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Background: The 12C(α, γ )16O reaction, determining the survival of carbon in red giants, is of interest for
nuclear reaction theory and nuclear astrophysics. A specific feature of the 16O nuclear structure is the presence of
two subthreshold bound states, (6.92 MeV, 2+) and (7.12 MeV, 1−), that dominate the behavior of the low-energy
S factor. The strength of these subthreshold states is determined by their asymptotic normalization coefficients
(ANCs), which need to be known with high accuracy.
Purpose: The objective of this research is to examine how the subthreshold and ground-state ANCs impact the
low-energy S factor, especially at the key astrophysical energy of 300 keV.
Method: The S factors are calculated within the framework of the R-matrix method using the AZURE2 code.
Results: Our total S factor takes into account the E1 and E2 transitions to the ground state of 16O including
the interference of the subthreshold and higher resonances, which also interfere with the corresponding direct
captures, and cascade radiative captures to the ground state of 16O through four subthreshold states: 0+

2 , 3−, 2+,
and 1−. To evaluate the impact of subthreshold ANCs on the low-energy S factor, we employ two sets of
the ANCs. The first selection, which offers higher ANC values, is attained through the extrapolation process
[Blokhintsev et al., Eur. Phys. J. A 59, 162 (2023)]. The set with low ANC values was employed by deBoer et al.
[Rev. Mod. Phys. 89, 035007 (2017)]. A detailed comparison of the S factors at the most effective astrophysical
energy of 300 keV is provided, along with an investigation into how the ground-state ANC affects this S factor.
Conclusion: The contribution to the total E1 and E2 S factors from the corresponding subthreshold resonances
at 300 keV are (71–74)% and (102–103)%, respectively. The correlation of the uncertainties of the subthreshold
ANCs with the E1 and E2 S(300 keV) factors is found. The E1 transition of the subthreshold resonance 1−

does not depend on the ground-state ANC but interferes constructively with a broad (9.585 MeV; 1−) resonance
giving (for the present subthreshold ANC) an additional 26% contribution to the total E1 S(300 keV) factor.
Interference of the E2 transition through the subthreshold resonance 2+ with direct capture is almost negligible
for small ground-state ANC of 58 fm−1/2. However, its interference with direct capture for higher ground-state
ANC of 337 fm−1/2 is significant and destructive, contributing −27%. The low-energy SE2(300 keV) factor
experiences a smaller increase when both subthfreshold and the ground-state ANCs rise together due to their
anticorrelation, compared to when only the subthreshold ANCs increase.

DOI: 10.1103/PhysRevC.110.055803

I. INTRODUCTION

The 12C /16O ratio in red giant stars has been attracting
substantial scientific attention for a long time [1,2]. While
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12C is formed via the triple-α fusion, 16O is the result of
the 12C(α, γ )16O radiative capture reaction, which deter-
mines the survival of carbon. Numerous attempts to obtain
the astrophysical factor of the 12C(α, γ )16O reaction, both
experimental and theoretical, have been made for almost 50
years (see Refs. [1–18] and references therein). The latest
comprehensive and thorough review of the state of the art has
been presented in Ref. [2].

The main goal of the research is to obtain the astrophysical
S factor for the 12C(α, γ )16O radiative capture in the Gamow
window with the most effective astrophysical α- 12C relative
kinetic energy energy E = 300 keV with the accuracy <10%.
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TABLE I. ANC Cl values in fm−1/2 for 16O∗(Jπ ) → α + 12C (g.s.).

C0; Jπ = 0+ C3; Jπ = 3− C2; Jπ = 2+ C1; Jπ = 1−

ε = 1.113 MeV ε = 1.032 MeV ε = 0.245 MeV ε = 0.045 MeV References

(1.11 ± 0.10) × 105 (2.08 ± 0.19) × 1014 [9]
(1.40 ± 0.42) × 105 (1.87 ± 0.32) × 1014 [12]
(1.44 ± 0.26) × 105 (2.00 ± 0.69) × 1014 [27]

(1.56 ± 0.09) × 103 (1.39 ± 0.08) × 102 (1.22 ± 0.06) × 105 (2.10 ± 0.14) × 1014 [17]
0.213 × 105 1.03 × 1014 [28]

0.4057 × 103 0.505 × 105 2.073 × 1014 [29]
(1.10–1.31) × 105 2.21(0.07) × 1014 [30]

(0.64–0.74) × 103 (1.2–1.5) × 102 (0.21–0.24) × 105 (1.6–1.9) × 1014 [31]
0.293 × 103 [32]
1.34 × 103 1.22 × 102 (0.98–1.07) × 105 (1.83–1.84) × 1014 [33]
1.56 × 103 1.39 × 102 1.14 × 105 2.08 × 1014 [2]
(0.886–1.139) × 103 [21]

(2.17 ± 0.05) × 102 (1.42 ± 0.05) × 105 (2.27 ± 0.02) × 1014 [22]

However, this goal is far from being achieved because at
this energy direct measurements are hardly feasible due to
the extremely small cross section.1 Extrapolating down the
experimental data available at energies E > 1 MeV to the
low-energy region allows one to obtain the S(300 keV) factor.
The most popular method of the extrapolation is the R-matrix
approach [2]. It provides a way to control contributions of
different interfering mechanisms of the radiative capture and
impact of different input parameters.

It is very well known (see, for example, Refs. [2,9] and ref-
erences therein) that one of the important parameters for ex-
trapolation of the experimental data to the low-energy region
and determination of the S(300 keV) factor are the asymp-
totic normalization coefficients (ANCs) for the α + 12C →
16O(7.12 MeV, 1−) and α + 12C → 16O(6.92 MeV, 2+) syn-
theses leading to the formation of two subthreshold (that is,
near the α + 12C threshold) bound states, 1− and 2+. The
binding energies of these bound states are εs1 = 0.045 MeV
and εs2 = 0.2449 MeV, respectively. Since these subthresh-
old states are the closest levels to the low-energy region
E < 0.5 MeV (the nearest 1− and 2+ resonances are located
at 2.43 and 2.68 MeV, respectively), they govern the behav-
ior of the low-energy S factor of the 12C(α, γ )16O reaction
(see Ref. [2] and references therein) through the dominating
E1 and E2 resonance radiative captures to the ground state
of 16O . Hence, the uncertainties of the subthreshold ANCs
should play an important role in the determination of the
uncertainty of the total S(300 keV) factor.

There are the following important problems regarding the
impact of the subthreshold ANCs on the low-energy S fac-
tors. First, the ANCs available in the literature vary quite
significantly (see Table I) and the question is how much the
variation of the subthreshold ANCs affects the low-energy
S factors. The second problem is the necessity to determine
the contribution of the 1− and 2+ subthreshold resonances
(SRs), which are controlled by the subthreshold ANCs, to
the total low-energy S factor, and, in particular, S(300 keV)

1The lowest energy at which the S factor was measured is ≈1 MeV.

factor. Answering this question will allow us to understand the
contribution of the uncertainties of the subrthreshold ANCs
to the budget of the uncertainty of the low-energy S factor,
especially, the S(300 keV) factor. The third problem is to
understand the effect of the interference of the SRs with higher
resonances and direct capture for the E1 and E2 transitions.
Finally, we need to understand the correlated effect of the
subthreshold and ground-state ANCs on the low-energy S
factor and, in particular, on the S(300 keV) factor.

A novel method was developed and employed in a se-
quence of papers [19–22] to ascertain the ANCs through
extrapolation of elastic scattering phase shifts to subthreshold
bound-state poles. Specifically, in Refs. [21,22], this tech-
nique was applied to determine the ANCs for α-particle
removal from the four subthreshold states of 16O: 0+

2 , 3−, 2+,
and 1−. In this paper, we address all the aforementioned prob-
lems by performing comprehensive R-matrix calculations. We
use the subthreshold ANCs found by the extrapolation pro-
cedure and the ones taken from Ref. [2], together with two
ground-state ANCs of 16O, a low value of 58 fm−1/2 [2] and a
high value of 337 fm−1/2 [18].

Unless stated otherwise, we adopt the unit system where
h̄ = c = 1.

II. METHODOLOGY

A. Subthreshold resonances

Nuclear excited states below the particle emission thresh-
old (subthreshold states) typically undergo γ decay to
lower-lying states. Besides, the presence of the subthreshold
states generate a new mechanism of the radiative capture to
the low-lying states in which the subthreshold states exhibit
themselves as SRs. Below we give a simple explanation of the
capture through the SR.

