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Abstract

The spin current model of electric polarization in multiferroics is justified via the quantum
hydrodynamic method and the mean-field part of the spin-orbit interaction. The spin current model
is applied to derive the electric polarization proportional to the scalar product of the spins of the
nearby ions, which appears to be caused by the Dzylaoshinskii-Moriya interaction. The symmetric
tensor spin structure of the polarization is discussed as well. We start our derivations for the
ferromagnetic multiferroic materials and present further generalizations for the antiferromagnetic
multiferroic materials. We rederive the operator of the electric dipole moment, which provides the
macroscopic polarization obtained via the spin current model. Finally, we use the quantum average of
the found electric dipole moment operator to derive the polarization evolution equation for the
antiferromagnetic multiferroic materials. The possibility of spiral spin structures is analyzed.

1. Introduction

The Landau-Lifshitz—Gilbert equation happens to be a highly effective method for the theoretical study of the
macroscopic processes of the magnetization evolution in the magnetically ordered materials. However, if we dial
with the multiferroic materials, it requires an equation for the polarization evolution. Therefore, the problem of
the derivation of the polarization evolution equation is formulated [ 1, 2]. There are three mechanisms of the
polarization formation in II-type multiferroics [3], where the magnetic properties related to the dielectric
properties, while the I-type multiferroics are the materials, where the magnetic properties and the ferroelectric
properties coexist without strong interference. These mechanisms are the exchange-striction mechanism
(symmetric-parallel components of spins gives the polarization), the spin-current/inverse Dzylaoshinskii-
Moriya model (antisymmetric-perpendicular components of spins gives the polarization), the spin dependent
p-d hybridization related to the spin of single magnetic ion. Described mechanisms of ferroelectricity of spin
origin are summarized in figure 2 of [3].

Particularly, there is the inverse Dzylaoshinskii-Moriya model associated with the spin current, which is also
called the spin current model. In this paper, we are focused on the analytical justification of the spin current
model, which basically states that the polarization is proportional to the spin-current P ~ £ *#7J%7, where P“is
the polarization, ¢ “ 77is the three-dimensional Levi-Civita symbol, J 97isthe spin current tensor. We show that
it can be derived with no relation to the particular mechanism of the polarization formation. Further application
of the spin current caused by different mechanisms leads to the electric dipole moment being proportional to the
scalar product of the spins, or the electric dipole moment being proportional to the vector product of the spins.
The analytical derivation of polarization (its macroscopic form and corresponding microscopic electric dipole
moment) allows to specify the interaction leading to the physical mechanisms of the polarization formation in
two mentioned regimes.
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The polarization evolution equation for multiferroics with ferromagnetic order of spins for two of described
mechanisms (the symmetric and antisymmetric regimes) are considered in [ 1, 2]. Here, we consider the
polarization evolution equation for the antiferromagnetic multiferroics, where the electric polarization is
proportional to the scalar product of the spins of the neighboring ions.

The Landau-Lifshitz—Gilbert equation contains a number of terms representing major phenomena existing
in the magnetically ordered materials. One of the major interactions in the ferromagnetic materials is the
exchange interaction, which is modeled by the Heisenberg Hamiltonian.

Multiferroic materials are the magnetically ordered materials, so similar mechanisms can affect the dynamics
of polarization in the multiferroic materials. It is especially related to the II-type multiferroics, where the
magnetic and the dielectric phenomena are deeply related, in contrast to the I-type multiferroics, where the
magnetic and the dielectric phenomena coexist. Therefore, we consider the role of exchange interaction in the
evolution of polarization in the regime, where the electric dipole moment is proportional to the scalar product of
the spins.

A classification of ferroelectrics is also presented in [4]. It shows the relation between materials and
mechanism of the polarization formation (mechanism of inversion symmetry breaking) in this material (see
table 1). It shows five mechanisms with relation to particular materials, but no analytical formalization is given in
contrast with [3]. Nevertheless, [4] also includes the spin-atomic structure for a-b plane of perovskite YNiOj; (see
figure 1(d)), where we see antiparallel spins for the net of Ni* ™ (smaller value of magnetic moment), we also see
antiparallel spins for the net of Ni*~* (larger value of magnetic moment), while pairs of nearest Ni* ™ and Ni*
have parallel spins. This antiferromagnetic system of parallel /antiparallel spins can be associated with the results
obtained in this paper. The fourth-order term in energy ~ — P°M” is associated with YMnO3 and BiMnOj [4]
(see the text before equation (1) on page 16). It corresponds to the structural transition ‘Geometric ferroelectrics.’
It can be associated with the homogeneous magnetic ordering [4].

In contrast, the polarization can be described by the following equation for the inhomogeneous magnetic
ordering [5-7]

P~(S-V)S-S(V-9), ey

where the inhomogeneous magnetization can be associated with the rotation of the magnetic moments (see
figures 4 and 5 in [4]). The antiferromagnetic analog of equation (1) can be found in [8, 9].

A model of the microscopic origin of electric polarization is given in [10]. The focus is made on the
noncollinear magnetic order and formation of the electric polarization in Mott insulators. However, it is also
shown that the form of the magnetoelectric coupling allows additional constructions in comparison with known
configurations [3].

A slow change/rotation of the spin direction in a sample (see figure 4 in [4]) creates conditions for the
noncollinear mechanisms of the polarization formation (see figures 2(d)—(f) of [3]). However, the collinear part
of the relative spin orientation is nonzero, so the mechanism of the polarization related to the collinear spins can
contribute in these systems. Coefficients giving the polarization can differs for different mechanisms, so one of
mechanisms can be suppressed.

The area of the spin rotation leading to the noncollinear and the collinear spin formations appears in the
domain walls. Magnon-induced domain wall motion in ordinary ferromagnets is considered in [11]. The
Dzyaloshinskii-Moriya interaction as a mechanism of the magnon-driven domain-wall motion is considered in
[12]. Antiferromagnetic domain wall motion induced by spin waves is considered in [13]. Magnon induced
magnetization dynamics in multiferroics is considered in [14]. It includes the magnon-induced domain wall
motion. Particularly, the Landau-Lifshitz—Gilbert equation is applied for the analysis, where an additional term
is included to describe the coupling between the electric field and the magnetization in a manner associated with
equation (1) (see equations (3) and (4)). Magnonic spin-transfer torque can efficiently drive a domain wall to
propagate in the opposite direction to that of the spin wave, as demonstrated in [15]. An analytical derivation of
the magnon-driven Dzyaloshinskii-Moriya torque is developed in [16]. It is also shown that the Dzyaloshinskii-
Moriya interaction mediated by spin waves can generate a torque on a homogeneous magnetization that
resembles the Rashba torque. The magnetization dynamics in a thin-film ferromagnet deposited on a topological
insulator is studied [17]. It is focused on domain-wall motion via current and the possibility of a spin-wave
torque acting on the magnetization. The coupling between the magnetic domain wall and the topological
insulator removes the degeneracy of the wall profile with respect to its chirality and topological charge, as shown
analytically [17]. The dynamics of a multiferroic domain wall in which an electric field can couple to the
magnetization via the inhomogeneous magnetoelectric interaction is studied in [18]. It also demonstrates that in
the stationary regime, the chirality of the domain wall can be efficiently reversed when the electric field is applied
along the direction of the magnetic field. Some discussion of the structure of the Dzyaloshinskii constant and the
Dzyaloshinskii-Moriya interaction can be found in [19] in context of the experimental analysis of magnetized
Fe/Nibilayers, where a new type of domain wall structure is reported.
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Another object with the noncollinear spin structure is Skyrmions. Let us mention that the skyrmion-like
spin structures formed by the thermal fluctuations in the ferromagnetic materials are studied in [20]. In [20] it is
also specified that the uniaxial anisotropy K (K > 0, favoring perpendicular magnetic anisotropy with an energy
of —KM?) and ‘effective stiffness’ K, of the conical phase can be calculated from the in-plane and out-of-plane
saturation fields.

