
OPT-i 
An International Conference on 

Engineering and Applied Sciences Optimization 
M. Papadrakakis, M.G. Karlaftis, N.D. Lagaros (eds.) 

Kos Island, Greece, 4-6 June 2014 
 
 
 

SCHEDULING OF COMPUTATIONAL TASKS  
IN SWITCHED NETWORK-BASED IMA SYSTEMS 

Vasily V. Balashov1, Vadim A. Balakhanov1, and Valery A. Kostenko1 

1 Department of Computational Mathematics and Cybernetics,  
Lomonosov Moscow State University 

Leninskie Gory, MSU, 1, Bldg. 52, Room 764, Moscow, Russia 
e-mail: {hbd, baldis, kost}@cs.msu.su 

Keywords: Real-Time Systems, Computations Scheduling, Network Load Optimization.  

Abstract. In this paper, the problem of automatic scheduling of computational tasks in inte-
grated modular avionics (IMA) systems is addressed. This problem breaks down into: (1) as-
signing the partitions (groups of related tasks) to processor cores of different IMA modules, 
and (2) constructing sets of task execution windows for all cores, along with defining the 
tasks’ priorities. For the first subproblem, a greedy algorithm which minimizes the inter-
module data exchange is presented. For the second subproblem, an algorithm is presented 
which constructs a schedule conforming to a set of constraints imposed by the IMA architec-
ture and specifics of the target system. Results of experimental evaluation of these algorithms 
are presented. The algorithms are implemented in a tool system for scheduling of computa-
tions in IMA systems. 



Vasily V. Balashov, Vadim A. Balakhanov and Valery A. Kostenko 

1 INTRODUCTION 

 Integrated Modular Avionics (IMA) systems are distributed real-time systems consisting 
of computing modules connected by a communications network. A typical IMA system uti-
lizes several types of unified modules and a switched network (fabric) supporting virtual data 
transfer channels. Each module contains one or more multicore processors. The network is 
based on either AFDX or Fibre Channel technology. 

Computational tasks for IMA systems are grouped into partitions according to their criti-
cality and data coupling. All tasks from a partition are executed on the same processor core. 
Processor time is allocated to each partition in the form of execution windows. The notions of 
partition and execution window used in this paper are described in detail by the ARINC 653 
standard [1]. 

A task set for a modern IMA system includes several hundreds of periodic tasks. Consider-
ing different periods of tasks, the number of jobs in the scheduling interval (also known as the 
major frame of the schedule) reaches several thousand. Tasks running on different modules 
generate traffic in the inter-module network. To ensure scalability of the system, this traffic 
should be minimized. Meanwhile the utilization of processor cores in the modules should be 
balanced, and task execution schedules must conform to the constraints imposed by IMA ar-
chitecture and the specifics of the target system. This makes the scheduling problem for IMA 
systems sufficiently complex and calls for development of scheduling algorithms ant tools for 
this problem 

Existing approaches (e.g. [2, 3, 4, 5]) for scheduling in time-partitioned systems deal with 
either too abstract or too constrained description of the target system, and can hardly be im-
proved to solve the real-life scheduling problem described below.  

In this paper we present algorithms for scheduling the computation tasks in RMA systems, 
including partitions’ assignment to processor cores and construction of tasks execution win-
dow for the cores. The rest of the paper is structured as follows. Section 2 describes the organ-
ization of computations in an IMA system from the scheduling point of view. Section 3 
presents the scheduling problem statement, structure of the solution and constraints on the so-
lution. Section 4 contains an overview of several existing approaches to scheduling in time-
partitioned systems, as well as analysis of these approaches’ applicability to the problem un-
der consideration. In the Section 5 the proposed scheduling algorithms are described, and re-
sults of their experimental evaluation are presented. Section 6 briefly presents a tool system in 
which the algorithms are implemented. In the conclusion, directions for future work are out-
lined. 

