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a multiple session dataset of NIRS 
recordings from stroke patients 
controlling brain–computer 
interface
Mikhail R. Isaev  1, Olesya a. Mokienko1,2, Roman Kh. Lyukmanov2, Ekaterina S. Ikonnikova2, 
anastasiia N. Cherkasova2, Natalia a. Suponeva2, Michael a. Piradov2 & Pavel D. Bobrov  1 ✉

This paper presents an open dataset of over 50 hours of near infrared spectroscopy (NIRS) recordings. 
Fifteen stroke patients completed a total of 237 motor imagery brain–computer interface (BCI) sessions. 
the BCI was controlled by imagined hand movements; visual feedback was presented based on the 
real–time data classification results. We provide the experimental records, patient demographic 
profiles, clinical scores (including ARAT and Fugl–Meyer), online BCI performance, and a simple analysis 
of hemodynamic response. We assume that this dataset can be useful for evaluating the effectiveness 
of various near–infrared spectroscopy signal processing and analysis techniques in patients with 
cerebrovascular accidents.

Background & Summary
Brain–computer interfaces (BCIs) provide a technological solution to convert data on the brain electrical or 
metabolic activity into control signals for an external device. BCIs can be used to provide feedback during motor 
imagery training (i.e. ideomotor training), which is one of the methods for motor rehabilitation after stroke1,2. 
Between 2019 and 2023, at least 11 systematic reviews were published, 8 of which included meta–analyses, 
demonstrating the efficacy of post–stroke BCI training3–13. It is important to note that there is a target group of 
patients for BCI training: those with severe paresis in the early stages after a stroke who are unable to partake in 
traditional physical therapy2. BCI technology that registers the electroencephalographic (EEG) signal accompa-
nying the motor imagery process is the most studied for clinical application. However, EEG–BCI might not be 
practical for routine clinical use, due to high sensitivity to motion, muscle, and eye movement induced artifacts 
and requirement to apply conductive gels or solutions.

Near—infrared spectroscopy (NIRS) is a method of optical brain imaging that records changes in hemody-
namics at a depth of up to 4 cm from the scalp. Near—infrared light (760 nm – 850 nm) is emitted through the 
subject’s skull, while the local changes in intensity of light absorption and scattering are recorded by a detector. 
The measured light intensity can be converted into estimations of cerebral total hemoglobin (HbT) and differen-
tiated into its factions: oxygenated (HbO) and deoxygenated (HbR) hemoglobin14. Being much more expensive 
than EEG, NIRS is more convenient for practical use in a BCI circuit. It does not require electrode gel and is 
less sensitive to artifacts from patient movements. In addition, brain activity classification can rely on several 
simultaneously measured quantities, including oxy—, deoxy—, and total hemoglobin concentrations. Only a 
few articles have been published on the therapeutic use of NIRS—BCI after stroke15–17.

Due to the limited availability of NIRS technology, open access labeled NIRS datasets are highly valuable for 
rehabilitation BCI developers, particularly for validating machine learning and artificial intelligence algorithms 
for classifying brain signals. Currently, there are several available open access NIRS18,19 or NIRS + EEG20,21 data-
sets collected from 24–30 healthy subjects and containing 1–3 recordings from each participant. Data from 
stroke patients may differ due to the brain damage, potential changes in cognitive and neuropsychological func-
tions, and older age.
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To the best of our knowledge, this is the first open access dataset containing NIRS recordings from stroke 
patients. The dataset comprises 15 participants, 237 individual motor imagery BCI sessions utilizing three dif-
ferent mental tasks, over 50 hours of NIRS recordings, and 5296 trials. Each patient completed 7–24 online 
BCI training sessions. On average, the dataset includes 353 trials and 3.3 hours of NIRS recording data per 
participant.

We believe the data recorded from real stroke patients in multiple BCI sessions will be of particular interest 
to teams designing NIRS BCI systems for stroke rehabilitation and groups studying brain activity corresponding 
to motor imagery. The number of sessions is typical for a single hospitalization and allows to estimate how well 
cross–session transfer learning algorithms would work in real practice. The recordings from various patients 
could be utilized to develop and evaluate algorithms for cross–subject classification of hemodynamic activity 
related to motor imagery. Furthermore, the data could aid in studying the patients’ hemodynamic response to 
motor imagery and the response changes throughout the whole rehabilitation course.

