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INTRODUCTION

The finite element method (FEM) has been widely used for the numerical analysis of differential equa-
tions over the last 3–4 decades. A priori and a posteriori bounds have been obtained for approximate solu-
tions found by the FEM. In particular, there are integral bounds representing an integral norm of the devia-
tion of an approximate solution 

 

v

 

 from the exact solution 

 

u

 

. If the bilinear form of the problem is coercive

and the exact solution belongs to the class , then a priori bounds have the form 
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 is the maximum mesh size and 

 

f

 

 is the right-hand side of the equation), where

the constant 

 

C

 

 is independent of 

 

u

 

, 

 

v

 

, 

 

f

 

, and 

 

h

 

 (see [1]). Many bounds and a detailed exposition of the theory
of piecewise polynomial approximation can be found in [2]. As for a posteriori bounds, they use an approx-
imate solution itself in addition to the data of the problem. The so-called superconvergence phenomenon is
also of interest. According to it, in the domain under consideration, there exist points 

 

x

 

i

 

 such that the differ-
ence 

 

u
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v
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i
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) tends to zero faster then the corresponding integral norm of the devi-
ation. It is pointed out in [3] that this phenomenon was probably first mentioned in [4].

At the same time, the cases when an approximate and the exact solutions coincide at certain points are
of great interest. A simple example is the one-dimensional Dirichlet problem for the equation 

 

u

 

'' = –

 

f

 

. If an
approximate solution is sought in the space of piecewise affine functions, then its values at mesh nodes coin-
cide with the exact solution. However, if we consider piecewise cubic functions and require that their first
derivatives are continuous, then this phenomenon is not observed. On the contrary, we can change the equa-
tion instead of the space of finite elements. For example, for a one-dimensional Helmholtz equation, the dif-
ference between these values can be significant because of the pollution effect (see [5]) occurring when
solving this equation by the ordinary FEM. This effect implies that an approximate solution obtained by the
Galerkin FEM does not coincide with the interpolation of the exact solution in the same finite-dimensional
space (see [6]).

The generalized FEM (GFEM) was proposed in [7] and further developed in [8–10]. The main idea
behind this method is to take into account the structure of an equation when constructing a finite-dimen-
sional space whose shape functions (also called interpolation functions) can differ from polynomials. (Note
that this approach is a kind of return to Galerkin methods with nonpolynomial basis functions.) Some gen-
eral results on superconvergence are obtained for this method in [3], where a nonhomogeneous Neumann
problem for the Poisson equation is theoretically studied in a two-dimensional domain. The results are illus-
trated by numerical experiments for a one-dimensional problem. Below, we deal with a different case.
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1. DIFFERENTIAL PROBLEM

Consider the Dirichlet problem for the ordinary differential equation

 

(1)

 

Assume that 

 

f

 

 

 

∈ 

 

L

 

2

 

(0; 1), 

 

c

 

 

 

∈ 

 

L

 

∞

 

(0; 1),

 

 and 

 

b

 

(

 

x

 

)

 

 is -piecewise, which means that the interval (0, 1) can

be divided into a finite number of intervals (

 

x

 

k

 

, 

 

x

 

k

 

 + 1

 

) with 

 

b

 

(

 

x

 

)

 

 belonging to 

 

(

 

x

 

k

 

; 

 

x

 

k

 

 + 1

 

)

 

 on each interval.
(

 

b

 

 is not necessarily continuous on the entire (0, 1).) In addition, no constraints are imposed on the signs of

 

b

 

 and 

 

c

 

; that is, the corresponding bilinear form can be non-coercive. In this case, problem (1) can be unsolv-
able or have an infinite number of solutions. However, in many practical cases, the problem of invertibility
of the operator 

 

L

 

 (if it has not been solved yet) can be studied experimentally while seeking a numerical
solution (see [11, 12]); therefore, this problem is not important in this case.

The generalized statement of the problem is

 

(2)

 

Problem (1) will be solved approximately using the Galerkin method. Take 

 

M

 

 trial functions

 and the same number of test functions , each belonging to the space 

 

(0; 1)

 

.
(It is well known that the functions are continuous in this case.). An approximate solution is sought in the

form 

 

v

 

(

 

x

 

) = 

 

.