In this paper we mainly consider the single-phase AFM multiferroics. However, important novel
phenomena are discovered in multilayered, where the film is grown on the substrate. Application of our model
depends on the properties of the materials. The current form of our model includes the connection between
magnetic and dielectric properties of the materials, while multiferroics are well-known due to relation of the
magnetic and dielectric properties to the elastic properties of the medium. However, the elasticity has not been
considered in terms of our model. As an illustration we mention AFM /ferroelectric multiferroic
heterostructures, such as experimentally demonstrated Mn-Pt/PMN-PT heterostructures [21]. Application of
the electric field to BaTiOj; leads to the strain appearance. As the consequence the strain appears in the
intermetallic Mn;Pt film. It causes changes in the magnetic properties of Mn;Pt film. Particularly it changes
properties of the topological anomalous Hall effect in a non-collinear phase of the antiferromagnet. So, the
elastic properties play essential role in this phenomenon. Another example is the tunneling magnetoresistance
effect [22]. An effect similar to the ferromagnet-antiferromagnet exchange-bias system is discovered for a room-
temperature exchange-bias effect between a collinear antiferromagnet and a non-collinear antiferromagnet.
The Né el pair anisotropy term between the nearest Mn-Pt pairs (equation (1) in section Methods of
Supplementary materials of [22]) is applied at the numerical modeling. It structure is similar to the polarization
in the spin dependent p-d hybridization mechanism.

Describing the magnetization and its dynamics, we usually focused on the spin density, while the spin of
atom/ion is formed by the spins and orbital motion of elements of the atomic structure. The superposition of
the spin angular momentum density and the orbital angular momentum density is obtained in [23] (see equation
(14)). The conservation of the zcomponent of the total angular momentum is demonstrated for a Heisenberg
ferromagnet with isotropic exchange interaction [23].

We consider the Dzyaloshinskii-Moriya interaction to complete the spin current model for collinear spins (it
is assumed that the collinear spin structure is formed by the Heisenberg exchange interaction, while further
formation of spin related electric polarization is formed by the Dzyaloshinskii-Moriya interaction). So, we want
to mention some continuous approaches based on the Dzyaloshinskii-Moriya Hamiltonian. The model used in
[12]is based on the total free energy with a nonexplicit account of the Dzyaloshinskii-Moriya interaction. Its
explicit contribution is given in the Landau-Lifshitz-Gilbert equation in the form of the torque
T = 7DM x (V x M), with 7is the gyromagnetic ratio. It corresponds to the Dzyaloshinskii-Moriya
interaction with a chiral energy of DM - (V x M). In our work, we address the Dzyaloshinskii-Moriya
interaction given by Hamiltonian H= (-1 / 2)D;; - [8; x §;]and derive a different form of the torque in the
Landau-Lifshitz equation for the ferromagnetic and antiferromagnetic materials. In our derivation, we include
the vector nature of the Dzyaloshinskii constant and its analytical structure.

The Dzyaloshinskii-Moriya interaction generates the torque on the magnetization. The Dzyaloshinskii-
Moriya interaction mediated by spin waves is considered in [ 16] for systems displaying the interfacial
Dzyaloshinskii-Moriya interaction. A thin magnetic film with the magnetization m aligned along the
in-plane easy axis, the magnetic energy associated with Dzyaloshinskii-Moriya interaction reads [16]

W= —Dm X [(z x V) x m], where system with an interfacial inversion asymmetry along the normal z[24]
(films and multilayers with in-plane and out-of-plane magnetization are considered with the prediction of the
two-dimensional localized patterns), [25] (domain walls in ultrathin magnetic films are considered there). It
leads to an effective fieldlike torque of the form T'~ (m X z) X j,,,, with j, is the spin-wave current.

The many-particle quantum hydrodynamic method has been developed for the structureless mediums such
as the quantum ultracold gases [26, 27] and plasma-like mediums However, it has been shown that it is possible
to capture some features of solid state. Particularly, the material field form of the Landau—Lifshitz equation is
derived from the many-particle Pauli equation in the coordinate representation [28]. It opened a possibility for
the anlysis of the multiferroic materials in terms of the quantum hydrodynamic method. Therefore, in order to
study the antiferromagnets, we present the derivation of the antiferromagnet analog of the Landau—Lifshitz
equation. Next, in this paper, we develop a microscopically justified macroscopic spin current model. We also
derive and apply the spin current caused by the Dzylaoshinskii-Moriya interaction to complete the derivation of
the polarization. Obtained macroscopic polarization is compared with earlier suggested electric dipole moments
of the pair of magnetic ions [3]. The polarization evolution equation is derived for the found form of polarization
caused by the Dzylaoshinskii-Moriya interaction.

This paper is organized as follows. In section 2 the microscopic derivation of the spin evolution equation for
the antiferromagnetic materials is developed within the many-particle quantum hydrodynamic method. In
section 3 the approximate form of the polarization is considered for ferromagnetic and antiferromagnetic
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multiferroics, if the electric dipole moment is proportional to the scalar product of the spins. In section 4 the
spin current model is derived from the momentum balance equation with the spin-orbit interaction.
Furthermore, in section 4, the spin-current caused by the Dzylaoshinskii-Moriya interaction is presented in
order to obtain corresponding polarization. In section 5 the polarization evolution equation is derived as the
evolution of the quantum average of the electric dipole moment operator under the influence of the Zeeman
energy and the Coulomb exchange interaction, both for ferromagnetic and antiferromagnetic multiferroics. In
section 6 the equilibrium solutions for the obtained model of multiferroics are discussed, including the spiral
structures. In section 7 a brief summary of obtained results is presented.

2. The spin evolution equation for the antiferromagnetic material: the microscopic—based
derivation with the exchange interaction

If we consider the spin evolution equation in the ferromagnetic materials with primarily exchange interaction,
we find 8,8 =(/ 6)gu[S AS],whereg, = f§2 UE)de. Firstly, it is based on the Heisenberg Hamiltonian
H=— Zl 12 i=1,ji Ui(r) (8; - 8)). Function U;(r;;) is the exchange integral. It depends on the distance
between interaction particles. In combination with the spin operators, it gives an effective potential energy.
Function U (r;;) drops at the distance larger average interparticle distance. So, it includes the interaction of
neighboring atoms or ions. It can include the interaction of the atoms separated by an atom, but it does not
include the influence of atoms located at the further distances.

In order to get a systematic derivation of the spin evolution equation, we need to define the spin density of
the system. For the quantum systems, it is defined as the quantum average of the spin operator §;

S(x, t) = f\IIT(R, t)Z O(r — r)(8;U(R, t))dR, 2)

where iis the number of atoms. The spin operators obey the commutation relation
57, 3)1 = 1/ibe° ™), (3)

where a, 3, yare the tensor indexes, so each of them is equal to x, y, z, summation on the repeating Greek symbol
is assumed, zis the imaginary unit, §; is the three-dimensional Kronecker symbol, £ @57 s the three-dimensional
Levi-Civita symbol.

We consider systems of atoms or ions. Hence, we deal with structured objects or particles. There is the
exchange interaction of valence electrons in each ion. It makes a contribution to the properties at the ion as the
particle under consideration. However, there is a short-range correlation between neighboring ions due to the
exchange interaction of valence electrons belonging to different ions. This interaction is included in the model
presented below via the Heisenberg Hamiltonian.

Evolution of the wave function of the system of ions is described by the Pauli equation

150, U(R, t) = HU(R, 1). 4)

In this paper, we mostly focused on the evolution of spin density and polarization under influence of the Zeeman
energy and the Coulomb exchange interaction
A N 1NN
H=->ji;-Bi—=> > U@Gi-3), (5
i=1 20121

h is the Planck constant, N number of atoms/ions in the system, W(R, t) many-particle wave function of the
system, R = {ry,...,rn}, B;is the magnetic field, acting on i-th atom, /i, magnetic moment operator, which is
proportional to the spin operator fi; = 7;8; with the gyromagnetic ratio ;, U;; = U(r; — 1;) is the exchange
integral of the Heisenberg Hamiltonian as the function of the interparticle distance, (the exchange integral). Let
us repeat that N is the full number of atoms under consideration. It can be considered as the sum of numbers of
particles in each of two species of the magnetic atoms N = N, + Np. Formally, we have interaction between all
pairs of atoms in the system in the second term of Hamiltonian (5), but the short range of function U(r;) leads to
the contribution of the neighboring atoms only.