Let us consider two spinless, structureless particles in the
continuum forming a bound state by emitting a photon. A
very simplified, schematical equation for the amplitude corre-
sponding to the low-energy radiative transition to the ground
state is

MNR ∼ 〈ϕ f |HL
el|ψ〉. (1)
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FIG. 1. Diagram describing the nonresonant radiative capture
12C(α, γ )16O. The short-dashed line represents the emitted photon.

Here ψ is the scattering wave function, ϕ f is the ground
bound-state wave function of the interacting particles. The
electromagnetic interaction Hamiltonian HL

el is associated
with the transition characterized by multipolarity L.

There are two possible approaches to calculate ψ (r) . One
of them is the two-body potential model, which allows us to si-
multaneously treat nonresonant, SR and resonance transitions
in the given partial wave (see Ref. [23] and the references
therein). However, the adopted two-body potential should
reproduce simultaneously available experimental scattering
phase shifts, binding energies and the corresponding ANCs,
and the resonances in the given partial wave. Besides, the
two-body potential model may not be good enough to treat the
nuclear interior where the many-body approach is required.
Also accurate accounting for interference effects continues to
be a problem.

The second approach is the R-matrix formalism, which we
utilize in this paper. We underscore the advantages of the R-
matrix method:

(i) By separating different mechanisms we can explicitly
single out the ANCs of the subthreshold bound state
and the ground-state ANC as the normalization coef-
ficients of the corresponding amplitudes.

(ii) Another advantage is that the internal part of the SR
radiative amplitude is parametrized in terms of the
internal radiative width amplitude which can be cal-
culated using the experimental radiative widths and
the channel (external) counterparts or can be a fitting
parameter.

(iii) Finally, the R-matrix method allows one to take into
account the interference effects in a straightforward
manner.

We rewrite Eq. (1) in a form convenient for the R-matrix
formalism:

MNR ∼ 〈ϕ f |HL
el|I − S O〉, (2)

where I and O are the incident and outgoing scattered waves
in the initial channel, S is the elastic scattering S-matrix ele-
ment. The diagram shown in Fig. 1 describes the nonresonant
radiative capture.

From Eq. (2) one can obtain the radiative capture amplitude
proceeding through the SR. The presence of the subthreshold
bound state generates a pole in the S-matrix element at E =
−εs, where εs is the binding energy of the subthreshold bound
state, affecting the second term of the initial scattering wave
function in Eq. (2). The impact of the subthreshold bound state

FIG. 2. Pole diagram describing the radiative capture
12C(α, γ )16O through the SR B∗. The thick black line is the
resonance propagator, the two black spheres are the form factors,
and the short-dashed line is the emitted photon.

on the elastic scattering S-matrix behavior, controlled by a
subthreshold pole, becomes more pronounced as the energy
approaches zero:

S
E→+0∼ As

E + εs + i �(E )
2

. (3)

The residue in the bound-state pole As ∼ C2
s [24], where Cs

is the ANC of the subthreshold bound state. However, if we
consider the subthreshold bound state as the SR, As ∼ �SR,

where �SR ∼ C2
s is the width of the SR and �(E ) = �SR(E ) +

�γ (E ) is the total resonance width of the SR. A tiny radiative
width of the SR decaying to the ground state, denoted by
�γ (E ), will be disregarded in the following discussion. Note
that for energy values less than zero, �SR becomes zero due
to the presence in it of the penetrability factor, causing the
elastic scattering S-matrix element to exhibit a standard pole
behavior,

S
E→−εs∼ As

E + εs
. (4)

One can see that for small binding energy εs the pole term
may significantly modify the behavior of the low-energy scat-
tering wave function generating a new mechanism of the
radiative capture, namely, the radiative capture “continuum
→ the ground state” occurring at positive energies of inter-
acting nuclei but contributed by the pole term of the S-matrix
located at the negative energy. This mechanism can be called
the radiative capture to the ground state through the SR. Its
amplitude can be schematically written as

MSR ∼ 〈ϕ f |HL
el|

√
�SR(E ) O〉√

�SR(E )

E + εs + i �SR(E )
2

(5)

and is described by the pole diagram shown in Fig. 2. The
diagram contains the form factor corresponding to the for-
mation of the SR, resonance propagator and the form factor
describing the radiative decay of the SR to the ground state. It
has a propagator similar to the real resonance propagator with
the resonance energy ER > 0 replaced by −εs.

It is now clear that in the presence of the subthreshold
bound state the amplitude MNR can be written as the sum of
two amplitudes:

MNR = M ′
NR + MSR, (6)

where the nonresonant radiative capture amplitude M ′
NR is

given by

M ′
NR ∼ 〈ϕ f |HL

el|I − S′ O〉. (7)
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Here S′ is the elastic S-matrix element, which does not contain
the bound-state pole. While the initial scattering wave func-
tion in the nonresonant radiative transition amplitude M ′

NR
contains both incident and outgoing waves, the SR amplitude
MSR contains only the outgoing scattered wave. A distinctive
trait of the R-matrix approach is the partitioning of the radia-
tive capture amplitude into nonresonant and SR segments. The
above presented schematic introduction can help the reader to
better understand the phenomena of the SRs playing a domi-
nant role in the low-energy radiative capture 12C(α, γ )16O.

B. Subthreshold resonances in the R-matrix formalism

The main focus of this paper is to analyze the impact of
the subthreshold and ground state ANCs on the low-energy S
factor for the radiative capture 12C(α, γ )16O . The ANC de-
termines the normalization of the peripheral amplitudes. This
is the reason we focus on the radiative captures happening
in the external (channel) region (r > Rch, where Rch is the
channel radius). This is why utilizing the R-matrix approach,
which separates the configuration space into the internal and
channel regions, is advantageous. In the R-matrix formalism,
the calculation of nonresonant (direct) capture to the ground
state of the final nucleus only considers the external region, as
the nonresonant capture in the internal region is included in
the resonance capture amplitude.

There was no mention of the internal and external regions
in Eqs. (2)–(7). Nonetheless, a rigorous approach dictates that
the internal and channel regions be considered separately. In
the R-matrix approach the total amplitude of the radiative
transition to the ground state through the SR is written as the
sum of two parts, internal and channel:

MSR(E ) = M (int)
SR (E ) + M (ch)

SR (E ), (8)

where

M (int)
SR (E ) = i ei(σC

ls
−δhs

ls
)
√

2 (kγ Rch )L+1/2

×
√

�SR
Js

(E ) γ
Js (int)
γ J0

E + εs + i �SR
Js

(E )/2
(9)

is the internal SR radiative transition amplitude and

M (ch)
SR (E ) = i ei(σC

ls
−δhs

ls
)
√

2 (kγ Rch )L+1/2

×
√

�SR
Js

(E ) γ
Js (ch)
γ J0

(E )

E + εs + i �SR
Js

(E )/2
(10)

is the channel one. Then the total amplitude MSR(E ) is given
by

MSR(E ) = i ei(σC
ls

−δhs
ls

)
√

2 (kγ Rch )L+1/2

×
√

�SR
Js

(E ) γ
Js
γ J0

(E )

E + εs + i �SR
Js

(E )/2
. (11)

We explicitly indicated the total angular momentum of the SR
Js and the total angular momentum of the ground state J0 = 0.
Since in the case under consideration the channel spin is zero,
Js = ls, where ls is the orbital angular momentum of the SR, it

is enough to indicate only Js or ls. Phase shift δhs
ls

, determined
by

e−2 i δhs
ls = Gls (k, Rch ) − i Fls (k, Rch )

Gls (k, Rch ) + i Fls (k, Rch )
, (12)

and σC
ls

are the hard-sphere and Coulomb scattering phase
shifts in the partial wave ls, respectively. Functions Fls (k, r)
and Gls (k r) are the regular and irregular Coulomb solutions,
�SR

Js
(E ) and γ

Js
γ J0

(E ) are the observable width and the reduced
radiative width amplitude of the SR, respectively.

