDIX A: ANALOGY BETWEEN THE MICROPOLAR
THEORIES OF INCOMPRESSIBLE SOLIDS AND FLUIDS

For the steady-state processes in the absence of body forces,
the balance equations for the liner momentum and angular momen-
tum within the micropolar theory are given by16,57

r 	 r ¼ 0;

r 	 lþ r
 ¼ 0;
(A1)

where r is the (nonsymmetric) stress tensor, l is the couple stress
tensor, r
 is the axial vector associated with the skew-symmetric
part of the stress tensor r; r is the spatial nabla operator.

The field equations (A1) remain valid for the solids and flu-
ids.57 The constitutive equations for the incompressible micro-
polar media can also be defined in a unified form as
follows:16,37,57

r ¼ �pI þ ðlþ jÞeþ ðl� jÞeT ;
l ¼ ar 	 xI þ crxþ bðrxÞT ; (A2)

where p is the hydrostatic pressure, I is the second order identity
tensor, and within the micropolar theory of fluids (solids)
e ¼ rv þ I 
 x is the measure for strain rate (strain), v is the linear
velocity field (the displacement field), x is the angular velocity field
(rotation vector), l is the standard shear viscosity (shear modulus),
and j, a, b, c are the additional viscosity (elastic) properties of
micropolar fluid (solid). The incompressibility condition implies
that r 	 v ¼ 0.
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Substituting (A2) into (A1), one can obtain the motion equa-
tions in terms of kinematic variables and pressure:

ðlþ jÞr2v þ 2jr
 x ¼ rp;

ðaþ bÞrr 	 xþ cr2x� 4j x� 1
2
r
 v

� �
¼ 0:

(A3)

Boundary conditions can be prescribed with respect to the lin-
ear u and angular x velocity of fluid (displacements and rotations
in solids) or with respect to the normal components of stress n 	 r
and couple stress n 	 l. Mixed boundary conditions are also allow-
able.57 Continuity conditions should be prescribed with respect to
all the mentioned quantities.

In the theory of micropolar fluids, the non-classical coefficient
j is denoted as the rotational viscosity16,24 (or vortex viscosity20). It
can be seen that nonzero values of this coefficient provides the cou-
pling between the balance equations for the linear and angular
momentum in (A3). The non-classical coefficients a, b, c are
denoted as spin viscosity24 (or couple viscosities,20 viscosities of the
gradient of total rotation,16 angular viscosities,22 etc.). In some refer-
ences,19 authors use modified definitions for these coefficients, such
as c $ ðcþ bÞ and b $ ðc� bÞ. The present notation is more use-
ful for the considered problems because it allows us to find the coef-
ficient c (instead of the sum cþ b) in the main part of the paper.

Statements (A1)–(A3) are equivalent to those used in the initial
works on micropolar micromechanics,37 where the explicit solution
for the Eshelby tensor for the spherical inclusion problem has been
obtained. The single difference is that we use double value of the
coefficient j (to obtain exact match with Ref. 37, one should replace
j ! j=2). In this way, we obtain a definition for the coupling num-
ber, N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j=ðlþ jÞp
(10) [instead of N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j=ð2lþ jÞp
], that is

more common in micropolar fluids mechanics.16,22 Using this rela-
tion and those used for the length scale parameter ‘ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c=ð4lÞp
(10), we can reduce (A3) to the following non-dimensional form:37

1þ N2

1� N2

1
Re

r2v0 þ 2N2

1� N2

1
Re

r
 x0 ¼ rp0;

‘2a þ ‘2b
L2

rr 	 x0 þ ‘2

L2
r2x0 � N2

1� N2
x0 � 1

2
r
 v0

� �
¼ 0;

(A4)

where the non-dimensional field variables are defined by
v0 ¼ v=V ; x0 ¼ L x=V ; p0 ¼ p=ðqV2Þ; L and V are the characteris-
tic length and velocity of the problem, respectively; q is the mass
density; Re ¼ qVL=l is the Reynolds number; ‘a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=ð4lÞp

� 0; ‘b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=ð4lÞp � 0 are the length scale parameters that are

related to the corresponding spin viscosities.
Among four non-classical parameters of micropolar theory (N,

‘; ‘a, and ‘b), only two (N and ‘) arise in the solution for the effective
shear viscosity (shear modulus) for media with spherical inhomogenei-
ties. These parameters together with the related rotational viscosity, j,
and spin viscosity, c, were identified in the main part of the paper.

APPENDIX B: SOLUTION FOR THE COMPONENT
OF THE ESHELBY TENSOR S1212

Solution for the component of the Eshelby tensor S1212 (4) was
derived in Ref. 37 for compressible micropolar media in the follow-
ing form:

S1212 ¼ 3ðK þ 2lÞ
5ð3K þ 4lÞ �

3hðaþ hÞj
5a3ðjþ lÞ e

�a=h acosh
a
h
� hsinh

a
h

� �
;

(B1)

where we replace j by 2j as mentioned above;
h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cðlþ jÞ=ð4ljÞp ¼ ‘=N is the modified definition for the
length scale parameter used in Ref. 37; a is radius of spherical inclu-
sion; K, l, j, c are the bulk modulus, shear modulus, and micropo-
lar parameters of matrix media, respectively.

Using standard relations between the engineering constants K,
l, � and taking into account our definitions for N and ‘ (10) in
(B1), one can obtain

S1212 ¼ 4� 5�
15ð1� �Þ þ

3
5

N2ð1þ a=hÞ
ða=hÞ3 e�a=h a

h
cosh

a
h
� sinh

a
h

� �
:

(B2)

Introducing the normalized diameter of spherical particle
�d ¼ 2Na=‘ and providing standard algebraic simplifications in Eq.
(B2), one can obtain the form of S1212 that was given in Eq. (4). For
the limiting case of incompressible media (� ! 0:5), we obtain then
the form of the Eshelby tensor component (5) that corresponds to
the statement of micropolar theory (A1)–(A4). Therefore, represen-
tation (5) is valid (up to notations) for micropolar incompressible
solids and fluids (at low Reynolds number).
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