In this paper, we do not consider convergence problems associated with the Galerkin method for the class
of non-self-adjoint noncoercive bilinear forms 

 

a

 

(

 

u

 

, 

 

w

 

)

 

. We are interested in finding conditions under which
the resulting solution coincides with the exact solution at certain prescribed points. Assume that the set of
points 0 = 

 

x

 

0

 

 < … < 

 

x

 

N

 

 – 1

 

 < 

 

x

 

N

 

 = 1 is given. Here and in what follows, we assume that this set contains all
the discontinuity points of the function 

 

b

 

(

 

x

 

)

 

. In addition, we require that the trial functions contain a system

of functions  (for the sake of convenience, they are placed at the beginning of the list) such that
their linear combinations satisfy the conditions

which is equivalent to the fact that the square matrix  is invertible. Then, if the system of
linear algebraic equations (SLAE) of the Galerkin method is solvable, the exact solution at the given points
can be found by an appropriate choice of test functions.

2. THE MAIN RESULT

 

Lemma.

 

 

 

Replacing the linearly independent system of trial functions 

 

{

 

ϕ

 

m

 

}

 

 with another basis

 

 

 

of the
space generated by it does not affect the solvability of the SLAE of the Galerkin method or the form of an
approximate solution.

 

Proof.

 

 Let 

 

V

 

 

 

≡ 

 

{

 

v

 

1

 

, …, 

 

v

 

M

 

}

 

T

 

 be the coordinates of the function 

 

v

 

 in the initial basis {

 

ϕ

 

m

 

}. Then, the

SLAE of the Galerkin method has the form 

 

a( , ψl) = fl , where a is the bilinear form of the prob-

lem under consideration (see (2)) and fl = . Consider the matrix A = {Alm} = {a(ϕm, ψl)} and

the vector F = {fl}T. Then, the SLAE has the form AV = F. Change the basis {ϕm} to the basis { }. Denote

the row vector {ϕm(x)} of the old basis by ϕ, the row vector { (x)} of the new basis by , and the corre-

sponding transformation matrix by Φ so that  = ϕΦ–1. Then, the matrix of the bilinear form in the new

basis has the form  = ( ) = a( , ψl) = AΦ–1 and the new coordinate vector is  = ΦV. As we can see,
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since the transformation matrix is invertible, the SLAE in the expansion coefficients of the approximate
solution in terms of the old basis remains the same: AΦ–1ΦV ≡ AV = F. This completes the proof.

To construct test functions, consider the operator L* that is adjoint of L in the Lagrangian sense (e.g., see
[13, p. 64]): L*w ≡ –w'' – (b(x)w)' + c(x)w.

Assume that, on each interval (xn – 1; xn) (i = 1, 2, …, N), the homogeneous Dirichlet problem for the oper-
ator L*

(3)

has only trivial solutions; that is, zero is not an eigenvalue of these operators on any of these intervals. (How-
ever, it is well known that this is equivalent to the unique solvability of the problem for the operator L.) Then,
the boundary value problems

, (4)

and

(5)

are uniquely solvable.
The test functions are chosen using an approach generalizing piecewise affine functions that are usual

for the conventional FEM. Assume that

(6)

for n = 1, 2, …, N. It is clear that, by conditions (4) and (5), the functions  are continuous on

the interval [0, 1] and form a Lagrange basis in the corresponding subspace of the space (0; 1); that is,
ψm(xn) = δmn (m, n = 1, 2, …, N – 1).

First, consider the case M = N – 1; that is, assume that the entire system of test functions is defined by
formulas (6) and the number of trial functions ϕm(x) is the same.

Theorem 1. Assume the following:
(1) The differential problem in generalized statement (2) is uniquely solvable.
(2) Problems (3) for all intervals (xn – 1; xn) (n = 1, 2, …, N) have only trivial solutions.

(3) The trial functions belong to (0; 1) (note that the test functions belong to this space by construc-
tion).

(4) There exist linear combinations (x) =  of the trial functions such that (xn) =
δmn (m, n = 1, 2, …, N – 1) (this implies, in particular, the linear independence of both the system of the
above linear combinations and the original system of functions {ϕm(x)}).

(5) The SLAE of the Galerkin method with the functions  and  constructed by
formula (6) is uniquely solvable.