Methods
Participants. This study included fifteen patients admitted to the post–stroke rehabilitation department:  
9 males and 6 females, all right–handed as assessed by asking them about the utilization of the dominant hand in 
everyday life before stroke (no specific handedness questionnaires were used), 58.8 [49.4; 70.0] years old (median, 
25% and 75% quartiles) ranging from 33 to 77 years; time since stroke onset was 7.0 [2.0; 10.0] months; all 
patients had one–sided cortical lesions, 8 in the left and 7 in the right hemisphere; the upper extremity Fugl–
Meyer Assessment (UE–FMA) score at baseline was 47,0 [35,0; 54,0]; the Action Research Arm Test (ARAT) 
score at baseline was 35.0 [10.0; 44.0]. For more details refer to the Table 1. The principal objective of the pilot 
study that yielded the presented dataset was to evaluate the quality of NIRS-BCI control that can be achieved by 
stroke patients. Within a period of 1.5 years, we were able to conduct NIRS-BCI training courses for 15 patients 
at our clinical base. All participants were informed about the experimental procedure and gave written con-
sent prior to the experiment. This study was conducted in accordance with the ethical standards set forth in the 
Helsinki Declaration. The study protocol was approved by the Local Ethics Committee of the Research Center 
of Neurology (approval to conduct the study and share the data, case number 5–4/22 dated June 1, 2022). The 
patients’ data were anonymized and depersonalized according to the local laws.

Experimental paradigm. The physical therapist individually selected the movement type for imaging for 
each patient. The selected movement was the most challenging among those included in the ARAT test (refer 
to the Table 1). Prior to each training session, the physical therapist asked the patient to perform or attempt the 
target movement several times until they confirmed their readiness to mentally reproduce this movement – this 
is known as the priming step. If the target movement involved manipulating any ARAT subject (e.g. ball, wood 
block, or tube), it was provided to the patient during priming.

The patient, wearing a NIRS cap, sat in an armchair in front of a computer monitor with their hands resting 
on the armrests or the table. The screen displayed a black background with a fixation circle and three gray arrows 
in the center. The arrows corresponded to the tasks the patient was instructed to perform: the upper arrow indi-
cated relaxation, while the left and right arrows corresponded to imagined movement of patient’s left and right 
hand, respectively. Changing the arrow color to blue served as a cue to prepare and changing the arrow color to 
green signaled to start performing the corresponding task. Correct classification was indicated by a green and 
enlarged circle, while an incorrect classification was indicated by a smaller circle. No feedback was provided 
when the patient had to relax or prepare. Figure 1 shows a typical session structure.

One experimental day with one patient consisted of one or two sessions. The study lasted from 7 to 15 days, 
with each patient participating in 7 to 24 sessions, totaling 237 sessions. A session comprised of 4 or 6 blocks 
and lasted 9 or 14 minutes. Each block included 4 trials: 2 right–hand movement imagining and 2 left–hand 
movement imagining, presented randomly. A single trial consisted of a 17–second relaxation phase followed 
by a 17–second movement imagery phase. During each phase, participants were given 2 seconds to prepare and 
15 seconds to perform the corresponding task. Both movement imagery and relaxation were classified with over-
lapping epochs of 1 second and an epoch shift of 250 milliseconds. During the movement imagery, the feedback 
was updated based on the classification results.

Data acquisition. The data were acquired using a NIRScout 16 × 8 (NIRx Medizintechnik GmbH, Berlin, 
Germany) in continuous wave mode of operation. Fourteen sources (LED, wavelengths of 760 and 850 nm, 5 mW 
per wavelength) and eight detectors (Si photodiode) were placed at a distance of about 3 cm from each other 
above the motor areas. Figure 2 shows the locations of all sources, detectors, and channels.

The sources were positioned at F3, FC5, FC1, C3, CP5, CP1, P3, F4, FC2, FC6, C4, CP2, CP6, P4. The detec-
tors were positioned at FC3, C5, C1, CP3, FC4, C2, C6, CP4. A total of 28 source–detector pairs were chosen to 
create the NIRS channels that were recorded. Groups of light sources were turned on simultaneously giving the 
sampling rate 15.625 Hz (Fig. 3).