If we consider two subsystems for the antiferromagnetic material, we need to define the spin density for each
subsystem

Si(x, t) = f\IJT(R, 0y 6(r — r)$;¥(R, 1))dR, 6)
1€
where index s refers to the number of the species of atoms, or, in the simplest case, it can be atoms of the same
isotope with opposite spin projection. We focus on the system of two subspecies s = Aand s = B
Next, we consider the spin evolution equation. The time derivative acts on the wave function, while the time
derivative of the wave function is replaced with a Hamiltonian in accordance with the Pauli equation
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a1Si(x, 1) = + [ 6@ - W 01, 1R, DR @)

i€s

The partial contribution in the spin evolution equation from the Zeeman energy —>"~ | fi. - B;in
Hamiltonian (5) leads to 0,S, = 271# [Ss, B. If we consider the interaction of the nearest neighbors, which
corresponds to the interaction of the different subspecies, we find the following contribution of the second term
of Hamiltonian (5) in the spin evolution equation

1
atss = 8ou,AB [Ss> Sgr=s] + ggu,AB [Ss, ASy=]. (8)

If we consider the interaction second row neighbors, which corresponds to the interaction of atoms of the
same species we find

0,5, = %gu [S., AS.]. ©)

If we consider antiferromagnetic material composed of atoms of the same species, we have same form of
potential of interaction between atoms of the same subspecies and atoms of different subspecies. However, the
signs of the potentials are different since the antiferromagnetic order corresponds to the negative exchange
integral g, 45 < 0 while atoms with the same spin direction have a positive exchange integral g, > 0. So we can
assume the following relation between the interaction constants g, 45 = — g,. Similarly, we have a relation for
the zeroth order constant gy, sp = — o, It allows us to combine equations (8) and (9) in order to get the spin
evolution equation under the exchange interaction of two subspecies

2
0,8, = ?“[ss, B] — g,,[Ss> Sei]

1
+ ggu[ss; A(Ss - Ss’is)]- (10)

Itis well known that the modeling of the antiferromagnetic materials includes superpositions of the partial
magnetizations [29], in our case spin densities. Hence, we introduce ¥ = S, 4+ Sgand L = S, — Sp. In literature,
Lis used for the difference of the magnetizations [29], hopefully it would not confuse the readers. It leads to the
following equations

8,5 = 213, 8] + Lo L, AL, (11)
7 6
and
21 1
OL = “LIL B] + —g,[S, AL1 + g, 1L, Y (12)

where we used simple representation [S4, Sg] = [S4 — Sp, Sg] =[Sa — Sp,Sa + S — Sal =[L, X1 —[S4 — S5
Sal=I[L, ] —[Sa, Sgl. So, we get 2[S4, Sg] = [L, 3]. Here we have |S4| = |Sp|, and S4 ~ — Sp. So, the sum of
partial spin densities 33 = S, + Spis a small value in the antiferromagnetic material, and |L| ~ 2|S,| & 2|Sp].

Equation (11) is obtained for a small vector | 3| < |L|. The first (second) term on the right-hand side is
proportional to the small vector 3 (to the small combination of parameters g, AL). In equation (12) we see the
first term with no small parameters, the third term containing the small vector 3, and the second term
containing the product of the small parameters ¥ and g, AL. So, the second term can be dropped in further
applications. Equations (11) and (12) are well-known for the antiferromagnetic materials [29]. However, our
derivation allows us to establish the explicit form of coefficients in this equation in relation to the microscopic
nature of the interaction entering the Pauli equation (5). Our major goal in this paper is the derivation of the
polarization evolution equation for the multiferroic materials. However, the derivation of equations (11) and
(12) shows the usefulness of our method of derivation of the macroscopic equations from the microscopic
theory. Details of the derivation are not considered here, but the method of derivation can be found in [2] and
[26]. This work on the microscopic justification of the macroscopic equations for the magnetization and the
polarization is a part of an interdisciplinary field, where similar justifications are made for the classical and
quantum systems [26-28, 30, 31].

In this paper we focused on a partial microscopic derivation of the Landau-Lifshitz—Gilbert equation. Here
we presented the contribution of the Heisenberg Hamiltonian. Below we consider the Zeeman energy and the
Dzylaoshinskii-Moriya interaction. We also consider the spin-orbit interaction as the key element for the spin
current model. However, the anisotropy energy and the Gilbert damping are consciously ignored, while these
terms are crucial for the complete model of the magnetically ordered materials.
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3. Microscopic definition of the macroscopic polarization in the exchange striction model

The electric dipole moment related to a pair of neighboring magnetic ions in the exchange striction regime is
proportional to the scalar product of spins of these ions [3, 32, 33]

d; ~ II(s; - sit1). (13)

The nonmagnetic ions contributing to the dipole moment are not considered explicitly in this equation.
Equation (13) is useful to analyze a linear structure. Hence, we give the representation to the electric dipole
moment of two ions

g = IiJI'(nj)(si -s)), (14)

where r;; = |r; — r;| is the interparticle distance, and dependence of vector function IT
nearest neighbors give contribution in dipole moment d;;'.
We develop the quantum theory of multiferroics, so we need to make a transition to the operator form of the

g (r;j) ensures that the

electric dipole moment via the consideration of the spin operators ci,]a = IIj(8; - §)). Consideringall nearest
neighbors of the i-th atom /ion, we get the full electric dipole moment related to this atom

na o

d; = TIEr)EG; - 8)). (15)

j=i
We can use the operator of the electric dipole moment (15) in order to find an approximate representation

via the spin density, which can be an analog of the Mostovoy [7], but for different physical regime. Therefore, we
present the quantum average of operator d;, which gives the macroscopic polarization

P(r, t) = f VR, Y 6(r — r)(d;U(R, 1)dR. (16)

Substituting operator (15) in the polarization definition (16) and account of the formation of the electric
dipole moment by the nearest neighbors allows to get the required approximate form of the polarization. We
need to explicitly introduce the interparticle distance in all functions in definition (16) as follows: r; = R;; +
(1/2)rj, and r; = R;; — (1/2)r;; where R;; = (r; + r;)/2, and r;; = r; — r;. This substitution includes the arguments
of the wave function W(R, ) = W(...,Lj...,Tjs..0rt).

3.1. The polarization of the ferromagnetic multiferroics

In this paper, we mostly focused on the antiferromagnetic materials. However, for comparison, it can be useful
to obtain the polarization of the ferromagnetic multiferroics in the ‘exchange striction’ regime [3]. We use
equation (16) with the operator of the electric dipole moment (15) and make the expansion on the interparticle
distance (some details of the method are described in [2]). It allows us to get an approximate expression of the
polarization (16) in terms of the spin density:

« 1 «
PY = giyS* + —gi(S - 9, (17)

where g1, = f II*(r)dr,and g(‘;[) = f E2M1%(€)d¢. Equation (17) can be also represented in the following

form P = g & + 87 [AS* — 2(8,58)(9,")].
Equation (17) is the result of the expansion on the relative distance. We included three terms of expansion.
The first and major term is proportional to g;;. The second term is equal to zero. The third term is proportional

to g(%) appears as a correction.