Even though the SR is situated at negative energy as a
subthreshold bound state, its resonance width is specified at
E > 0 and vanishes at E � 0:

�SR
Js

(E ) = Pls (k, Rch )
[
γ SR

ls (Rch )
]2

, (13)

where at E > 0 the penetrability factor is

Pls (k, Rch ) = k Rch

F 2
ls

(k, Rch ) + G2
ls

(k, Rch )
(14)

= k Rch

|Ols (k, Rch )|2 , (15)

Ols is the outgoing Coulomb scattered wave:2

Ols (k, r) = e−i σC
ls

[
Gls (k, Rch ) + i Fls (k, Rch )

]
= e−i π ls/2 eπ η sign(Rek)/2 W−i η, ls+1/2(−i 2 k r), (16)

sign(x) =
{1 for x > 0,

0 for x = 0,

−1 for x < 0,

(17)

W−i η, ls+1/2(−i 2 k r) and η are the Whittaker function and the
Coulomb parameter for k > 0. In addition,

[
γ SR

ls (Rch )
]2 = (h̄ c)2

μ

W 2
−ηs, ls+1/2(2 κs Rch )

Rch
C2

ls (18)

is the observable reduced width of the SR, see Appendix A
and Refs. [24,26]. W−ηs, ls+1/2(2 κs Rch ) is the Whittaker func-
tion describing the radial behavior of the bound-state wave
function in the external region, κs = √

2 μεs is the wave
number of the subthreshold bound state, μ is the reduced
mass of the interacting nuclei expressed in MeV, ηs is the
α − 12C Coulomb parameter of the subthreshold bound state,
Cls is the ANC of the subthreshold bound state expressed in
fm−1/2. We explicitly inserted (h̄ c)2 in Eq. (18) to validate
that [γ SR

ls
(Rch )]2 is measured in MeV. Equation (18) clearly

shows that the reduced width of the SR depends only on the
ANC Cls and the channel radius radius Rch. Hence, the overall
normalization of

√
�SR

Js
(E ) is expressed in terms of the ANC

of the subthreshold bound state Cls .

Equation (11) illustrates that the SR is a resonance located
at the negative energy of −εs. γ

Js (int)
γ J0

(E ) and γ
Js (ch)
γ J0

(E ) in
Eqs. (9) and (10) are the internal and channel radiative width
amplitudes of the SR with the total one,

γ
Js
γ J0

(E ) = γ
Js (int)
γ J0

+ γ
Js (ch)
γ J0

(E ). (19)

2See Ref. [25] for details on how factor eπ η sign(Rek)/2 appears.
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In the R-matrix approach γ
Js (int)
γ J0

is a real constant, while

γ
Js (ch)
γ J0

(E ) is complex and energy-dependent.

An explicit expression for γ
Js (ch)
γ J0

(E ) is

γ
Js (ch)
γ J0

(E ) =Cl0 DL(E )
√

Pls (k, Rch ) γ SR
ls (Rch )

× 〈ls 0 L 0|l0 0〉U (L l0 Js ss; ls J0)Jch(E ),
(20)

where

DL(E ) =
√

1

2E

1

(2 L + 1)!!

√
(L + 1) (2 L + 1)

L

× Zeff(L)
√

k Rch (21)

and (in a concise form)

Jch(E ) = 1

RL+1
ch

∫ ∞

Rch

dr rL W−η0, l0+1/2(2 κ0 r)

× e−i δhs
ls Ols (k, r). (22)

W−η0, l0+1/2(2 κ0 Rch ) is the Whittaker function describing the
external radial behavior of the α − 12C bound-state wave
function in the ground state. Subscript s denotes the con-
tinuum state corresponding to the SR, while subscript 0
refers to the ground state of 16O. l0 = 0, κ0 = √

2 με0 and
ε0 = 7.162 MeV are the α − 12C orbital angular momentum,
bound-state wave number and the binding energy of the 16O
ground state, respectively. η0 is the α − 12C Coulomb param-
eter of the ground bound state. The quantity

Zeff(L) = e μL

(
Zα

mL
α

+ (−1)L Z12C

mL
12C

)
(23)

is the effective charge of the system for the transition with
multipolarity L, and e is the proton charge.

Rewriting this matrix element in terms of the regular
Fls (k, r) and irregular Gls (k, r) Coulomb solutions we get [6]

Jch(E ) =W−η0, l0+1/2(2 κ0 Rch )
√

F 2
ls

(k, Rch ) + G2
ls

(k, Rch )

× JL ls l0 (E ), (24)

where

JL ls l0 (E ) = J2 L ls l0 (E )

+ i
Fls (k, Rch ) Gls (k, Rch )

F 2
ls

(k, Rch ) + G2
ls

(k, Rch )
J1 L ls l0 (E ), (25)

J1 L ls l0 (E ) = 1

RL+1
ch

∫ ∞

Rch

dr rL W−η0, l0+1/2(2 κ0 r)

W−η0, l0+1/2(2 κ0 Rch )

×
[

Fls (k, r)

Fls (k, Rch )
− Gls (k, r)

Gls (k, Rch )

]
, (26)

and

J2 L ls l0 (E ) = 1

RL+1
ch

∫ ∞

Rch

dr rL W−η0, l0+1/2(2 κ0 r)

W−η0, l0+1/2(2 κ0 Rch )

×
[

Fls (k, r) Fls (k, Rch ) + Gls (k, r) Gls (k, Rch )

F 2
ls

(k, Rch ) + G2
ls

(k, Rch )

]
.

(27)

Then

γ
Js (ch)
γ J0

(E ) =Cl0

√
k Rch DL(E ) γ SR

ls (Rch )

× 〈ls 0 L 0|l0 0〉U (L l0 Js ss; ls J0)

× W−η0, l0+1/2(2 κ0 Rch ) JL ls l0 (E ). (28)

Cl0 is the ANC of the 16O ground state, Zi is the number of the
protons in nucleus i, kγ = E + ε0 is the momentum of the
emitted photon, k = √

2 μ E , 〈ls 0 L 0|l0 0〉 is the Clebsch-
Gordan coefficient, U (L l0 Js ss; ls J0) is the Racah coefficient,
ss = 0 is the α − 12C channel spin in the subthreshold state.

For the bound states JL ls l0 is given by [6]

JL ls l0 = 1

RL+1
ch

∫ ∞

Rch

dr rL W−η0, l0+1/2(2 κ0 r)

W−η0, l0+1/2(2 κ0 Rch )

× W−ηs, ls+1/2(2 κs r)

W−ηs, ls+1/2(2 κs Rch )
. (29)

The channel radiative width pertaining to the bound state is
given by

γ
Js (ch)
γ J0

(−εs) =
√

2 μ Zeff(L) Rch
1

(2 L + 1)!!

×
√

(L + 1) (2 L + 1)

L
Cl0 W−η0, l0+1/2

× (2 κ0 Rch )〈ls 0 L 0|l0 0〉
× U (L l0 Js ss; ls J0) γJs (Rch )JL ls l0 , (30)

where γJs (Rch ) is the reduced width of the subthreshold bound
state, which is expressed in terms of the subthreshold ANC
CJs .

We see that the normalization of the channel radiative
width is expressed in terms of the subthreshold ANC Cls and
the ANC Cl0 of the ground state of 16O . It explains why
these ANCs govern the behavior of the low-energy amplitude
M (ch)

SR (E ) describing the channel resonance radiative transition
to the ground state through the SR.

The radiative width of the SR is expressed in terms of
γ

Js
γ J0

(E ) as

�
Js
γ J0

(E ) = 2 (kγ Rch )2 L+1
∣∣γ Js

γ J0
(E )

∣∣2
(31)

= 2 (kγ Rch )2 L+1
∣∣γ Js (int)

γ J0
+ γ

Js (ch)
γ J0

(E )
∣∣2

. (32)

If |γ Js (int)
γ J0

| � |γ Js (ch)
γ J0

(E )|, then the energy dependence

of �
Js
γ J0

(E ) is determined by the dimensionless factor
(kγ Rch )2 L+1 and we can write

�
Js
γ J0

(E ) =
(

E + ε0

ε0 − εs

)2 L+1

�
Js
γ J0

(−εs). (33)

This equation allows one to find the radiative width �
Js
γ J0

(E )

at positive energies if (it is often the case) �
Js
γ J0

(−εs) is known
experimentally.
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We remind that γ
Js (ch)
γ J0

(E ) can be explicitly calculated. If
its energy dependence is weak, then Eq. (33) can be a good
approximation even for the nonnegligible channel part. Then,
in view of Eq. (32), one can find γ

Js (int)
γ J0

:

γ
Js (int)
γ J0

= − Reγ Js (ch)
γ J0

(E )

±
√

�
Js
γ J0

(E )

2 (kγ Rch )2 L+1
− [

Imγ
Js (ch)
γ J0

(E )
]2

. (34)

C. Direct radiative capture

There is another radiative process where the subthreshold
bound states contribute: the cascade radiative capture to the
ground state through the subthreshold bound states. It is a
two-step process, which begins with the first direct radia-
tive capture to the subthreshold bound state, which is then
followed by its decay to the ground state through photon
emission. The direct capture amplitude to the subthreshold
state, which is the first part of the cascade transition to the
ground state, is given by

MDC(s)(E ) = ei(σC
li

−δhs
li

)
√

2DL(E ) (kγ Rch )L+1/2 Cls

× 〈li 0 L 0|ls 0〉U (L ls Ji si; li Js)Jis(E ), (35)

with

Jis(E ) = 1

RL+1
ch

∫ ∞

Rch

dr rL W−ηs, ls+1/2(2 κs r)

× [
ei δhs

li Ili (k, r) − e−i δhs
li Oli (k, r)

]
. (36)

Here li is the α- 12C orbital angular momentum in the contin-
uum, si = 0 is their channel spin.