Online data processing. NIRStar15–3 and MATLAB R2019b (MathWorks, Natick, USA) were used for data 
acquisition and processing. Raw data were streamed from NIRStar using Lab Streaming Layer (LSL), received using 
the LSL libraries for MATLAB, and processed by the BCI system implemented as a set of custom MATLAB func-
tions. The raw NIRS data were converted to oxy– and deoxyhemoglobin relative concentrations (HbO and HbR, 
respectively) using the modified Beer–Lambert law (DPF = 6.2966, HbO molar extinction coefficient = 1.34956 l/
(mmol*cm), HbR molar extinction coefficient = 3.56624 l/(mmol*cm) for wl = 760 nm; DPF = 5.23433, HbO 
molar extinction coefficient = 2.43657 l/(mmol*cm), HbR molar extinction coefficient = 1.59211 l/(mmol*cm) 
for wl = 850 nm; the parameters were taken from the NIRStar software). The classification was performed in two  
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steps: first, the classifier determined whether the epoch was related to relaxation or motor imagery. Next, if 
motor imagery was recognized, the classifier determined which hand movement was imagined. For the first 
classification step, the data were band–pass filtered (2nd order Chebyshev filter) with 0.022 Hz and 0.039 Hz 
cutoff frequencies. These frequencies were chosen to eliminate slow, high–amplitude signal trends and minimize 
phase shifts on the fundamental frequency (1/34 = 0.029 Hz)22. Shrinkage regularization was used to avoid the 
adverse effects of multicollinearity. For the second classification step, the data were high–pass filtered (1st order 
Chebyshev filter) with 0.005 Hz cutoff frequency. Linear discriminant analysis was used to classify the data in 
both steps. Filtered relative concentrations (HbO and HbR) were the features. The training sample consisted of all 
previous blocks from the current and past sessions of the patient. The description of the classification algorithm 
is given in our paper22.

Data Records
The dataset is freely available at the open access NeuroImaging Tools & Resources Collaboratory (NITRC) 
repository23. The data are presented in the original MATLAB format and in snirf format as recommended in the 
guidelines24. Each file name is comprised of subject ID, day number, session number, and data type specifier. The 
mat files contain a tabulated configuration of the channels (source–detector pairs in the 10–10 system), the raw 

Patient 
ID Sex

Age 
range, 
y.o. Handedness

Stroke 
time, 
months

Stroke side 
(hemisphere)

ARAT 
score

FMA-
UE 
score

Motor imagery 
paradigm 
based on the 
ARAT’s task

BCI 
training 
days

BCI 
Sessions

Each 
session 
duration, 
min

Total BCI 
exposition, 
min

Median 
classification 
recall

Maximal 
classification 
recall

1 m 46–50 R ≤3 right 35 58
Pinching 6 mm 
ball with ring 
finger and 
thumb

10 10 9.10 91 0.45 0.56

2 m 71–75 R >6 ≤12 left 44 47
Pinching 6 mm 
ball with ring 
finger and 
thumb

7 7 9.10 64 0.66 0.77

3 m 56–60 R >6 ≤12 right 35 54
Pinching 6 mm 
ball with ring 
finger and 
thumb

9 9 9.10 82 0.45 0.56

4 m 56–60 R >6 ≤12 left 39 52
Pinching 6 mm 
ball with index 
finger and 
thumb

9 9 9.10 82 0.39 0.53

5 f 41–45 R ≤3 left 52 62
Pinching 1.5 cm 
ball with ring 
finger and 
thumb

10 10 9.10 91 0.49 0.65

6 m 66–70 R >6 ≤12 left 1 11 Grasping Block 
10 cm 10 17 9.10 or 

13.63 214 0.62 0.71

7 m 56–60 R ≤3 right 49 52
Pinching 6 mm 
ball with ring 
finger and 
thumb

9 18 13.63 245 0.45 0.60

8 f 56–60 R ≤3 left 38 45
Pinching 6 mm 
ball with ring 
finger and 
thumb

15 18 13.63 245 0.63 0.74

9 m 76–80 R >12 left 42 57
Pinching 6 mm 
ball with ring 
finger and 
thumb

8 10 13.63 136 0.50 0.56

10 f 56–60 R >12 left 10 37 Grasping Block 
7.5 cm 8 16 13.63 218 0.45 0.67

11 m 66–70 R >3 ≤6 right 6 31 Grasping Block 
10 cm 12 24 13.63 327 0.43 0.66

12 f 46–50 R >3 ≤6 left 24 35
Pinching 1.5 cm 
ball with ring 
finger and 
thumb

12 24 13.63 327 0.59 0.73

13 m 66–70 R >6 ≤12 right 46 54 Grasping stone 
10*2.5*1 cm 12 23 13.63 314 0.46 0.66