3.2. The polarization of the antiferromagnetic multiferroics
Formation of dipole (13) happens due to the presence of the nonmagnetic ion with the opposite charge between
ionsiandi+ 1. If we consider the antiferromagnetic material, we find the alternation of the ‘spin-up’ and ‘spin-
down’ions. So, ifion iis ‘spin-up’ thenion i + 1 is ‘spin-down’. It shows that if we consider a line of magnetic
ions, we have the nonmagnetic ion after each magnetic ion. It has no relation to the spin direction of the
magnetic ion. Hence, the effective dipole moment (15) can be associated with each magnetic ion (‘spin-up’ or
‘spin-down’)

dies = 30 T 3, - 3)), (18)

jes'

where index s or s’ refers to the subsystem of spin-up or spin-down ions. Moreover, sand s’ refer to different
subsystems. It leads to the polarization definition in the antiferromagnetic multiferroics
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P(r, t) = f VR, 1) S 8(r — r)(dW(R, 1)dR, (19)

icAJB

where s = A refers to the subsystem of spin-up ions, and s = B refers to the subsystem of spin-down ions. The
summation in equation (19) explicitly specifies that index s in operator (18) belongs to both subspecies A and B.
The same is true for the index s’, but they cannot belong to the same subspecies. Definition (18) can be splitted
on two partial polarizations P =P, + Pp

Pi(r, 1) = [WR, Y 8 — )@ PR, 1)dR 20)
i€A
Wlth él\izA = ZJGBH;:;(n])(gl . §]), and
Pocr, 1) = [WR, Y 6 — )(@W(R, )R, @n
i€B

with 07,2 B= e AL (1) (8; - §)). In order to make the splitting given by equations (20) and (21), we specify the
subspecies s = A or s = Bin operator (18).
We can calculate P, and Py separately

11,
3 38u [A(S4SB)

+ 20,1550, — Sp0uSil
+ SH(ASE) + Sp(AS)) — 2(9,S)(0,Sp)], (22)

Py = ggﬁ,ABSASB +

and

11
Pg = go1 455458 + g;gﬁ[A(SASB)

+ 20,[S5 9,k — S40,Sg]

+ SAASE + SEASE — 2(9,540)(0,Sp)]- (23)

Equations (22) and (23) have similar structure. The difference between them is in the replacement of subindexes
A < B.We obtain the major contribution appearing from the first order of the expansion on the relative
distance. Itis indicated by the coefficient g, ,,- Wealso find the correction to the major term. These corrections
contain the coordinate derivatives of the spin density. These terms are indicated by the coefficient g , .. The
definitions of g, ,,and g7 , , areidentical to the definitions of g}, and g presented after equation (17).

Next, we combine equations (22) and (23) to get an expression for polarization of the whole system

«

« 1 o 14 v v 1%
P(‘l — ngH,ABSASB + ggH,AB(SAASB + SB ASA). (24)

Equation (24) shows that the direction of polarization is not related to the direction of the spin or the direction of
change of the spin density in space. The direction is defined by the coefficients g, , . and g , .. Below, we show
that both constants have the same direction. It is the direction of the shift of the nonmagnetic ion from the line of
the magnetic ions.

We also represent the major term in the polarization of via vectors Land X:

1 1
P = Eg(gi'I,AB(ZZ -~ _Eg(;}[,ABLZ' (25)

4. Derivation of spin current model

4.1. The spin current model as the consequence of the momentum balance equation with spin-orbit
interaction

Itis possible to use the electric dipole moment operator (15) for the further derivation of the macroscopic
polarization evolution equation as an addition to the Landau-Lifshitz—Gilbert equation for the study of
perturbations and structures in the multiferroics. However, we are going to derive and justify the electric dipole
moment operator (15) starting from the quantum microscopic theory. Therefore, we consider the many-particle
Pauli equation (4) with the following Hamiltonian

7
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N

N A . 1 . A

H=) [_di'Ei_Ni'Bi_%(Ni'[EiXP,‘])

i=1
LSS e C e

- — E (Uijsi - S+ Dij - [8; x S]']) s (26)

2 i

where m is the mass of atom/ion, cis the speed of light in the vacuum, d; is the electric dipole moment operator,
being defined via the displacement of ions with different charges, its relation to the spins of ions will be found
below, E; is the electric field, acting on the i-th dipole, Uj; = U(r; — 1)) is the exchange integral of the Heisenberg
Hamiltonian as the function of the interparticle distance, Dj; is the Dzylaoshinskii vector constant. The
Dzylaoshinskii vector has the structure related to the relative position of two magnetic ions and one nonmagnetic
ion (the ligand ion) [34, 35]. It can be presented via the vector product of the radius-vectors of magnetic ions
relatively nonmagnetic ion [34]. Overwise, it can be presented as the vector product of the relative position of
two magnetic ions and the shift of the nonmagnetic ion from the line connecting two magnetic ions [35]

Dj; ~ 1;; x 4. This simple formula is useful, if we discuss one cell. However, if we consider the whole crystal
macroscopically, we need to specify that we consider two neighboring ions. Hence, we introduce a function,
which decreases (drops to zero) at the distances beyond the period of the crystal cell. So, we have the following
structure D;; = B(r;j)r;; X 6.

The single-ion anisotropy is considered in [3] (see p. 34, equations (39), (40), but we do not include it in our
model at this stage. Equation (41) of [3] also presents the biquadratic interaction (see also the model in [36]),
which is partially considered within our model for the spin evolution equation [37].

Let us also describe the physical meaning of terms in the Hamiltonian (26). The first term is the action of the
electric field on the electric dipole moment. The second term is the action of the magnetic field on the magnetic
moment. The third term is the spin-orbit interaction showing the action of the electric field on the moving
magnetic moment. The fourth term is the Coulomb exchange interaction presented by the Heisenberg
Hamiltonian. The last term is the Dzylaoshinskii-Moriya interaction.

It is essential to specify that the electric dipole moment is related to the group of magnetic and nonmagnetic
ions. However, in section 3, we contracted the electric dipole moment operator associated with each magnetic
ion. This meaning of the operator is implicated in the Hamiltonian.

4.2. The spin current model in ferromagnetic materials
Here, we derive the macroscopic polarization corresponding to the dipole moment operator (15) via the spin
current model. Here, we also show that the spin current model follows from the momentum balance equation.
Therefore, we derive the momentum balance equation corresponding to the Hamiltonian (26).

To derive the momentum balance equation, we need to define the momentum density via the many-particle
wave function as the quantum average of the momentum operator of each particle

pr, 1) = % f ST 8(r — R)(WER, HPUs(R, 1) + h.c)dR, 27)

where h. c. is the Hermitian conjugation, and p; = — 1AV is the momentum operator of i-th particle.

We consider the time derivative of the momentum density (27). The time derivative acts on the wave
function, while the time derivative of the wave function is replaced with Hamiltonian in accordance with the
Pauli equation

op(x, t) = %/éfz o(r — 1)

x (U'(R, )[H, p]U(R, t) + h.c.)dR. (28)

Further calculation depends on the explicit form of the Hamiltonian. Moreover, different interaction terms are
considered in different approximations. The first three terms in the Hamiltonian (26) can be considered
straightforwardly. However, two last terms can be considered with the account of the short-range nature of these
interactions. Itleads to the following momentum balance equation

dip = PPVE? 4+ ASOVBP  L_ehorty(VED)
2mc
+ 20,5°VS? + Fpu, (29)

where gy, = / U(r)dr, J®7is the spin-current tensor, PPisthe polarization or the electric dipole moment density
(16), Fppsis the force density of the Dzylaoshinskii-Moriya interaction:
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Fou = %g(m((é SV(V-S) — (S- V)V(S - 5)), (30)

with g 5= /fzﬁ(é)dﬁ. So, physical meaning of terms in equation is the same like in Hamiltonian (26), they are
also placed in the same order.

Let us consider the stationary regime, where the momentum density does not change in time 9,p = 0.
Therefore, the right-hand side of the momentum balance equation (29) should be equal to zero. The balance of
the second and fourth terms gives an equilibrium magnetic field formed by magnetic moments due to the
exchange interaction B = — g;,S/~. The last term can be equal to zero in equilibrium if the spin polarization is
perpendicular to the shift of the ligand ion from the line connecting neighboring magnetic ions (§ - S) = O or it
can be equal to zero at the nontrivial balance of two terms in equation (30). However, our goal is to obtain the
spin current model, which follows from the balance of the first and third terms. It can happen in the arbitrary
electric field if polarization is balanced by the spin current appearing in the spin-orbit interaction

pr = L _guagyas, 31)
2mc

We obtain the spin-current model of the polarization with no particular relation to the form of the spin-
current. Hence, equation (31) can be applied for the derivation of the polarization caused by different
mechanisms. The mean-field part of the spin-orbit interaction plays main role in the derivation of the spin
current model, i.e. in the connection between the polarization and the antisymmentric part of the spin-current
tensor. To the best of our knowledge we are not familiar with the contribution of the symmetric part of the spin
current tensor in the polarization of multiferroics.