Rewriting Jis(E ) in terms of the regular and irregular
Coulomb solutions we get [6]

Jis(E ) = 2 i W−ηs, ls+1/2(2 κs Rch )

× Fli (k, Rch ) Gli (k, Rch )√
F 2

li
(k, Rch ) + G2

li
(k, Rch )

J1 L li ls (E ). (37)

Equation (35) clarifies why in the R-matrix approach the
overall normalization of the direct capture amplitude is deter-
mined by the ANC of the final bound state formed as the result
of the direct radiative capture [25].

We explicitly showed only the amplitude of the first
step of the cascade radiative capture. For the subthreshold
case under consideration, the cascade transitions through
(7.12 MeV, 1−) and (6.92 MeV, 2+) subthreshold bound
states are significantly weaker than the resonant captures to
the ground state when these bound states reveal themselves
as the SRs (see Fig. 4). In addition to direct capture to the
subthreshold bound state, it is necessary to consider the di-
rect “continuum-to-ground-state” capture. The amplitude of
this transition is similar to the amplitude MDC(s)(E ) [see
Eq. (35)] and is given by

MDC(0)(E ) = ei(σC
li

−δhs
li

) DL(E ) (kγ Rch )L+1/2 C0

× 〈li 0 L 0|l0〉U (L l0 Ji si; li J0)Ji0(E ). (38)

The formula for Ji0(E ) can be derived from Jis(E ) [refer to
Eq. (36)] by substituting subscript s with 0. Note that the only
unknown quantity in Eq. (38) is the ANC C0 of the ground
state of 16O. This ANC can be positive or negative3 deter-
mining the sign of MDC(0)(E ). For li = ls the direct capture
amplitude MDC(0)(E ) interferes with the amplitude MSR(E )
for the resonance capture to the ground state through the SR.
The sign of Eq. (28) and, hence, of MSR(E ) is controlled
by the product Cl0 Cls . If we fix the sign of the subthreshold
ANC Cls , then the nonresonant amplitude MDC(0)(E ) and the
channel resonance radiative amplitude M (ch)

SR (E ) are normal-
ized in terms of the same ANC, C0. Such a normalization
is physically transparent: both amplitudes describe peripheral
processes and, hence, contain the tail of the nuclear overlap
function of the ground state, whose normalization is given by
the corresponding ANC.

For the interfering direct capture to the ground state and
the resonance capture to the ground state through the SR, it is
convenient to write the sum of the interfering amplitudes as

MSR(E ) + MDC(0)(E )

= [
M (ch)

SR (E ) + MDC(0)(E )
] + M (int)

SR (E ). (39)

The relative sign of the sum in the brackets is well determined,
while the sign of M (int)

SR (E ), which contains γ
Js (int)
γ J0

, is the
fitting parameter.

The equations in this section shed light on the reason be-
hind the extensive effort dedicated to determining the ANCs
of the α-particle removal from the subthreshold bound states
of 16O (see Ref. [2]). The different experimental and theo-
retical methods of determining the ANCs are discussed in
Ref. [25].

D. Resonant transition

Since the main purpose of this paper is to investigate the
role of the subthreshold ANCs, we only briefly discuss the
resonance capture to the ground state of 16O. Equations for
the resonance capture can be obtained from the corresponding
equations for resonance capture through the SR by replac-
ing s → i, −εs → ER, where ER is the resonance energy,4

�SR
Js

(E ) → �Ji (E ) and γ
Js
γ J0

(E ) → γ
Ji
γ J0

(E ). Here �Ji (E ) is

the resonance width, γ
Ji
γ J0

(E ) is the resonance radiative width
amplitude, which can be split into the internal and channel
parts, and li is α- 12C resonance orbital angular momentum.
For li = ls the resonance amplitude interferes with the SR and
direct capture amplitudes. Adding higher resonances interfer-
ing with the SR requires employing the multilevel R-matrix
equations [2,8].

E. ANC of the ground state of 16O

Here we discuss the impact of the ground state ANC Cl0 .
This ANC enters the channel radiative widths of the SR and

3By definition, the ANC is a real quantity.
4The R-matrix approach deals only with real resonance energies.
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the resonance, cascade transition and direct capture ampli-
tudes to the ground state. Owing to the large binding energy
of the ground state of the system α + 12C (ε0 = 7.16 MeV),
the internal part of the radiative width of the SR γ

Js (int)
γ J0

(E ) and

the resonance internal radiative width γ
Ji (int)
γ J0

(E ) are dominant
compared to the corresponding channel ones containing Cl0 .
Besides, for the E1 transition the channel part is suppressed
because the effective charge Zeff(1) is very small(Zeff(1)/e =
−0.00097). It significantly diminishes the role of the channel
radiative widths. For the same reason, the E1 direct capture
to the ground state is suppressed. The numerical evidence
provided below indicates that the ground-state ANC has no
influence on the E1 S(300 keV) factor at low energies.

Also the cascade transitions to the ground state are small
compared to the SR and resonance transitions. It makes the
impact of the ground-state ANC less important than that of the
ANCs of the subthreshold states 1− and 2+, but not negligible
due to the interference of the 2+ SR, resonance and the direct
transition to the ground state. The role of Cl0 on the low-energy
S factor, especially, S(300 keV), is analyzed through numeri-
cal calculations below. Two sets of subthreshold ANCs from
the low end [2] and high end [22] are used in this paper for
systematic comparison. The latter set was determined using
the extrapolation procedure of the elastic scattering phase
shifts. However, the ground-state ANC was not determined
using the extrapolation method because it is located quite far
from the threshold (the binding energy of the α particle in the
16O ground state is 7.16 MeV). The values of the ground-state
ANC published in the literature vary significantly [18]. In this
paper, we explore two values of this ANC: 58 fm−1/2 [2] and
337 fm−1/2 [18]. The ground-state ANC of 337 ± 45 fm−1/2

found in Ref. [18] from the heavy-ion-induced transfer reac-
tion requires a higher value of (1.55 ± 0.09) × 105 fm−1/2 for
the ANC of the (2+, 6.92 MeV) excited state to reconcile with
the S factor from Ref. [2] calculated for the ground-state ANC
of 58 fm−1/2. This value of the 2+ subthreshold ANC is close
but slightly higher than the ANC for the 6.92 MeV state from
Ref. [22] (see Table I).

F. Subthreshold ANCs

One of the main goals of this paper is to check the impact
of the ANCs of the α-particle removal from the subthreshold
states 1− and 2+ of 16O

∗. The ANCs of these subthreshold
bound states available in the literature have been recently tab-
ulated in Ref. [2]. This revealed large discrepancies between
the ANCs determined by different techniques, suggesting
further efforts are needed to pinpoint the ANCs of the two
near-threshold bound states in 16O. The ANC values for the
channels 16O∗ → α + 12C obtained by various methods are
also compared in Table I.

It is not the goal of this paper to verify the reliability
and uncertainty of each subthreshold ANC published in the
literature. To assess the effects of the subthreshold ANCs, as
previously mentioned, we will be analyzing two sets: one rep-
resents the lower end of the published subthreshold ANCs and
is taken from Ref. [2], while the second set representing the
high-end of the subthreshold ANCs was reported recently (the
last two rows in Table I, which are taken from Refs. [21,22]).

TABLE II. Channel and internal radiative width amplitudes for
the SR 1−.

E γ
1 (ch)
γ 0 (E ) γ

1 (m)
γ 0 (int) γ

1 (p)
γ 0 (int)

(MeV) (MeV1/2) (MeV1/2) (MeV1/2)

0.1 3.20 × 10−8 + i 7.16 × 10−30 −0.00146 0.00146
0.2 3.22 × 10−8 + i 1.2 × 10−21 −0.00146 0.00146
0.3 3.25 × 10−8 + i 4.97 × 10−18 −0.00146 0.00146
0.4 3.28 × 10−8 + i 6.75 × 10−16 −0.00146 0.00146
0.5 3.32 × 10−8 + i 1.85 × 10−14 −0.00146 0.00146

The ANCs obtained in Refs. [21] and [22] were obtained
by the extrapolation of the experimental phase shifts in the
corresponding partial waves to the subthreshold bound-state
poles located at negative energies. Unfortunately, uncertain-
ties of the experimental phase shifts are unknown. Therefore,
in this paper, to estimate uncertainties of the ANCs obtained
by the extrapolation method we assumed 5% uncertainty in
the experimental phase shifts.