14 f 66–70 R >6 ≤12 right 4 26
Pinching 6 mm 
ball with ring 
finger and 
thumb

12 24 13.63 327 0.61 0.74

15 f 31–35 R ≤3 right 19 45 Gripping tube 
2.25*10 cm 10 18 13.63 245 0.36 0.44

Table 1. Subjects characteristics and classification accuracy.

https://doi.org/10.1038/s41597-024-04012-6


4Scientific Data |         (2024) 11:1168  | https://doi.org/10.1038/s41597-024-04012-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

Fig. 1 Typical session structure.

Fig. 2 Positions of all sources, detectors, and channels. Red and green circles indicate the sources and the 
detectors respectively, purple lines indicate the channels.
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light intensity data for each channel on both wavelengths, HbO and HbR concentrations in mmol/l, labels of 
mental tasks for each time point, short descriptions of the tasks, the time vector, sampling rate, confusion matrix 
resulting from online classification, and classification accuracy metric (as summarized in Table 2).

technical Validation
Recall ( )( )P c c/ /3i ii j ji1

3
1

3= ∑ ∑= = , where cij are the elements of the confusion matrix, was chosen as a metric 
for online classification performance. The grand median recall for online classification of all subjects was 46.0 
[44.7; 60.3]%. All subjects exceeded the random classification level. Classification performance varied signifi-
cantly between patients and between sessions for most subjects (Fig. 4). The median within–subject range of 
session recall was 29.5 [18.6; 31.8]%.

To plot the responses during left or right imaging, the data were zero phase band–pass filtered (4nd order 
Chebyshev filter) with 0.005 Hz and 0.09 Hz cutoff frequencies, and each response was baselined by subtracting 

Fig. 3 Illumination pattern. Red circles indicate light sources that were turned on at each step.

Data type specifier Variable name Description

raw, concentrations Channels Source and detector labels in 10-10 system for each channel

raw, concentrations Frequency Sampling rate in Hz

raw, concentrations Tasks Short description of each task

raw, concentrations Tasks_labels Task number for each time frame. Frames labeled with 0 were not used for classification

raw, concentrations Time Time vector specifying time in seconds for each frame

concentrations HbO Relative concentrations of HbO for each channel and time frame

concentrations HbR Relative concentrations of HbR for each channel and time frame

concentrations Concentrations Units of HbO and HbR concentrations

raw Wavelength1 Raw 760 nm light intensity data streamed from NIRStar

raw Wavelength2 Raw 850 nm light intensity data streamed from NIRStar

cls Confusion_matrix
3 × 3 matrix with columns representing the tasks given and rows representing the BCI 
classifier answers. Each element is a number of times the classifier made the corresponding 
answer while the corresponding task was cued

cls Recall Online classification performance metric

Table 2. List of the variables stored in mat data files.

Fig. 4 Online classification performance of all subjects. Dots indicate sessions, red lines indicate medians for 
each subject, boxes indicate 25% and 75% quartiles, dash line indicates random chance level.
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the average value of the last 10 seconds before the task began. Averaging HbO and HbR responses separately 
for patients with left– and right–lesioned hemisphere shows that the response is present to the imaging of both 
hands in both hemispheres (Fig. 5). At the same time, the response is similar for the imaging of both the paretic 
and intact hand in the intact hemisphere. However, there is an asymmetry of the response in the affected hemi-
sphere, with a greater response to the imaging of the paretic hand. We suppose this asymmetry of hemodynamic 
response is due to a greater interhemispheric inhibitory drive from the intact hemisphere to the lesioned one25,26.

Usage Notes
This dataset is licensed under the Creative Commons Attribution (CC-BY).

One of the main disadvantages of the dataset is its unbalanced design (4 or 6 blocks per session and a dif-
ferent number of sessions for patients). Unfortunately, this is how real rehabilitation procedures look like: for 
various reasons patients stop participating in the experiment. If one wants to analyze balanced data, one can 
simply discard the extra blocks and sessions, the experiment design allows this to be done.

Code availability
The MATLAB code used to create figures (Figs. 4, 5) is freely available at the open access repository23.
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