4.3. The spin current model in antiferromagnetic materials

The first three terms in the Hamiltonian (26) and the momentum balance equation (29) have the same form for
the ferromagnetic and antiferromagnetic materials. A difference appears for the Coulomb exchange interaction
and the Dzylaoshinskii-Moriya interaction. The force fields for these interactions are obtained in the following
forms

Fritrs = oS VY, (32)

and

1
FDM,s = gg(@)755/((5 . Ss)v(v . 85’7:5)
= (8- VIV(S - S¢.). (33)
Hence, we derive the momentum balance equation for each subspecies
Oip, = P’VEP 4 1S’VBF

7 eMJO(VEP) + Faps + Fouee (34)

+ -
2mc

The electric dipole moment is related to the group of ions, but the operator definition is recontracted to the form
of operator associated with each magnetic ion. Hence, we get the partial polarization of each subspecies from the
momentum balance equation of each subspecies. It gives us the representation of the partial polarization via the
partial spin current P¥ = ﬁswﬁ 79, Complete polarization of the sample is the combination of partial
polarizations P = P{ + P} = 2%}’;5”“3 (]2’3 + ]1‘;3 ). Therefore, equation (31) is reestablished for the
antiferromagnetic materials.

4.4. Dzylaoshinskii-Moriya spin current and related polarization in ferromagnetic materials

We presented the derivation of the spin current model. It appears due to the relativistic spin-orbit interaction. Its
further application requires an example of the spin current related to a specific physical mechanism. The explicit
form of the spin-current tensor can be found in the spin evolution equation (Landau-Lifshitz—Gilbert equation).
In this work, we focus on the justification of operator (15), which contains the vector coefficient of
proportionality between the combination of the spin operators and the electric dipole moment operator. In
Hamiltonian (26) we have two interactions containing inexplicitly defined space dependencies. They are the two
last terms corresponding to the exchange Coulomb interaction given by the Heisenberg Hamiltonian and the
Dzylaoshinskii-Moriya interaction, correspondingly. The Heisenberg Hamiltonian contains a scalar function,
so we expect that it is not related to the considering regime. In contrast, the Dzylaoshinskii-Moriya interaction is
proportional to the vector Dzylaoshinskii constant, so it can give a mechanism for the vector constant
appearance in operator (15). To check the described suggestion, we need to consider the Dzylaoshinskii-Moriya
interaction contribution in the spin evolution equation. Similarly to section 2, we use the quantum
hydrodynamic method and include the short-range nature of the Dzylaoshinskii-Moriya interaction. As the

9
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result, we find the partial contribution of the Dzylaoshinskii-Moriya interaction in the spin evolution equation
0:Ss = Towm, (35)

where
1 ‘
Tom = 385 (s [6 x V]S — S8 x VISP, (36)

with g 5= /€ B(E)dE.

Reference [12] is based on the total free energy with a nonexplicit account of the Dzylaoshinskii-Moriya
interaction. Its explicit contribution is given in the Landau-Lifshitz-Gilbert equation [38] in the form of the
torque T = yDM x (V x M) (see equation (2) and text after equation (2) of [12]). The expression we obtain in
this paper (36) shows a similar structure at the replacement g5[8 x V]on DV. The difference partially appears
due to the account of structure of the Dzylaoshinskii vector constant D;; = (3(r;)r;; x d. These expressions give
different directions of the spin torque vector.

The spin wave is considered described in [12] as a small fluctuation of the static domain-wall profile. As a
limit, a simple dispersion dependence is found for location away from the domain-wall center, where the
magnetization is uniform in the domains (see equation (9) of [12]). The dispersion relations appears to be
asymmetric outside the domain-wall in accordance with works [39, 40]. Let us specify that in [39] experimentally
demonstrated (on an Fe double layer grown on W(110)) the Dzyaloshinskii-Moriya leads to an asymmetric spin-
wave dispersion relation.

Reference [40] presents a translation of the Dzyaloshinskii-Moriya interaction Hamiltonian (like the last
term in equation (26)) to a continuum model of the energy density with magnetization direction and symmetry
breaking in the y-direction.

In order to compare our model with equation (2) of [40], we calculate the correlationless limit of the energy
density. The definition of the energy density is

1 N
Epu(r, r>:7f > 6@ —1)

ij=1,j=i
x iR, H)Dj; - [8; x §;1Us(R, t)dR. (37)

It gives us the following approximate expression
1
Epy =~ gg(ﬂ)éa(S”(V -S) —(S-V)§, (38)

where we use D;; = ((r;)r;; X 8. Let us repeat here the equation (2) [40] for the comparison

Epy = —D[(m x d,m), — (m x J,m),], where mis the magnetization direction, (b), is the x-projection of
vector b, and the y-direction is chosen in [40] as the anisotropy direction. For the fixed concentration we have
S ~ m (otherwise the change of concentration would give contribution in the derivatives of the spin density S).
We see rather different vector structures in these expressions. To continue our comparison, we would assume
D; = B(nj)rij. Itleadsto Epy = —(1 /6) g3 S - [V xS, but it also differs from even if we assume that there is
no dependence on the chosen direction y. The described difference can be caused by the different form of
structure of the Dzyaloshinskii constant D;;. Our expression (38) corresponds to equation (2) in [25], up to the
details of the coefficient. Here, we presented the derivation for the arbitrary three-dimensional sample, while the
ultrathin films with perpendicular easy axis, grown on a substrate with a capping from the different material so
that the structural inversion symmetry is broken along the film normal, are considered in [25].

The Dzylaoshinskii constant has a known particular numerical value for materials. In contrast, constants like
g3 are novel parameters. Hereby, we need to give some comment on the estimation of these parameters for
better comparison with other works. To get an approximate expression for g, if we consider explicit form for
the function G(r). We choose a model expression for the function 5(r): B(r) = (Dy/(47ad))0(r — a), where ais the
distance between magnetic ions, & is the module of the vector of the ligand shift. It leads to g 5 =Doa’ /5. Similar
analysis for the constant like gy, is given in [28].

Equation (36) shows that the spin-torque caused by the Dzylaoshinskii-Moriya interaction cannot be
represented as the divergence of the spin-current tensor. However, the second term in (36) can be represented in
the required form S 67V1S? =V7[(1,/2)e*96782]. We can use this part for the calculation of the
polarization. However, the first term in (36) gives some freedom in the interpretation of the spin current since it
allows to get an additional term.

Let us start the analysis of the polarization using the simplest form of the Dzylaoshinskii-Moriya spin current
Tour = — sl
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6 1
Toy = —gg(ﬁ)saﬁ""(S""Sf. (39)
It leads to the following form of the macroscopic polarization
. 1 v
Pl = ——emaipes — =g gus2, 40
M= o DM 6 mcg([}) s (40)

which corresponds to the first term on the right-hand side of equation (17), which is derived from operator (13).
Let us to point out that the collinear spin structure is formed by the Heisenberg exchange interaction, while
further formation of spin related electric polarization is formed by the combination of the spin-orbit and the
Dzyaloshinskii-Moriya interactions.

As amatter of discussion, let us represent the spin torque (36) in a form, where the spin current is extracted
from the first term in addition to the spin current following from the second term

1
TDM = *gg(g)((ss((s . [V X Ss])
+ VA{[d x S,J°S.} + %[6 X V]sf). (41)
It shows that we can choose the spin current in the following alternative form
zog 1 a Byecd _ 1 _apyq2
Jom = gg(ﬂ)57[55 eh Sy — 55 ISy | (42)
This extended spin current leads to the following form of polarization
S WeE 2e7¢ 1 N
Bl = —LeroBfp = ——igw)(‘s - S)S! (43)
2mc 6 mc

This form of the polarization completely differs from the structure following from the well-known electric
dipole moment of the pair of ions (13) and (17). We want to mention that the spin torque following from the
Heisenberg exchange interaction appears as the divergence of the spin current tensor with no additional
terms.