To be consistent we included in our calculations all four
subthreshold states in 16O, although we understand that only
1− and 2+ give the dominant contribution. Note that the uncer-
tainty of the ANC for the 0+

2 state determined by applying the
extrapolation method is significantly higher than for the three
weaker bound subthreshold states presented in Table I. The
reason is that the farther the threshold state from the pole that
corresponds to the bound state in the energy plane, the lower
is the accuracy of the ANC obtained by the extrapolation of
the elastic-scattering phase shifts to the corresponding bound-
state pole.

G. Radiative width amplitudes of the subthreshold
resonances 1− and 2+

The amplitudes MSR(E ) of the radiative capture
12C(α, γ )16O through the 1− and 2+ SRs give the dominant
contribution to the low-energy S factors. These amplitudes
depend on the resonance widths of SRs �SR

Js
(E ), which can

be calculated explicitly, and the radiative width amplitudes
γ

Js
γ J0

(E ) of the SRs. Before presenting the results of the
low-energy S factor calculations, we will review the SR
radiative widths amplitudes.

1. Subthreshold resonance 1−

First, we consider the radiative width amplitude for the
SR 1−. Owing to the fact the ratio Zi/mi for the α parti-
cle and 12C is practically the same, the effective charge for
the L = 1 transition is very small and the channel radiative
width amplitude γ

Js (ch)
γ J0

(E ) should be negligible compared
to the internal counterpart.5 In Table II are shown the low-
energy dependencies of the channel and internal radiative

5Each of involved nuclei, 4He and 12C have Zi = Ni, where Ni is
the number of neutrons in nucleus i. For systems with such nuclei
the isospin projection T3 = 0 and the isospin selection rule requires
change of the isospin of the system by one. Since it is not fulfilled
in our case, the considered E1 transition 1− → 0+ is called isospin
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TABLE III. Channel and internal radiative width amplitudes for
the SR 2+.

E γ
2 (ch)
γ 0 (E ) γ

2 (m)
γ 0 (int) γ

1 (p)
γ 0 (int)

(MeV) (MeV1/2) (MeV1/2) (MeV1/2)

0.1 1.5 × 10−5 + i 8.13 × 10−28 −0.0089 0.0089
0.2 1.5 × 10−5 + i 1.43 × 10−19 −0.0089 0.0089
0.3 1.5 × 10−5 + i 6.19 × 10−16 −0.0089 0.0089
0.4 1.5 × 10−5 + i 8.81 × 10−14 −0.0089 0.0089
0.5 1.5 × 10−5 + i 2.53 × 10−12 −0.0089 0.0089

width amplitudes for the SR 1−. Just as anticipated, the inner
component is unchanging. We can see that the internal part is
significantly larger than the channel part, leading to the valid-
ity of Eq. (33). The experimental value of the radiative width
of the subthreshold bound state 1− decaying to the ground
state is �1

γ 0(−0.045 MeV) = (5.5 ± 0.3) × 10−8 MeV [34].
Hence, the internal radiative width amplitude can be calcu-
lated using Eqs. (33) and (34). A 6% experimental uncertainty
of �1

γ 0(−0.045 MeV) propagates into the 3% uncertainty of

γ 1
γ 0 (int). γ

1 (p)
γ 0 (int)[γ 1 (m)

γ 0 (int)] in Table II corresponds to
the higher (lower) solution of Eq. (34). For practical calcu-
lations we use γ

1 (p)
γ 0 (int) = (1.46 ± 0.05) × 10−3 MeV1/2. It

should be noted that even for the high subthreshold ANC
(the last row of Table I) and the high ground-state ANC
of 337 fm−1/2 [18] the channel radiative width amplitude
γ

1 (ch)
γ 0 (300 keV) = 2.06 × 10−7 + i 3.15 × 10−17 MeV1/2 re-

mains negligible compared to the internal counterpart, which
does not depend on the ANCs.

2. Subthreshold resonance 2+

Although for L = 2 the effective charge is not small, due to
the high binding energy of the ground state of 16O, γ 2

γ 0 (ch)
is significantly smaller than γ 2

γ 0 (int), see Table III. Hence,
Eq. (33) is also applicable for L = 2. The experimental value
of the radiative width of the subthreshold bound state 2+
decaying to the ground state is �2

γ 0(−0.245 MeV) = (9.7 ±
0.3) × 10−8 MeV [34]. Again, as it was for the 1− subthresh-
old state, Eqs. (33) and (34) are used to calculate the internal
radiative width amplitudes (notations are the same as in Ta-
ble II). A 3% uncertainty of �2

γ 0(−0.245 MeV) propagates
to 1.5% uncertainty of γ 2

γ 0 (int). For calculations we use

γ
2 (p)
γ 0 (int) = 0.0089 ± 0.0001 MeV1/2. It should be under-

scored that for the high subthreshold ANC for the 2+ state
(the last row of Table I) and the high ground-state ANC
of 337 fm−1/2 [18] the channel radiative width amplitude
γ

2 (ch)
γ 0 (300 keV) = 1.63 × 10−3 + i 6.67 × 10−14 MeV1/2 re-

mains small but not negligible compared to the internal
counterpart.

forbidden [35,36]. However, the suppression is not very strict be-
cause of the mass difference between the protons and neutrons and
the residual Coulomb effects.

FIG. 3. S factors for the 12C(α, γ )16O radiative capture reaction
to the ground state through the 1− and 2+ resonances. The solid and
open circles are experimental data from Kremer et al. [5] for the
E1 and E2 transitions, respectively. The dotted and dash-dotted lines
are the S factors from deBoer et al. [2] for the resonance E1 and E2
transitions, respectively. The solid and dashed lines are the resonance
S factors for the E1 and E2 transitions obtained using our ANCs (see
the last row of Table I).

III. S-FACTORS FOR 12C(α, γ )16O RADIATIVE CAPTURE
TO THE GROUND STATE OF 16O

A. S factors for resonance E1 and E2 captures
to the ground state

First we present the results of the calculations for two dom-
inant low-energy S factors corresponding to the resonance E1
and E2 transitions to the ground state. The resonance E1 tran-
sition is made of contributions from the SR (7.12 MeV, 1−),
the first above the threshold resonance (9.59 MeV, 1−), and
higher 1− resonances. Similarly, the resonance E2 transi-
tion is dominated by the SR (6.92 MeV, 2+), the lowest
above-threshold resonance (9.85 MeV, 2+) and higher 2+ res-
onances.

Although below for convenience we show the S factors
for the radiative capture 12C(α, γ )16O for energies E <

3 MeV, our main focus is the low-energy region E < 1 MeV,
and especially the most effective astrophysical energy E =
300 keV, at which we can check the impact of the subthresh-
old ANCs on the S(300 keV) factors. We compare the S
factors calculated using the central values of the ANCs in the
last row of Table I with the results from the review [2]. In this
energy region it is enough to take into account the two lowest
levels (the SR and the lowest resonance at E > 0) in addi-
tion to background resonances for the E1 and E2 resonance
transitions. Details and parameters used in the calculations are
given in Ref. [2].

Thus the resonance E1 and E2 S factors depicted in Fig. 3
are calculated for the subthreshold ANCs 2.08 × 1014 fm−1/2

[for the (7.12 MeV, 1−)] and 1.14 × 105 fm−1/2 [for the
(6.92 MeV, 2+)] from Ref. [2], which are compared with
the higher sets of the ANCs, 2.27 × 1014 fm−1/2 and 1.42 ×
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TABLE IV. Comparison of the current S factors and the S factors
from Ref. [2] for transition to the ground state of 16O at the most
effective astrophysical energy of 300 keV. The resonance E1 and E2
transitions include interference with the direct E1 and E2 captures
to the ground state. The cascade transition is the radiative capture to
the ground state proceeding through four subthreshold bound states
of 16O: 0+

2 , 3−, 2+, and 1−. We remind that all the calculations were
done for the low ground-state ANC of 58 fm−1/2. The S factors are
given in units of keVb.