Then, it holds that

Proof. First, we note that the boundary conditions are fulfilled by condition 3 of the theorem. Take (x)
as trial functions. By the lemma proved above (by the way, {Φmn} = {ϕn(xm)} in it), this does not affect the
finite-dimensional problem solvability and the approximate solution v(x). These functions are denoted by

ϕm(x) as above. In this case, the coefficient vm in the expansion v(x) =  of the approximate
solution is equal to v(xm).
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Then, the SLAE of the Galerkin method is written as

(7)

Since the exact solution u also satisfies the generalized statement of the problem, we have

and (7) can be rewritten in the form

or in the expanded form

Recall that b(x) ∈ (xn – 1; xn) on each interval. Therefore, ψl belong to  as solutions to the adjoint

problems of type (4) on each interval (xn – 1; xn) (see [14]; however, they only belong to  on the entire
interval [0, 1]); consequently, we can integrate by parts, which implies the equations

(8)

Here, the integrals are taken over individual intervals in order to point out that the functions ψl are twice
differentiable only within each interval rather than on the entire interval because the first derivatives are dis-
continuous at the points xn. The function b(x) can also have discontinuities at those points. For the same rea-
son, we use the symbols of limiting values for  and b. The functions u, v, and ψl are continuous every-

where in [0, 1] because u, v ∈ (0; 1) and ψl is continuous by construction. Taking into account that the
functions ψl(x) satisfy the homogeneous equation L*ψl = 0 on each interval (xn – 1; xn) by construction, we
rewrite system (8) in the form

(9)

In addition, take into consideration that, on the one hand,  are the coefficients vm in the expan-
sion of the approximate solution v(x) in terms of ϕm(x) (due to the choice of ϕm(x), which was pointed out
at the beginning of the proof) and, on the other hand, system (9) was derived using identical transformations
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of original system (7), which is uniquely solvable by condition. Hence, system (9) considered as a system
in vm ≡ v(xm) is also uniquely solvable. (Note that v(x0) = v(xN) = 0; therefore, they are known.) Note also
that u(x0) = u(xN) = 0). It is obvious that the numbers v(xm) = u(xm) are solutions to the system. Since the
solution is unique, vm ≡ v(xm) necessarily coincide with u(xm). The theorem is proved.

This result can easily be generalized by supplementing the chosen functions  and

 with the functions  and  (M > N) that also belong to (0; 1).

Theorem 2. Assume that problem (1) and the functions  and  satisfy all the

conditions of Theorem 1. Also, assume that  and  belong to (0; 1) and the

SLAE of the Galerkin method for the new systems of functions  and  is uniquely

solvable. Then, the function v(x) =  satisfies the equalities v(xn) = u(xn) for n = 0, 1, …, N. 

It should be emphasized that we do not increase the number of points at which the equality is valid. It is
important that supplementing the systems of trial and test functions, which have already been considered,
with new functions cannot violate the equalities v(xn) = u(xn) fulfilled for these systems of functions.

Proof. It should be noted that, for the numbers v(xn), we can similarly obtain system (9), which is not
the SLAE of the Galerkin method in the new systems of functions and in which v(xn) do not coincide with
vn (n = 1, 2, …, N – 1). However, the coefficients of this system determined only by the functions

 coincide with those of the SLAE in Theorem 1, which is uniquely solvable by condition.
Therefore, v(xn) (n = 1, 2, …, N – 1) are uniquely determined as in Theorem 1 and, since v(xn) = u(xn) satisfy
the system, this completes the proof.

Remark. Note once again that, to obtain the results described above, it is necessary to include all the
discontinuity points of the function b(x) in the set {xn}.

3. SOME REMARKS CONCERNING THE APPLICATION OF THE RESULTS

Theorems 1 and 2 show that, using the proposed trial and test functions, in addition to a priori and a pos-
teriori estimates of convergence of approximate solutions to the exact solution in integral and uniform
norms established earlier, we can find exact values of the solution at any points of interest if analytical solu-
tions to problems (4) and (5) with homogeneous equations are known.

This result is applicable, in particular, to solving problem (1) by the FEM, and it can be considered as a
generalization of the well-known facts on superconvergence to one class of generalized finite elements and
as a generalization of the similar fact concerning piecewise polynomial interpolation (see [15] or [16]). On
the other hand, this is an improvement of the results concerning the FEM convergence considered in [5] and
in the example in [17]. From the viewpoint of the finite difference method, we can say that we proposed a
method for constructing an exact difference scheme.
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š

š
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