In the comparison of expressions (17) and (40), we see that they are found in different approximations.
Polarization (40) is obtained in the main order of the expansion, while polarization (17) contains corrections
related to the second space derivative of the spin density. To complete our comparison, we can find corrections
to the spin-torque caused by the Dzylaoshinskii-Moriya interaction (36) in the next order of expansion. Our
calculation gives the following spin-torque

1 )
Tha = 35% (S - [6 x VDS, SP16 x V1as/, (44)

with g = /& B(E)dE.

We need to extract a part of the spin torque, which appears as the divergence of the spin current 3’7, In
equation (36) we used the term containing the scalar product of the spin densities S’[§ x V]S (the second
term on the right-hand side). In equation (44) we follow the same approach and consider the term containing
the scalar product of the spin densities Ssﬂ [0 x V] ASSB (the second term on the right-hand side). However, the
term under consideration does not appear as the divergence of the second rank tensor. We need to split it into
twoparts S°[§ x V]ASP =[8 x VI(SZaSP) —(282)[6 x V1S and use the first of them to get the effective
spin current

11 By o
]81/\3/13 = _gg‘g'z(g)fcm’("‘v (Ss - ASy). (45)
It leads to the following polarization
310/ 11 v
Py = ——eroBf3d = ——= g 6(S, - AS)). 46
M ame pM 65 mcgz(ﬂ) 5 ) (46)

We see the spin structure in polarization (46) corresponds to the spin structure in the second term on the right-
hand side in equation (17). Hence, we justify equation (17) found from the electric dipole moment (13) using the
spin current model with the spin-current related to the Dzylaoshinskii-Moriya interaction. Moreover, our
calculations in two major orders of expansion give the interpretation of the direction of the vector constant
I19(€). We see that it is parallel to the shift of the ligand ion from the line connecting neighboring magnetic ions
6. The complite polarization is also parallel to this direction. It also corresponds to the microscopic meaning of
the electric dipole moment as a shift of ions of opposite charges.

In section 3, we found the macroscopic polarization (17) corresponding to the electric dipole moment (13).
Here, we found macroscopic polarization using the momentum balance equation with the spin-orbit interaction
and the spin-current caused by the Dzylaoshinskii-Moriya interaction. These expressions have the same

11



10P Publishing

Phys. Scr. 99 (2024) 1059b2 P A Andreevand M I Trukhanova

structure. It allows us to give a physical interpretation of the vector constant in the electric dipole moment (13).
Let us compare the polarization given by the first term in equation (17) with equation (40). It gives the following
relation g, S =— %% g ﬁ)(‘WSf, where we can drop the square of the spin density S2 and compare the
coefficients. Basically, we need to compare the functions under the integrals. We have two options. First, we
equate the functions under integrands and find T1*(¢) = — (1/6)(7/mc)€*5(£)6 . Second, we transform the left-
hand side by integration by parts, so we obtain g, = —(1 / 3) f E(0TI*(¢) / 0€)d*¢. Next, we equate the
functions under integrands and obtain OTI“(&),/J& = (v/2mc)£6(£)6 .

We found a relation between the empirically introduced function I1%(€), which is the coefficient of
proportionality in the electric dipole moment (13) and the function 3(§) appearing in the Dzylaoshinskii-Moriya
interaction. The Dzylaoshinskii-Moriya interaction is the exchange part of the spin-orbit interaction, and the
coefficient D;; is the exchange integral. It is similar to the exchange integral in the Heisenberg exchange
interaction, where the exchange part of the Coulomb interaction is considered.

In order to prove the found expression for function IT%(§) we considered the next order of expansion for the
polarization definition (17) and the Dzylaoshinskii-Moriya spin-torque giving the effective spin-current and
corresponding polarization (46). Hence, we compare the second term on the right-hand side of equation (17)
with polarization (46). Dropping equal spin structures, we find lgﬁ" =— %émlcgz( 5,0 Here we need to compare
the functions under integral and prove the relation between I1“(£)/9¢ and 5(€) obtained above. We transform
the left-hand side by integration by parts, so we obtain g = —(1 / 5) f E(OTI«(¢) / 0€)d*¢ . Itleads to relation

@ _ a
o 2mc§ﬂ(§)5 , (47)
which is presented above from the first order of expansion.

The spin torque caused by the Heisenberg exchange interaction can be presented as the divergence of the
corresponding spin current tensor [29] g, eSPAS) = 0s(g, e85 9587) = —sJ5Y,. This spin current
tensor can be placed in the polarization obtained in the spin current model P# = ﬁs‘“‘ﬂ T8, Tt gives
polarization coinciding with the result of Mostovoy [7]. The method demonstrated in section 3 can be applied to
the operator d;; = aj[r;; X [s; X s;]] in order to rederive the result of Mostovoy [7]. So, we can conclude that this
result follows from the Heisenberg exchange interaction. This comment is placed here for comparison with the
results of our paper.

4.5. Dzylaoshinskii-Moriya spin current and related polarization in antiferromagnetic materials

In this section, we need to consider the spin-torque caused by the Dzylaoshinskii-Moriya interaction.
Particularly, we need to consider the interaction between different subspecies in the antiferromagnetic samples.
Our calculations give the following form of the s subspecies spin evolution equation under the Dzylaoshinskii-
Moriya interaction with s’ subspecies:

atss - TDM,S’¢S) (48)

where

S ES

1 ,
Tont.s=s = 8pan((Ss - [6 X VDSys - S216 x V1ISLL). (49)

The general structure of the obtained spin torque is similar to the torque existing under interaction of the ions of
the same subspecies (36). However, there is an essential difference related to the appearance of two kinds of
subindexes, sand s’. So, we find no term, which can be rewritten as the spin current.

In order to solve the described problem, we suggest the following step. We need to consider the sum of spin
torques Tppr,4 and Tpyy g instead of the sum of partial spin currents:

Tows = 815 - 18 % VDSs
+ (S - [0 x VIS4 — [0 x VI(SLSH)). (50)

So, a part of combined spin torque can be presented as a ‘combined’ spin current. So, we would be able to derive
the spin polarization of the full system instead of partial polarizations. Anyway, the partial polarizations are
intermediate theoretical constructions, which have no physical meaning since the polarization formation is
related to magnetic ions of both subspecies (and ions of the nonmagnetic subspecies). Similarly to the last term
in equation (36), we see that the last term in equation (50) gives us the effective spin current caused by the
intersubspecies Dzylaoshinskii-Moriya interaction

of 1 By
B = _gg(wAB&“ﬂr’é”(SA - Sp). 1)
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Itleads to the polarization of antiferromagnetic materials

PL, = %gﬂaﬂ]g;@ = —llg(ﬁ)AB 54(Sy - Sp). (52)
mc 3 mc
4.6. On the other types of mechanisms of the polarization formation
In this paper we are focused on the contribution of the Dzylaoshinskii-Moriya spin current in the spin current
model in order to derive the symmetric form of the electric polarization in multiferroics. However, this is one of
three known forms of the polarization. One of them is the antisymmetric form of the electric polarization.
Corresponding polarization can be obtained via the magnon spin current existing due to the Heisenberg
exchange interaction (it is briefly described in the final part of section 4.4.). The biquadrtic exchange can give a
correction to this result. The third type of the polarization is the spin dependent p-d hybridization mechanism.
At the current state of our research we cannot suggest any interaction which provides a suitable spin current.
Here we demonstrated that the spin current model can be applied for the symmetric form of the electric
polarization in addition to the well-known explanation of the antisymmetric form of polarization, but it is not
extended to the third mechanism of the polarization formation.

5. Polarization evolution equation

For the derivation of the polarization evolution equation, we use the Hamiltonian (5), where we include no
relativistic interactions. The polarization itselfis caused by the relativistic effects, hence, relativistic interactions
(the spin-orbit interaction, the Dzylaoshinskii-Moriya interaction, and the evolution of the dipole moment
under the action of the external electric field due to the relativistic nature of the electric dipole moment) give the
relatively small effect.