Transition to the ground state via S(300 keV) S(300 keV)
resonance + direct capture Present Ref. [2]

E1 98 85
E2 70 45
E1 + E2 168 130
Cascade Present Ref. [2]
0+

2 + 3− + 2+ + 1− 6 7
Total Present Ref. [2]
E1 + E2 +cascade 174 137

105 fm−1/2 [22] (the last row of Table I). It can be seen that
as the values of the subthreshold ANCs increase, both E1
and E2 S factors exhibit an increase. The exact values of
the calculated resonance E1 and E2 S factors at 300 keV are
given in Table IV. We need to add some additional comments
about the calculation of the E1 and E2 resonance captures to
the ground state of 16O. Precisely speaking, we accounted for
the interference of the E1 and E2 resonance captures to the
ground state with the E1 and E2 direct captures to the ground
state. Shown in Fig. 3 E1 and E2S factors include all the tran-
sitions to the ground state except for the cascade transitions,
which are discussed in Sec. III B. In the calculations shown
in Fig. 3 we adopted a low value of the ground-state ANC
C0 = 58 fm−1/2 taken from Ref. [2], because our goal was to
compare with the results from Ref. [2] by varying only the
subthreshold ANCs.

B. Radiative capture to subthreshold states and the total
S factor for 12C(α, γ )16O radiative capture

Besides the E1 and E2 resonance captures to the ground
state, we also calculated the cascade transitions to the ground
state through the four excited bound states (6.05 MeV, 0+

2 ),
(6.13 MeV, 3−), (6.92 MeV, 2+) , and (7.12 MeV, 1−) us-
ing the ANCs from the last two rows of Table I. The cascade
transitions to the ground state of 16O represent two-step
processes: the direct capture to one of the excited states is
followed by the radiative decay of the excited bound state to
the ground state. The ANCs of the four subthreshold bound
states under consideration govern the normalization of the
direct capture amplitudes.

Figure 4 depicts all the S factors calculated using the ANCs
obtained by the extrapolation procedure. In this figure we
show not only the S factors for the cascade transition through
the four excited states of 16O but also the S factors for the
E1 and E2 resonance captures to the ground state of 16O (see
Fig. 3) and the total S factor, which is the sum of all six S
factors shown in Fig. 4.

FIG. 4. All the calculated S factors for radiative captures to the
ground state. The S factors for the E1 and E2 resonance radiative
captures to the ground state, which interfere with the corresponding
direct captures, are presented by thin solid and short-dashed lines,
respectively. The S factors for the cascade radiative captures to the
ground state through the 7.12 MeV state—long-dashed line; the ra-
diative capture through the 6.92 MeV state—dot-dot-dashed line; the
radiative capture through the 6.13 MeV state—dot-dashed line, the
radiative capture through the 6.05 MeV state—dotted line. The thick
solid line is the total S factor given by the sum of all the S factors
shown in this figure.

IV. CORRELATION BETWEEN THE SUBTHRESHOLD
ANCS AND THE TOTAL E1 AND E2 S FACTORS

The results of the comparison of the S factors from the
current paper and the ones from Ref. [2] are presented in
Table IV. The difference between them is caused by varia-
tion of only one parameter, the ANC of the corresponding
subthreshold state. It is evident that the rise in subthreshold
state ANCs leads to an increase in the E1 and E2 S(300 keV)
factors.

Table V shows the correlation between the variations
of the ANCs of the subthreshold bound states caus-
ing the corresponding variations S(300 keV) factors. In
this table C2

l = C2
l (pr)/C2

l (RMP) − 1 and S(300 keV) =
Spr(300 keV)/SRMP(300 keV) − 1. Quantities with the sub-
script “pr” are calculated using the present ANCs and those
with the subscript “RMP” use ANCs from Ref. [2]. We
observe around 79% correlation between the uncertainties
of the ANC for the 1− subthreshold state and of the to-
tal SE1(300 keV) factor for the E1 transition to the ground

TABLE V. Correlation between the uncertainties of squares of
ANCs and the S(300 keV) factors.

Transitions C2
l , % S(300 keV), %

E1 19 15
E2 55 56
E1 + E2 29
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TABLE VI. S(300 keV) factors (expressed in keVb) for the
radiative capture 12C(α, γ )16O presented in Figs. 5–7. The first
column pertains to the figure displaying the relevant results. SE1

and SE2 are the total S factors for the E1 and E2 transitions,
SE1+E2 = SE1 + SE2. S(SR)

E1 and S(SR)
E2 are the S(300 keV) factors for

the resonance E1 and E2 transitions through the SRs 1− and 2+ only.
S(SR)

E1 /SE1 and S(SR)
E2 /SE2 are the ratios of the corresponding S factors.

Fig. SE1+E2 SE1 SE2 S(SR)
E1 S(SR)

E2 S(SR)
E1 /SE1 S(SR)

E2 /SE2

5 130 85 45 60 46 0.71 1.02
6 168 98 70 72 72 0.74 1.03
7 155 99 56 72 72 0.73 1.29

state of 16O. An additional contribution to the E1 transition
may come from interference between the 1− SR with the
higher broad (EX = 9.59 MeV; 1−) MeV resonance and the
direct capture to the ground state.6 Thus, a 5% uncertainty
of the subtheshold ANC C1 generates about 4% uncertainty
of the total E1 S(300 keV) factor. As previously discussed,
the E1 SE1(300 keV) factor is independent of the ground-state
ANC, as illustrated in Table VI below. Hence, the interference
of the E1 SR occurs only with the broad 9.59 MeV resonance.

For the E2 transition we get almost 100% correlation be-
tween the subthreshold ANC for the subthreshold 2+ state
and the SE2(300 keV) factor for the E2 transition to the
ground state. We can conclude that at low ground-state ANC
of 58 fm−1/2, the interference effect of the subthreshold
2+ resonance with higher resonance and the direct capture
amplitudes is negligible. Hence, when other parameters are
fixed, the uncertainty of the subthreshold ANC for the 2+
state almost completely propagates into the uncertainty of the
SE2(300 keV) for the E2 radiative captures to the ground state.
Accordingly, for the low ground-state ANC, a 5% uncertainty
of the subthreshold ANC C2 generates about 5% uncertainty
in the total SE2(300 keV) factor.

V. LOW-ENERGY S FACTORS FOR RESONANCE
CAPTURE TO THE GROUND STATE THROUGH

SUBTHRESHOLD RESONANCES

A. Contribution of the subthreshold 1− and 2+ resonances

While the importance of subthreshold ANCs in the analysis
of the 12C(α, γ )16O reaction was acknowledged and large
amount of the literature on this subject has been published
(see Ref. [2] and references therein), the precise contribution
of the SRs had not been determined previously. From Table V
we can already draw some preliminary conclusions about
contribution of the pure SRs into the total S(300 keV) factor.
Below we present the calculations of the low-energy S factors
for the E1 and E2 transitions through the subthreshold 1−
and 2+ resonances for capture to the ground state. No other
mechanisms are included. It allows us to evaluate numerically

6The impact of the interference of the SR with the direct capture
will be checked below by using the higher ground-state ANC of
337 fm−1/2.

FIG. 5. Low-energy S factors for the 12C(α, γ )16O reaction cal-
culated using all the subthreshold and ground-state ANCs from
Ref. [2] (see Table I). The thick solid line is the total S factor, the
thin solid line is the total E1 S factor and the dashed line is the total
E2 S factor; the dotted line and dot-dashed lines are the E1 and E2 S
factors contributed only by the 1− and 2+ subthreshold resonance
transitions to the ground state, respectively. Note that the dashed and
dot-dashed lines practically coincide.

the contribution of the SRs to the total low-energy S factor,
and, in particular, S(300 keV) factors. We then can determine
the role of the subthreshold ANCs and show the necessity to
decrease their uncertainties to improve the uncertainty of the
total S(300 keV) factor.

Figures 5–7 depict the results of the calculations. In Fig. 5
we use the low ANCs from Ref. [2] (see Table I) including
the ground-state ANC C0 = 58 fm−1/2. In Fig. 6 the ground-
state ANC remains low (the same as in Fig. 5), while the
subthreshold ANCs are higher than in Fig. 5 (the last row
of Table I). In Fig. 7 we use higher subthreshold ANCs (as
in Fig. 6) and higher ground-state ANC, which is taken from
Ref. [18]: C0 = 337 fm−1/2.

One can see that the E1 and E2 subthreshold 1− and 2+
resonance transitions to the ground state of 16O give the dom-
inant contribution to the total low-energy S factor confirming
a pivotal role of the subthreshold ANCs in the calculation of
the low-energy S factor.

