ГОСУДАРСТВЕННОЕ УЧЕБНО-НАУЧНОЕ УЧРЕЖДЕНИЕ ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ МГУ ИМЕНИ М.В.ЛОМОНОСОВА

гляциологическая ассоциация

МАТЕРИАЛЫ МЕЖДУНАРОДНОЙ НАУЧНОЙ КОНФЕРЕНЦИИ

"ГЛЯЦИОЛОГИЯ В НАЧАЛЕ XXI ВЕКА"

Москва, 15-16 октября 2009 года

Посвящается 100-летию со дня рождения профессора географического факультета МГУ Георгия Казимировича Тушинского

> Москва "Университетская книга" 2009

Эволюция оледенения Полярного Урала за последние 200 лет

Иванов Михаил Николаевич

Кафедра криолитологии и гляциологии Географического факультета Московского государственного университета имени М.В.Ломоносова

В своих исследованиях Г.К. Тушинский уделял значительное внимание изучению ритмов оледенения и снежности Земли [6,7 и др.] Эта проблема остается актуальной и в наши дни, учитывая, что увеличение точности изучения связей и современного состояния климата и оледенения позволяет подробно реконструировать прошлые палеогеографические условия и более детально прогнозировать изменения природной среды. Продолжение и углубление исследований профессора Г.К.Тушинского является важной задачей палеогляциоклиматологии.

Полярный Урал, рис. 1 является единственным в Российской субарктике районом мониторинга наземного горного оледенения и в целом среды, и важным объектом наблюдений за природной оледенения Северной полярной области, здесь получено наибольшее количество информации об оледенении среди субарктических горных систем. Однако до последнего времени информация собранная после 1964 г. и не вошедшая в монографию [5] оставалась не систематизированной и, как отмечалось ранее [2], требовалась ревизия собранных данных и обобщение. выполнена Такая работа автором, что позволило дополнить детализировать представления об эволюции оледенения Полярного Урала.

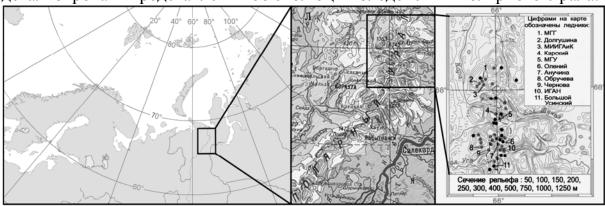


Рис. 1. Схема расположения Полярного Урала и ледников.

Во время проведения МПГ в 1882-1883 гг. исследования в районе не проводились, т.к. о существовании ледников сведений не было. В 1930 г. геологом Г.Д. Падалкой был обнаружен первый ледник в южной части Полярного Урала на восточном склоне массива Пар-Ер. В период МПГ 1932-1933 гг. были проведены первые экспедиции, а основной массив данных получен в 1957-1981 гг. в ходе МГГ [5], МГД [4], работ по

международной программе изучения колебаний ледников. За исключением единичных экспедиций 1999 и 2005 гг. наблюдений за ледниками Полярного Урала не было с 1982 г. до МПГ 2007-2009 гг. в котором проведены гляциологические работы, но с несоизмеримо меньшим размахом, чем в МГГ и МГД. В то же время в последние годы возросли возможности и точность дистанционных исследований ледников.

Современное оледенение Урала представлено исключительно малыми формами исключительно восточной экспозиции, которые по морфологическим признакам делятся на каровые и присклоновые ледники, а также снежники. Ледники Полярного Урала располагаются группами, образуя отдельные очаги оледенения, приуроченные к западным — наиболее возвышенным и расчлененным участкам хребта. Ледники являются «климатически не обоснованными», существование оледенения возможно благодаря повышенной концентрации снега и наличию затененных участков. Г.К. Тушинский [8] приводил в доказательство этого абсолютную высоту предложенного им «уровня 365» для Урала: от 2300 м в районе м/ст

Витим до 2500 в районе м/ст Белорецк при высоте гор всюду меньше 1200 м с максимумом 1363 м.

В обобщения результате материала, собранного предыдущими исследователями, установлено, визуального мониторинга началом ЭВОЛЮЦИИ оледенения Полярного Урала следует считать 1938 г. когда Хабаков зарисовал A.B. ледники Анучина, рис. 2, Шумского, Обручева, Щучий и Тронова. В 1947, 53, 57, 58, 60, 68, 73, 89 гг. на Полярном Урале 10 раз выполнена аэрофотосъемка с наличием до 5-6 повторных снимков ледников. Фотографии, некоторых начиная со снимков Л.Д. Долгушина 1953 Γ., отражают положение состояние ледников на несколько временных срезов. С 2000 г. доступны снимки из космоса.