In order to derive the polarization evolution equation, we consider the definition of the polarization in terms
of the microscopic many-particle wave function (16), with operator (15). We consider the time derivative of this
definition. The time derivative acts on the wave functions under the integral. We find for Hamiltonian (5) the
following intermediate form of the polarization evolution equation

OP(r, t) = é [ 50— WR 1A, AIR, DdR (53)

The first term contains dependence on two particles iand j in the functions 6(r — r;), B{" and IIj; placed
under the integral in equation (53). In the following calculations of this term, we need to include the strong
decrease of function I with the increase of the interparticle distance. We need to make the transition to relative
interparticle distance similarly to section 3, where we made analysis of the definition of polarization (16).

The second term has a more complex structure. It depends on three particles 7, j and k in the functions placed
under the integral in equation (53). Therefore, we need to introduce the center of mass and the relative distances
for three particles. In our calculations, we use the following substitution r; = R;;, + (2/3)r;,, — (1/3)r},,,
rj =R, — (1/3)r;, + (2/3)r),, and r,, = Rjj, — (1/3)r;,, — (1/3)r},, where Ry, = (r; +1j+1,,)/3,

Yi, =T =T — I, Tj, =1, =T, — I',,and r;; = r3 = r; — 5. Itleads to the change of the element of volume in the
configuration space dR = dRy_3dR;jdr;,dr;,. We use these substitutions in the delta function 6(r — r;) and in
the many-particle wave function U(R, t) = LIS SR RN SN )8

After the described change of notations under the integral in equation (53) we make an expansion on the
relative distances. It is possible due to the strong dependence of functions H;’ and U(ry;) on the relative distance.
Below, we present the results of our calculations for two regimes: the ferromagnetic materials and the
antiferromagnetic materials.

5.1. Polarization evolution for the ferromagnetic materials
In this subsection, we present the results of our derivation of the polarization evolution for the ferromagnetic
materials

0P = %’ygﬁ"5[575(3“B5)S""V”S‘s + G*(S - [VHS x 0+AS)), (54)

where the first term is the contribution of the Zeeman energy (see the first term in Hamiltonian (5)), it is obtained
in this paper, the last term is caused by the Coulomb exchange interaction and obtained in [2]. The following
notations are used in equation (54): yis the gyromagnetic ratio, /1 = +3;" is the magnetic moment, and the
vector interaction constant
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G = %%gugf{# (55)
which is a combined interaction constant with g, = /r2 Und’r, g = f r2I1°(r)d’r. Here we see one interaction
constant related to the exchange integral g, = [r*U(r)d’r, and the interaction constant related to the function
describing formation of the electric dipole moment g = f r}1%(r)dr. The contribution of the Zeeman energy
in the polarization evolution equation, in the regime, where the electric dipole moment is proportional to the
vector product of the spin operators, is found in [ 1]. It is related to another mechanism of the polarization
formation in the multiferroic material.

5.2. Polarization evolution for the antiferromagnetic materials

In this section, we consider the time evolution of polarization given by equation (20), which includes the
structure of antiferromagnetic materials. Here we have two subspecies A and B, so we derive the polarization
evolution equation for each of them. Let us present the result for one of the subspecies

0Py = ge@’véggy(aﬂm)[sg OrS) — 870y — 0M(Sy SH]

1 Bv6 « «
+ gsa 18 (8180 T ZgOng)Sf;SXASﬁ

+ (=880 + 288,543 AS
+ 2g08,,(0"85)S] 01851 (56)

The first term in this equation is proportional to the space derivative of the magnetic field (0"B”). It appears
from the Zeeman energy (the first term in Hamiltonian (5)), like the first term in equation (54) obtained for the
ferromagnetic regime. Other terms in equation (56) contain the interaction constants of the Heisenberg-
Coulomb exchange interaction, since their appearance is caused by this interaction from the second term in
Hamiltonian (5). The result for the second subspecies can be obtained via the exchange of subindexes A < B.
It has been mentioned above that the polarization appears in the complex of two neighboring ions that
belong to different subspecies. So, the partial polarization (20) and equation for its evolution (56) are the
intermediate theoretical tools. We need to combine the partial polarizations in the full polarization
0,P* = 0,P§ + 0,Pg and obtain the equation for its evolution

0P = =M gi (MBS S))
L 5, e Y
+ gsdw[ZgOngSgS)‘A(Sg — 89
+ 8080, (0"S) (ST — SHO"SAl, (57)

where the meaning of different terms is the same as the physical meaning of the terms in equation (56).

The spin evolution equations (10) are combined in the evolution equations for functions ¥ = S, + Sgand
L =S, — Sp, which are traditionally used in the theory of the antiferromagnetic materials [29]. Therefore, it is
essential to represent equation (57) in terms of these functions

8,P" = _ésﬁyégg,y(auBW')au[Lﬁzﬁ]

- égﬂw’é[zgéhguzﬂﬂﬁﬂs + 81180, (M S LIOML?], (58)

where we include £ 7 [(Z° + LP\(Z? — L) =2e77°LP%?, Physical meaning of terms in the obtained equations
can be traced via the coefficients. The presence of the magnetic field shows the appearance of this term from the
Zeeman energy, and the presence of g, or g, shows its appearance from the exchange interaction, similarly to
the equations shown above.

6. Equilibrium solutions set of spin-polarization evolution equations

Let us consider equilibrium structures obeying a system of equations for the spin evolution and polarization
evolution. For the simplicity of derivation of the equation obtained above, we considered the external magnetic
field. Itis possible to include the magnetic field created by the magnetic moments of the medium. Hence, we
need to include the Maxwell equations: V- B=0and V x B = 4717V X S, where we included the zero time
derivative of the electric field due to our focus on the static regime.
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6.1. Ferromagnetic multiferroics
We start this analysis with the ferromagnetic materials. In this case, we consider several configurations of the
spin density.

6.1.1. Parallel spins, transverse change of spin magnitude

Let us consider the regime, where we consider the spin density directed in the z-direction Sy = Spe,. We also
assume that its module changes in the x-direction Sy = Sy(x). Since we assume 9,S, = 0, we need to check that
the right-hand side of the spin evolution equation

0,S =[S x B] + %gu[s X AS] (59)

is equal to zero. We see AS||e,, hence the last term is equal to zero. To check the first term, we need to find the
corresponding magnetic field, assuming that the external magnetic field is equal to zero. We find

V X 8§ = — (0,S0(x))e,. Hence, V X By = — 4m(0,So(x))e,. It gives By = — 47mSy(x)e,. The condition

V x By = 0isalso satisfied. It is parallel to Sy, so the first term in equation (59) is equal to zero as well.

The equilibrium condition means that the polarization does not depend on time. Hence, the right-hand side
of equation (54). Estimations given above show that this condition is satisfied. We also need to find the
corresponding polarization (nonzero value) via the first term on the right-hand side of equation (17):

Py = g,;;S;- Let us remind that constant gy is parallel to the shift of the ligand ion 8. We present a simple
equilibrium spin structure leading to nonzero polarization.

6.1.2. Parallel spins, longitudinal change of spin magnitude

We consider the spin density directed in the z-direction Sy = Spe,, where its module changes in the z-direction

So = So(2) as well. We require 0,8 = 0 and check the value of the right-hand side of the spin evolution

equation (59). We see AS||e,, hence the last term is equal to zero. We also find the zero magnetic field B = 0. Hence,
both equations (54) and (59) are satisfied. We also find the corresponding polarization Py(z) = gOHS(Z)(z).

6.1.3. Cycloidal spiral spin structure
Let us consider the spiral spin structure that was earlier presented in works [7, 41]:

So(r) = spe,cos(r - q) + sce;sin(r - q) + sqex, (60)

where q = ge,. Itis a spiral shifting in the direction being in the rotation plane. It can be represented in the
following form

So(y) = s,epcos(yq) + sce;sin(yq) + sqex, (61)

which can be substituted in the spin evolution equation to find the magnetic field corresponding to the
equilibrium condition.