The S factors depicted in Figs. 5 and 6 show very similar
behavior near the energy of 300 keV: the S factors S(SR)

E1 (E )
for the E1 transition to the ground state proceeding through
the 1− SR are slightly lower than the total E1 S factor
SE1(E ). It agrees with our findings about correlation between
the ANC of the subthreshold state 1− and the total SE1(E )
factor presented in Table V. However, according to Figs. 5
and 6, as well as Table VI, it is evident that the value of
S(SR)

E1 (300 keV) rises as the subthreshold ANC for the 1− state
increases.

The S(SR)
E2 (300 keV) factor for the radiative capture through

the SR 2+ exceeds the total SE2(300 keV) factor only by 3%.

It means that we observe a small destructive interference of
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FIG. 6. Low-energy S factors for the 12C(α, γ )16O reaction cal-
culated using the ground-state ANC C0(0.0 MeV) = 58 fm−1/2 [2],
while all other ANCs are taken from the last two rows of Table I.
The notations are the same as in Fig. 5. Note that the dashed and
dot-dashed lines practically coincide.

the amplitude for the E2 transition to the ground state through
the SR 2+ with the higher broad 2+ resonances and the direct
capture amplitudes.

Figure 7 displays the results obtained using the higher
subthreshold ANCs (the last two rows in Table I) and the
higher ground-state ANC of 337 fm−1/2 [18]. One can see
that the behavior of the S(SR)

E1 (E ) factor is very similar to the
one from previous figures proving that this S factor practically
does not depend on the ground-state ANC. The independence
of the SE1(E ) factor on the ground-state ANC follows from
a simple fact that this dependence can come only from the

FIG. 7. Low-energy S factors for the 12C(α, γ )16O reaction cal-
culated for the ground-state ANC C0(0.0 MeV) = 337 fm−1/2 [18].
All other the ANCs are taken from the last two rows of Table I. The
notations are the same as in Fig. 5.

channel radiative transition amplitude M (ch)
SR (E ) of the SR 1−

and direct capture amplitude. However, both contain almost
vanishing effective charge, which suppresses the contribution
of both amplitudes.

The same is true for the SR S(SR)
E2 (300 keV) factor for

the E2 transition, which is not sensitive to the ground-state
ANC. Still, the total SE2(300 keV) factor shows a noticeable
decrease as the ground-state ANC increases. It means that for
the E2 transition we observe the destructive interference of
the capture through the SR with the direct transition, which
depends on the ground-state ANC. For the small ground-state
ANC of 58 fm−1/2 this interference is very small but it be-
comes significant for the higher ground-state ANC.

The numerical results of the calculations presented in
Figs. 5–7 are summarized in Table VI. We see that in-
crease of the subthreshold ANCs increases S(SR)

E1 (300 keV)
and S(SR)

E2 (300 keV). However, the contribution of the
S(SR)

E1 (300 keV) (7th column) to the budget of the total
SE1(300 keV) changes very little, 71–74% and does not de-
pend on the ground-state ANC.

The S(SR)
E2 (300 keV) also does not depend on the ground-

state ANC because the channel radiative width amplitude for
the E2 transition is very small. But the total SE2(300 keV)
depends on the ground-state ANC due to the destructive in-
terference of the E2 SR amplitude with the direct capture
amplitude to the ground state of 16O. It results in decrease
of the SE2(300 keV) compared to the S(SR)

E2 (300 keV) (eighth
column in Table VI).

B. Impact of the ground-state ANC

Here, we revisit the role of the ground-state ANC once
again. In this paper we employed two ground-state ANCs,
58 fm−1/2 [2] and 337 fm−1/2 [18].

As we mentioned above, for the low ground-state ANC
the interference of the resonance E1 and E2 transitions with
the direct captures to the ground state is small. The present
calculations of the E1 and E2 transitions with the ground-
state ANC of 337 fm−1/2 and the subthreshold 1− and 2+
ANCs from Ref. [22] (see also Table I), which include the
interference of the resonances and direct captures, resulted in
SE1(300 keV) = 99 keVb and SE2(300 keV) = 56 keVb.

Our findings indicate that a notable rise in the ground-
state ANC of 16O has a minimal impact on the astrophysical
SE1(300 keV) factor (compare the last two rows in column SE1

of Table VI). However, it does lead to a 20% reduction of the
SE2(300 keV) compared with the SE2(300 keV) obtained for
the lower ground-state ANC (compare the last two rows in
column SE2 of Table VI).

Meanwhile, the uptick in the subthreshold ANCs boosts
both SE1(300 keV) and SE2(300 keV) values. Therefore, we
can infer that the concurrent increase of the subthreshold and
ground-state ANCs leads to a boost of the SE1(300 keV) and
SE2(300 keV) values mitigated by a reduction of the latter
at higher ground-state ANC. From Table VI we can see that
the total S factor S(300 keV) = 130 keVb calculated for low
subthreshold and the ground-state ANCs elevates to 168 keVb
for higher subthreshold ANCs and low the ground-state ANC,
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FIG. 8. The total S factors for the 12C(α, γ )16O reaction given
by E1 + E2 + cascade transitions to the ground state of 16O for three
different calculations. The solid line is the present total S factor for
the ground-state ANC of 58 fm−1/2 and the current ANCs of the
subthreshold states (the last two rows in Table I); the dashed line is
similar to the solid line but for the ground-state ANC of 337 fm−1/2;
the dotted line is the total S factor from deBoer et al. [2]. The
experimental data are from Schürmann et al. [3] and Yamaguchi et al.
[37].

but it decreases to 155 keVb for the higher subthreshold and
ground-state ANCs.

Hence, our calculations confirm a correlation between the
ground-state ANC of 16O and the ANC of the subthreshold
2+ state, in agreement with Ref. [18]. From this perspective,
taking into account the results from Ref. [2] and adopting the
ANC for the 2+ state from Ref. [22], we can assume that the
ground-state ANC of 16O, which fits the S factor from Ref. [2],
should be less than 337 fm−1/2.

Finally, we point out that one of the main uncertainties
of the ground-state ANC from Ref. [18], which we use in
this paper, stems from the uncertainty of the ANC for 11B →
α + 7Li, which was not properly discussed in Ref. [18]. That
is why at this stage, due to the lack of reliable ANC for the
ground state of 16O, we cannot provide the total uncertainty
of the ground-state ANC of 16O extracted in Ref. [18].

Figure 8 shows the total S factors contributed by the sum of
the E1 + E2 resonance transitions to the ground state of 16O
(including the interference with the direct captures) plus the
cascade transition to the ground state of 16O. There are many
experimental datasets available in the literature [2]. We show
one of them as a representative example. The explanation of
the three different lines is given in the caption to the figure.
It is evident that increasing the ground-state ANC and the
subthreshold ANCs is bringing the present results closer to
those in Ref. [2], which were obtained using lower ANCs.

VI. SUMMARY

The S factors for the 12C(α, γ )16O reaction are calculated
within the R-matrix AZURE2 code using the recently de-

termined ANCs for four subthreshold states 0+
2 , 3−, 2+, 1−

[21,22], which represent the high end of the ANCs, and a low
ground-state ANC of 58 fm−1/2 of 16O [2]. The results are
compared with the those obtained in Ref. [2] using the sub-
threshold ANCs available in the literature, which represents
the lower end of the ANCs. Our comprehensive calculations
of the low-energy S factors encompass the E1 and E2 SR
transitions to the ground state of 16O, which interfere with the
higher resonances and direct captures, and cascade radiative
captures to the ground state of 16O through four subthreshold
states: 0+

2 , 3−, 2+, and 1−. Since our ANCs are higher than
those used by deBoer et al. [2], the present total S factor at
the most effective astrophysical energy of 300 keV is 174
keVb versus 137 keVb of that work. Higher subthreshold
bound-state ANCs used in the present calculations lead to a
higher S(300 keV) factor and higher low-temperature reaction
rates (see Appendix B).

Since in the present calculations, all the parameters, except
for the subthreshold ANCs, were taken from Ref. [2], we
are able to check the dependence of the S factors for the
12C(α, γ )16O radiative capture at very low energies, where
the resonance captures through the subthreshold state dom-
inate. The contributions of the E1 and E2 SR transitions
to the total S factors SE1(300 keV) [SE2(300 keV)] are 71%
and 74% (102% and 103%) for the subthreshold ANCs from
Ref. [2] and present ones, respectively. Moreover, we also
observe that for the uncertainty of the 1− (2+) subthreshold
ANC of 19% (55%) generates 15% (56%) uncertainty in the
SE1(300 keV) [SE2(300 keV)]. It is essential to emphasize that
the ratio S(SR)

E1 (300 keV)/SE1(300 keV) = 74% is less than
the correlation of the uncertainties C2

1 and SE1(300 keV),
which is 79%. This arises from the additional contribution of
the interference of the E1 SR and the broad (9.59 MeV, 1−)
resonance, which also depends on C1.