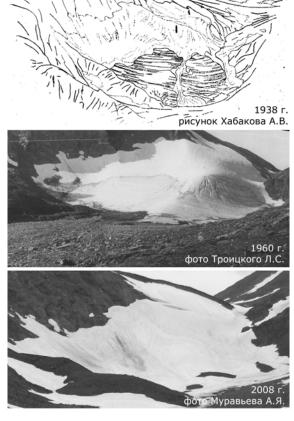


Рис. 2. Ледник Анучина.

Инструментальные наблюдения проводились в 1953-1981 гг. По результатам наземных стереофотограмметрических съемок 10-ти ледников для 3-х из них (ИГАН, Обручева, МГУ) в 1963 г. составлены топопланы 1:5000. На репрезентативых ледниках ИГАН и Обручева в 1957-1981 гг. измерялся баланс массы [1], в 1970, 1976 гг. проведена радиолокация, в

2008 г. DGPS съемка. Различные повторные съемки ледников позволили изучить изменение высоты поверхности и размеров за 1953-2008 гг.

Анализ опубликованных данных о колебаниях ледников показал, что различные авторы, изучавшие размеры и баланс массы ледников не всегда опирались и иногда не учитывали исследования предшественников. Другим осложнением в работе по изучению эволюции оледенения стало отсутствие унифицированной методики изучения колебаний малых ледников. Это привело к тому, что размеры и балансовые характеристики некоторых ледников на отдельные годы занижены или наоборот завышены. Обсуждение этого вопроса обширно и заслуживает отдельного сообщения с детальным анализом.

Обобщение предыдущих исследований, повторных фотографий и дешифрирование аэрофотоснимков 1989 г. и космических снимков 2000 и 2008 гг. позволило дополнить сведения об эволюции оледенения Полярного Урала за период инструментального мониторинга.

Установлено, что большинство ледников Урала Полярного 1953 1964 ПО ΓΓ. сокращались, с 1965 по ГΓ. находились почти в стационарном состоянии, а с 1990 по 2008 ΓΓ. произошло новое интенсивное отступание фронтов, 3. понижение рис. поверхности высоты ледников и дегляциация.

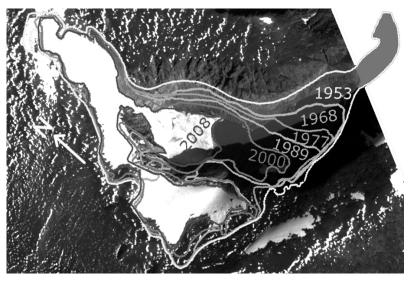


Рис. 3. Границы ледника МГУ на фрагменте космического снимка Cartosat (IRS- P5) 2008 г.

Для определения состояния ледников между различными съемками и в периоды до и после непосредственных измерений баланса массы использована связь измеренных компонентов баланса массы, табл. 1 с метеоэлементами измеренными на ближайших метеостанциях, табл. 2.

Таблица 1. Значения составляющих баланса массы ледника ИГАН.																							
	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980
ВwИГАН	1150	2650	1400	2200	3200	2100	1000	2500	1750	3140	3410	1420	1780	1840	2910	3000	2190	2720	2510	2360	1800	1180	1900
ВѕИГАН	1450	3000	2250	2450	3250	3250	2250	3180	1980	3000	1100	2050	1260	1850	2330	2880	2820	1680	4290	3980	910	1040	880

В табл. 1 приведены значения баланса массы из [4, 5, 9], отличные от приведенных в [1], т.к. опубликованные первыми величины содержат меньше ошибок, расчетных значений и дают лучшую корреляцию с

измеренными за тот же период метеоэлементами на м/ст Б.Хадата, Воркута и Салехард, отстоящих от ледника на 3, 80 и 100 км соответственно.

Установлено, что наиболее значительная корреляция прослеживается между среднезимней температурой воздуха и аккумуляцией, и среднелетней температурой воздуха и абляцией. Корреляция между аккумуляцией и осадками зимнего периода составляет не более 0,5, в связи с чем, незначима и не представляет интереса.

Таблица 2. Коэффициенты корреляции измеренной среднемесячной Т воздуха октября-мая / июня-августа на м/ст и Вw / Вs ледника ИГАН.