The right-hand side of equation (59) should be equal to zero for the static regime. In addition to the magnetic
field parallel B; = xS, to the equilibrium spin density, we need to include an additional field since the second
term [Sy X ASo] = — ¢*[So X (So — s.)] =5.q°[So X €] has a nonzero value. It leads to the following structure

of the magnetic field B, = B, + B, with the additional constant field B, = — fzz
solution, we need to find the coefficient y. If we assume x = const we find that équation V - By = 0 cannotbe
satisfied. So we consider coefficient s a function of coordinates x(r). However, the x and z projections of
equation V x By =471V x §¢ can be satisfied at x = 47y or g = 0. We conclude that two interactions entering
the spin evolution equation (59) cannot support structure (60). Possibly, one can find a consistent solution in

form (62) by extending the range of interactions included in the model.

g*s.ex. To complete the

6.1.4. Screw spiral spin structure
Here we consider a spiral shifting in the direction perpendicular to the rotation plane, so substitute q = ge, in
equation (60). In the chosen regime, the structure simplifies to

So(x) = spe,cos(xq) + sce;sin(xq) + s, ex. (62)

Let us consider the right-hand side of equation (59) under assumption (62) for the spin structure. The
balance of two terms leads to the following form of magnetic field B, = B, + B, with B, = xSpand

guﬁ 2
B, = — S4€x. 63
2 ] q (63)

We need to check that the found magnetic field satisfies equation V - By = 0. It shows that function x
depends on coordinates y and z (x(y, z)) or to be a constant x = const. Next, we need to consider the second
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Maxwell equation V x By = 417V x S, (its static regime). Assuming x = const, we find the explicit expression
for y = 4my.
We can check that the right-hand side of equation (54) is equal to zero, since we consider the equilibrium state.
We see that it is satisfied. Let us present the corresponding polarization Py' = g1, 8* = gi1, (s? 4 sf cos?gx +
52 sin? gx). It can be a constant under conditions s, = =+ .. It gives polarization P§! in the following form
Py =g (s? + s7). Letus remind that the constant gor; 18 parallel to the shift of the ligand ion 6 (47).

6.2. Antiferromagnetic multiferroics

We presented a spiral spin structure in the a-direction for ferromagnetic multiferroics in terms of the model
based on the Zeeman energy and the Heisenberg-Coulomb exchange interaction. So, we are focused on the same
regime for the antiferromagnetic multiferroics, but we also briefly mention the uniform regime.

6.2.1. Uniform regime

For the uniform regime, we have parallel partial spin densities, and therefore we have parallel vectors Ly and X,
However, we can consider different modules of the partial spin densities in their opposite directions, so 3y hasa
nonzero equilibrium value. It corresponds to the constant magnetic field parallel to vectors Ly and X.

6.2.2. On a form of screw spiral spin structure
In the uniform case, we consider the parallel partial spin densities with different modules. Here, we can consider
two regimes of spirals in a-direction. One corresponds to the parallel partial spin densities with different
modules. So, we see spirals for Ly and 3, with the space phase shift on 7. Another case is the regime, where the
partial spin densities have approximately equal modules, but they are directed at the angle to each other. It leads
to perpendicular directions of Ly and X, at each point. It corresponds to the space phase shift on 7/2 for L
and XJ,.

Let us start the analysis with the screw spiral structure for L, vector

Lo(x) = lye,cos(xq) + l.e;sin(xq) + l.e,, (64)

while other characteristics we retrieve from equilibrium regime of equations of motion.

Next, we need to find the magnetic field corresponding to both the spin evolution equations (11), (12), and
the Maxwell equations V - By =0and V x By = 477,V x (7;Soi)- In the chosen case, we have y; = v, and
So1 + So2 = .

We consider the equilibrium form of equation (12), where we dropped the second term on the right-hand
side. It gives 2/ h)Bg = XLo — gou.4520, Wwhere  is an unknown coefficient. We substitute this magnetic field
in equation (11) and obtain vector X:

S0 = 2L + g gles, (65)
X 6

where o is another unknown coefficient. It also leads to the expression for the magnetic field
By = (/i [2)[(X = 80,45/ X)Lo — +80, 158 Tlae-

Equation V - B = 0 can be satisfied if (x — go.,.4p¢/X) is @ constant or a combination of functions equal to
zero. equation V X B =47V x ¥ can be satisfied at the following relation between two introduced
coefficients

X2 = a(47r'y,u/fi + Souan)- (66)

Hence, (x — gou.4p/ X) is anonzero constant. So, avand y are constants connected via equation (66).

To complete our analysis, we need to check that the polarization evolution equation (58) also corresponds to
the equilibrium regime, so its right-hand side is equal to zero. The direct substitution of found By, Ly, and 3,
shows that it is satisfied.

In this case, the polarization is mostly defined by vector L in accordance with equation (25). If we need to get
a constant value of polarization, we need to choose [, = + [ and find Py = (1 / 6)(y / 2mc) %) S(I2+1D.

The spiral spin structures are the periodic magnetic structures, which appears to be one of nontrivial spin
structures along with skyrmions, magnetic helix, magnetic vortex, chiral domain walls. Spatial variation of the
spin density is the key property for the polarization formation. Hence, the spiral spin structure is one of
structures which allows to obtain the electric polarization of the medium. If we consider the antisymmetric form
of the electric polarization following [ 7], the spiral spin structures are necessary for electric polarization in
multiferroics. The nonzero symmetric form of the electric polarization can be obtained for the collinear spin
density in accordance with equation (40). However, this is a formal result, since experimental estimation of the
polarization is made up to normalization constant. Nontrivial space dependence of the polarization can be
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found for spiral structures. Moreover, the spiral spin structures allow to obtain the periodic change of the electric
polarization in multiferroics.

7. Conclusion

The Landau-Lifshitz—Gilbert equation can be called the main macroscopic equation for the evolution of the
magnetization in the magnetically ordered materials. Multiferroic materials show the existence of the electric
polarization in addition to magnetization. Hence, the study of the multiferroics requires a couple of connected
equations for the magnetization and the electric polarization. The problem of the derivation of described set of
equations for the antiferromagnetic materials has been formulated in this paper. The II-type of multiferroics
with the electric dipole moment proportional to the scalar product of the neighboring spins has been chosen for
this research. The polarization evolution equation has been found under the action of the Zeeman energy and
the Heisenberg-Coulomb exchange interaction. The similar equation for the ferromagnetic regime has been
demonstrated as well. The many-particle quantum hydrodynamic method has been applied for the derivation of
the required polarization evolution equation. Before, the application of this method to this derivation, the
method has been successfully tested on the derivation of the spin/magnetization evolution equation.

However, the chosen definition of the electric dipole moment has been required an analytical justification.
The justification has been made in several steps. First, the spin-current model is justified for the ferromagnetic
materials via the momentum balance equation (the hydrodynamic Euler equation) containing the spin-orbit
interaction. Second, the spin-current caused by the Dzylaoshinskii-Moriya interaction has been found from the
spin/magnetization evolution equation and placed in the spin-current model to find the required polarization.
Finally, the same steps have been made for the antiferromagnetic materials.

Therefore, it has been analytically derived that there is the electric dipole moment proportional to the scalar
product of the neighboring spins caused by the Dzylaoshinskii-Moriya. The interpretation of the direction of the
vector coefficient of proportionality in the electric dipole moment has been interpreted as being parallel to the
shift of the ligand ion from the line connecting neighboring magnetic ions (this vector is the well-known part of
the Dzylaoshinskii vector constant).

Some equilibrium spin configurations have been considered for the ferromagnetic and antiferromagnetic
multiferroics. Regimes of parallel and spiral spin structures have been discussed, and corresponding electric
polarizations have been calculated.

Opverall, the Landau-Lifshitz—Gilbert equation contains the contribution of a number of physical
mechanisms. Their systematic account in the polarization evolution equation is the research program
demonstrated in this paper. The account of the Zeeman energy and the Heisenberg-Coulomb exchange
interaction for the antiferromagnetic materials with the electric dipole moment proportional to the scalar
product of the neighboring spins has been one of the initial steps towards the realization of this program.
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