climate change on the diversity and distribution of 1,095 species using an ensemble species distribution modeling framework. We projected range shifts of these species at year 2050 and 2070 under two RCP scenarios (RCP 2.6 and RCP 8.5) and further evaluated the threatened status for these species based on the International Union for Conservation of Nature criteria. We also evaluated the protection effectiveness of national and provincial nature reserves on these species. Main conclusions are summarized as follows: (1) Species distribution models performed well in modeling the current distribution of endemic seed plants on the Tibetan Plateau. Species richness is high in the mountainous area of south-eastern plateau and low in the north-western part of the Tibetan Plateau. Temperature seasonality is the main factor controlling the distribution of most species. (2) Average richness across the plateau would increase in the future if consider full dispersal. The center of richness will move upward and to the center of the plateau. Severe species loss may happen in the southern edge of the Tibetan Plateau, especially the southern part of the Hengduan Mountains. The turnover rate of species is high in the north-western part of the plateau, indicated the vulnerability of this region under future climate scenarios. (3) It was predicted that the range of about 30% species would decrease in the future even when considering full dispersal. Taken species dispersal into count may aggravate the risk of threat. National nature reserves on the Tibetan Plateau may not be so efficient in protecting these endemic species under current climate condition, but could better protect them in future climate change. Our study provided insights for biodiversity conservation management in this region under climate change.

T1-11-05
Moscow Digital Herbarium and the National Depository Bank of Live Systems initiative (Russia)
Alexey P. Seregin, Tatiana P. Balandina, Natalya S. Gamova, Ksenia V. Dudova, Natalya K. Shvedchikova
Lomonosov Moscow State University

Imaging of specimens is the modern trend in the herbarium management. Today, at least 62 herbaria have 1 M+ specimens and at least eight herbaria have estimated their collections as 1 M. Even in the larger herbaria mass digitisation is still not a common practice. In late 2014, the Moscow University Herbarium (MW) had received direct investment for digitisation within the grant #14-50-00029 from the Russian Science Foundation as part of the National Depository Bank of Live Systems initiative launched by the Moscow State University. As of November 2016, MW Herbarium holds 1,011,253 specimens being the 60th largest herbarium in the world and the second largest in Russia. An average annual increase in the last 12 years was 15,100 specimens. We employed new technical staff to facilitate further growth of the collections, intensified the collection management and 22,013 specimens were added in 2016 as a result. The MW Herbarium holds 37,100 species and subspecies of vascular plants and 2,223 species and subspecies of mosses and liverworts. Having the stable budget for the next four years, we decided to scan 1 M specimens at 300 dpi (TIFF + JPG) in 2015-2018, to digitise 4.6 K type specimens at 600 dpi, to scan 78 K labels from bryophyte capsules, and finally to database and georeference label data from as much specimens as possible until exhaustion of the budget. As of 6 January 2017, the Moscow Digital Herbarium consists of 785,887 specimens—712,925 images of vascular plants and 72,962 images of bryophyte labels. Vascular plant specimens are originated from eastern Europe—357,951 images; Asian Russia—159,663 images; Caucasus—97,400 images; the Crimea—31,790 images; Mongolia—27,323 images; South Asia—22,649 images; Africa—7,559 images; types at 600 dpi—4,630 images; Herbarium Alchemilla—3,960 images; and labels from capsules of mosses—72,962 images. Collections from Middle Asia, western Europe, Americas, Australia and Oceania, liverwort labels, and historical collections are not yet digitised. At the moment, we operate the sixth largest digital herbarium in the world. The Moscow Digital Herbarium is the largest Russian biodiversity database. The Moscow Digital Herbarium publishes its data on the web portal of the National Depository Bank of Live Systems, a collaborative network of the Moscow University biological collections. Since October 2016, a fast public version of the botany portal with some functional limitations is available at http://plant.depo.msu.ru/, whereas an operational version is available at https://plant.mitotech.ru/. The National Depository online system is open for contributions from other Russian biological collections and soon will be visible via GBIF. We are nearly ready to start in 2017 data capturing from labels. To avoid mistakes and to make the first portion of label capturing easy, we will not enforce the operators to capture data from every single sheet. We will ask the operators to avoid capturing data from labels with at least one unclear word or to tick any uncertain entries. Also, we are ready to pay modest remuneration for professional botanists from small institutions and universities for capturing the data which might be interesting for them using the forms on our web portal.

T1-11-06
World vascular plant checklist in the Catalogue of Life
Yuri Roskov
Illinois Natural History Survey, University of Illinois at Urbana-Champaign

The Catalogue of Life (CoL, www.catalogueoflife.org/col) is a global taxonomic catalogue of valid species through all domains. It is built as a curated assembly of expert based Global Species Databases around the world. Today, the CoL contains basic information on 1.6 million valid species arranged in global classification, plus 1.5 million synonyms and over 400,000 common names. In 2015-2016, the CoL has aggregated world checklists for all families of vascular plants with 335,566 accepted species. This is about 99% of Tracheophyta species diversity recently recognised by taxonomists. Data from 18 plant databases has been assembled into the synonymic catalogue. Classes Equisetopsida (38 spp), Lycopodiopsida (1,393 spp), Marattiopsida (133 spp), Polypodiopsida (11,530 spp) and Psilotopsida (139 spp) have been provided by World Fems database (Hassler M., 2017). Cycads (class Cycadoopsida, 353 spp) has been taken from The World List of Cycads database (Calonje M., Stanbery L. & Stevenson D. (eds), 2015). Conifers (class Pinopsida, 615 spp) have been supplied by Conifer Database (Farjon A., Gardner M. & Thomas P., 2014). Classes Gingkopsida (1 spp) and Gnetaopsida (112 spp) were taken from World Checklist of Selected Plant Families (Govaerts R. (ed), 2014). Flowering plants have been compiled from an array of 15