	Bw/Bs ИГАН	Салехард	Воркута
Большая Хадата	0,87 / 0,84	0,94 / 0,95	0,97 / 0,98
Воркута	0,86 / 0,83	0,9 / 0,95	1

Наблюдения на указанных м/ст охватывают 1957-1980, 1946-2008, 1882-2008 гг. соответсвенно. Для продления метеорядов и восстановления пропусков, установлена связь, табл. 3 измеренных среднемесячной температуры указанных M/CTближайшими c длиннорядными м/ст Сыктывкар (1818-2008 гг.) и Архангельск (1813-2008 гг.), получены уравнения регрессии и выполнена реконструкция ряда метеонаблюдений на м/ст Воркута по трехступенчатой связи.

Таблица 3. Коэффициенты корреляции среднемесячных Т воздуха м/ст

янв фев март апр май июнь июль авг сент окт ноя дек Архангельск и Сыктывкар 0,83 0,82 0,85 0,89 0,85 0,78 0,76 0,74 0,84 0,83 0,84 0,87 Сыктывкар и Воркута 0,9 0,86 0,92 0,96 0,94 0,93 0,94 0,96 0,87 0,96 0,95 0,9

На основе связи аккумуляции на леднике ИГАН и измеренной зимней температуры воздуха на м/ст Воркута (Bw=303,95 x T₃B+6304,5) и абляции восстановленной по формуле Ходакова-Кренке [1] (Bs= $(t + 8,3)^3$) построена реконструкциябаланса массы репрезентативного для Полярного Урала ледника ИГАН на период 1814-2008 гг., отражающая эволюцию оледенения района за последние 200 лет, рис. 4. В расчетах предполагалось, что на весь период реконструкции «балансовый» ледник находился в пределах границы 1953-1989 гг. – в среднем 0,81 км². Установлено, что ледник ИГАН к 2008 г. сократился от размеров периода измерений баланса 1957-1981 гг. на 9 % (от 0,81 км² до 0,73 км²), максимальное сокращение площади произошло в 1989-2008 гг. По наблюдениям 1953 и 1958 гг. ледник ИГАН контактировал с моренными валами и лишь немногим был ниже гребня первой окружающей морены возраст которой датируется Ю.Л. Мартиным [3] в пределах 1808-1832 г. Сокращения площади ледника с начала XIX века до 1953 г. оценивается в 10 % [5]. Для точности реконструкции необходимо исключить 9 и 10 % площади ледника, растаявших до и после прямых наблюдений, что требует перерасчетов. Учитывая неосуществимость учета изменений площади ледника внутри периода реконструкции принято, что 9 % сокращения площади с 1989 по 2008 г. нивелируются 10 % в XIX веке.

Проведено сравнение построенной реконструкции ранее опубликованной реконструкцией баланса ИГАН, массы ледника выполненной В.Г. Ходаковым [5], показавшее схожесть в пиках, но отличия абсолютных значениях, что обусловлено увеличением точности реконструкции и использованием более длительных рядов.

Рис.4.Скользящие одиннадцатилетние значения баланса массы л-ка ИГАН.

Реконструкция точно отражает колебания ледников на Полярном Урале в XX веке, и представляет новый взгляд на палеогеографические условия в XIX веке. Оледенение Полярного Урала постепенно сокращается на протяжении последних 200 лет и к настоящему времени значительно деградировало. Ледники отступают с разной скоростью, некоторые распались или исчезли, каровые ледники сократились по площади на 50 % (Обручева, Чернова), а присклоновые ледники (Анучина) остались практически без изменений.

Литература:

- 1. Атлас снежно-ледовых ресурсов мира. М.: РАН, 1997. 392 с.
- 2. Иванов М.Н. Колебания ледников Полярного Урала. Материалы докладов XVI Международной конференции "Ломоносов": Секция География. М.: Изд-во МГУ, 2009. (www.lomonosov-msu.ru). с. 43-44.
- 3. Мартин Ю.Л. Динамика лишайниковых синузий и их биогеохимическая роль в экстремальных условиях среды. Автореф. дисс. д.б.н. Таллин, 1987.
- 4. Материалы наблюдений на горноледниковых бассейнах МГД в СССР. Л.: ГИМИЗ, Вып.1 (1965-69), 1980. 236 с., Вып.2 (1969-74). 1987. 300 с.
- 5. Оледенение Урала. М.: Наука, 1966. 307 с.
- 6. Тушинский Г.К. Космос и ритмы Земли. М.: Просвещение, 1966, 120 с.
- 7. Тушинский Г.К., Турманина В.И. Ритмы гляциальных процессов последнего тысячелетия // Ритмы гляциальных процессов М.: Изд-во Моск. Ун-та, 1979, с. 154-160.
- 8. Тушинский Г.К. Ледники, снежники, лавины Советского Союза. М.: Географгиз, 1963. 312 с.
- 9. Fluctuations of Glaciers. IAHS-Unesco. Paris. v. III-V.