The E1 transition of the SR 1− is not influenced by
the ground-state ANC as the E1 nonresonant capture is
the isospin forbidden transition (with a negligibly small ef-
fective charge), yet it still interferes constructively with a
broad (9.585 MeV; 1−) resonance giving (for the present sub-
threshold ANCs) an additional 26% contribution to the total
SE1(300 keV) factor.

The interference between the E2 transition of the SR
2+ and direct capture is minimal when the ground-state
ANC is small, but becomes destructive at higher ground-state
ANC, resulting in a contribution of −29%. The low-energy
SE2(300 keV) factor experiences a smaller increase when both
subthfreshold and the ground-state ANCs rise together due to
their anticorrelation, compared to when only the subthreshold
ANCs increase.

In summary, our key findings indicate that:
(1) For given parameters of the broad 1− resonance

9.59 MeV [2] we can control the uncertainty of the
SE1(300 keV) factor, which stems from the uncertainty of the
square of the subthreshold ANC C2

1 , as the total uncertainty of
the former is 79% of the latter.

(2) The uncertainty in the ground-state ANC limits the
conclusiveness of our analysis for the E2 transition compared
to the E1 case. The most pressing issue that needs attention is
determining the ground-state ANC.
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Nevertheless, we can draw some preliminary conclu-
sions. For the low ground-state ANC, the uncertainty of the
SE2(300 keV) factor is completely generated by the uncer-
tainty of C2

2 . Hence, the total uncertainty of the S(300 keV)
factor is given by

√
[0.79 C2

1 ]2 + [C2
2 ]2 . An increase in the

ground-state ANC results in a decrease in the contribution of
the SE2(300 keV) to the total S(300 keV) factor, making the
uncertainty in C2

2 less important. Therefore, we can assert that
the upper bound of the total uncertainty for the S(300 keV) is√

[0.79 C2
1 ]2 + [C2

2 ]2 .
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APPENDIX A: REDUCED WIDTH OF THE
SUBTHRESHOLD RESONANCE

Discussing the appearance of the Whittaker function in
Eq. (18) is appropriate and ties in with deriving the expression
for the reduced width of the SR. To establish a relationship be-
tween �SR

Js
(E ), γ SR

ls
(Rch ) and the ANC Cls of the subthreshold

bound state, one can extrapolate the elastic scattering S matrix
[see Eq. (3)] to the SR pole.

The fundamental concept of the S matrix’s analyticity re-
quires the existence of a bound-state pole positioned on the
upper part of the imaginary axis in the k plane. In the vicinity
of the subthreshold pole in the k plane, the S matrix for elastic
scattering is represented by [25]

Sls
k→i κs+0= −i(−1)ls ei π ηs

C2
ls

k − i κs
. (A1)

In this equation, the pole’s residue is articulated in terms of
the subthreshold ANC Cls .

At the same time, the elastic scattering S matrix in the
R-matrix approach can be written in terms of the resonance
width or, alternatively, in terms of the reduced width. To make
the derivation of the S matrix in the presence of the SR clearer,
we start from the beginning. In the R-matrix formalism, the
single-level, single-channel S matrix is provided by

Sls = e−2 i (δhs
c ls

−σC
cls

) 1/Rls − [ls (E ) − Bls − i Pls (k, Rch )]

1/Rls − [ls (E ) − Bls + i Pls (k, Rch )
,

(A2)

where Rls = γ̃ 2
ls
/(Es − E ) is the R matrix, γ̃ 2

ls
is the formal

reduced width of the subthreshold level. Additionally, ls (E )
is the Thomas shift and Bls is the boundary condition. We
remind that Js = ls. Es is the R-matrix-level energy corre-
sponding to the subthreshold resonance. We adopt Es = −εs

and Bls = ls (−εs). Then for E in the vicinity of −εs

Sls ≈ e−2 i (δhs
c ls

−σC
cls

)
−εs − E + i Pls (k, Rch ) γ 2

l,s

−εs − E − i Pls (k, Rch ) γ 2
ls

. (A3)

We employed ls (E ) − ls (−εs) ≈ dls (E )
dE |E=−εs

(E + εs). It
allows one to introduce the observable reduced width:

[γ SR
ls (Rch )]2 = γ̃ 2

ls

1 + dls (E )
dE

∣∣
E=−εs

. (A4)

When extrapolating E → −εs Eq. (A3) is reduced to

Sls

E→−εs≈ −i e−2 i (δhs
c ls

−σC
cls

)
Pls (k, Rch )

[
γ SR

ls
(Rch )

]2

E + εs
. (A5)

To obtain it we took into account that in the denominator
at E � 0 �SR

Js
(E ) = 0 due to the presence in it the barrier

penetrability Pl (k, Rch ) [see Eq. (13)], which represents the
imaginary component of the logarithmic derivative of the
wave function that remains real for negative energies. How-
ever, taking into account Eq. (12), the numerator is made up
of

e2 i
(
σC

ls
−δhs

ls

)
Pls (k, Rch ) = k Rch

[Ols (k, Rch )]2

= (−1)ls e−π η sign Rek k Rch[
W−i η,ls+1/2(−2 i k Rch )

]2 . (A6)

TABLE VII. Low-temperature reaction rates (T9 � 2).

Reaction Rates ( cm3

s mol ) Reaction Rates ( cm3

s mol )
T9 Present Ref. [2]

0.06 6.81 × 10−26 6.78 × 10−26

0.07 3.65 × 10−24 3.28 × 10−24

0.08 9.33 × 10−23 8.00 × 10−23

0.09 1.42 × 10−21 1.18 × 10−21

0.1 1.46 × 10−20 1.20 × 10−21

0.11 1.11 × 10−19 9.03 × 10−20

0.12 6.66 × 10−19 5.38 × 10−19

0.13 3.29 × 10−18 2.65 × 10−18

0.14 1.39 × 10−17 1.11 × 10−17

0.15 5.11 × 10−17 4.08 × 10−17

0.16 1.68 × 10−16 1.34 × 10−16

0.18 1.37 × 10−15 1.09 × 10−16

0.20 8.34 × 10−15 6.64 × 10−15

0.30 4.68 × 10−12 3.73 × 10−12

0.35 4.10 × 10−11 3.28 × 10−11

0.4 2.44 × 10−10 1.96 × 10−10

0.45 1.10 × 10−9 8.82 × 10−10

0.5 3.99 × 10−9 3.22 × 10−9

0.6 3.33 × 10−8 2.70 × 10−8

0.7 1.80 × 10−7 1.47 × 10−7

0.8 7.2 × 10−7 5.92 × 10−7

0.9 2.32 × 10−6 1.92 × 10−6

1.0 6.37 × 10−6 5.30 × 10−6

1.25 4.85 × 10−5 4.10 × 10−6

2.0 2.60 × 10−3 2.40 × 10−3
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eπ η sign Rek [W−i η,ls+1/2(k, Rch )]
2

is analytic function in the up-
per half k plane (Imk > 0) except the point k = 0 [25]. Its
extrapolation to the subthreshold bound state pole is sim-
ple, leading to the emergence of the Whittaker function
W−ηs, ls+1/2(2 κs Rch ) for the subthreshold bound state:

e2 i (σC
ls

−δhs
ls

) Pls (k, Rch )
k→i κs= (−1)ls ei π ηs i κs Rch

[W− ηs,ls+1/2(2 κs Rch )]2
. (A7)

With Eq. (A7) considered, in the vicinity of the subthreshold
bound state pole in the k plane Eq. (A5) transforms to

Sls

k→i κs≈ −i μ Rch
(−1)ls ei π ηs[
W−ηs,ls+1/2

]2

[
γ SR

ls
(Rch )

]2

k − i κs
. (A8)

Equation (18) is derived from the comparison of Eqs. (A1)
and (A8).

APPENDIX B: REACTION RATES

In Table VII we compare the reaction rates calculated
using the present total S factor with the ones from Ref. [2].
For easier comparison, the tabulated low-temperature reaction
rates are calculated at the same temperatures as in Ref. [2].
Since the present S factor is larger than that from Ref. [2],
at low temperatures T9 < 2.0 our reaction rates exceed the
reaction rates from Ref. [2]. However, since we constrain our
calculations to low-energy S factor, at temperatures T9 � 2 the
reaction rates from Ref. [2] exceed ours.
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