2 ORGANIZATION OF COMPUTATIONS IN IMA SYSTEMS 

2.1 IMA system structure 

In this paper we consider IMA systems consisting of multiple computing modules, each of 
which contains one or more multicore processors. Different types of processors can be used in 
the IMA system, so execution time for the same task may vary depending on which proces-
sor’s core the task is running on. 

The modules are connected by a switched network which implements virtual channels. The 
traffic in one virtual channel is considered isolated from the traffic in any other virtual chan-
nel. This is the most important feature of such a switched network from the scheduling point 
of view, as it enables independent accounting for transfer delays of different messages. 



Vasily V. Balashov, Vadim A. Balakhanov and Valery A. Kostenko 

2.2 Structure of the task set 

The task set for the IMA system consists of periodic tasks grouped into partitions accord-
ing to logical relationship and data coupling. The tasks take input data and generate output 
data in the form of messages, so the set of periodic tasks is complemented by a set of messag-
es. 

A message between two tasks constitutes a data dependency. If both tasks have same peri-
od, the dependency is considered synchronous, so a job (“instance”) of the receiver task must 
wait for arrival of the message from the corresponding job of the sender task in order to start. 
If two tasks have different periods, there is no requirement that the receiver job waits for the 
message from the sender job, so the dependency is asynchronous. Further in this paper syn-
chronous dependencies between tasks are mainly considered. 

Each task within a partition has a priority which is unique within the partition. Priorities of 
tasks belonging to different partitions are incomparable. 

2.3 Timings of message transfer and task execution 

In this paper we assume that for each message between tasks running on different modules 
there is a dedicated virtual channel in the switched network. In this case, transfer time of the 
message is not affected by the network load, and can be considered constant. In fact, in AFDX 
and Fibre Channel networks with virtual channels there is certain influence of traffic in some 
virtual channels on transfer timings for messages in other virtual channels, but this influence 
is insignificant in comparison to, for instance, common buses like CAN [6]. There are several 
techniques to provide safe estimation of data transfer timings for a switched network with vir-
tual channels, for instance [7, 8]. We assume that one of these techniques is used to calculate 
the maximum transfer time for each message. These transfer times are considered input data 
for the scheduling problem. 

If sender and receiver tasks belong to different partitions running on the same module, the 
messages between these tasks are transferred through the module’s memory. So for every 
message between tasks from different partitions, two timings are given: one for transfer 
through the network, and the other (usually shorter) for transfer through the memory. 

Message transfers between tasks from the same partition are considered instant, because 
tasks of a single partition are bound to the same processor core and exchange messages 
through shared memory. 

For the tasks from the task set, worst case (maximum) execution times are given for each 
processor type in the IMA system.  

2.4 Scheduling scheme 

Processor time is allocated to partitions by means of execution windows. An execution 
window is a time interval within which the tasks of a specific partition can be executed on the 
processor core to which the partition is assigned. Execution windows on the same processor 
core cannot overlap. The grid of execution windows is the same for all cores of the same 
module. 

The schedule for the IMA system defines the set of execution windows (for each module) 
and assignment of partitions to the execution windows (for each core). The schedule is con-
structed for the duration intl  of the scheduling interval, which equals the least common multi-

ple of the tasks’ periods. This schedule is constructed statically and loaded into the IMA 
system as a part of its configuration. 



Vasily V. Balashov, Vadim A. Balakhanov and Valery A. Kostenko 

The sequence (or schedule) of tasks execution is determined by the scheduler of the IMA 
operating system during the IMA system runtime, according to the schedule of execution 
windows, partitions binding to the windows, and task priorities. 

In the IMA system runtime, after the end of the scheduling interval, the schedule of execu-
tion windows is executed again. 

Within a window, tasks of the partition which are ready for execution start according to 
their priorities. The task is “not ready” if, for instance, some of its synchronous input messag-
es have not yet arrived, or the successive iteration of the task period has not yet begun. After 
the task execution is complete, transfer of all its output messages begins. If a task starts within 
some window, but is not finished before the end of the window, its execution resumes in the 
next window of the same partition, again according to the task priority. 

The execution of the tasks is preemptive. 
As the tasks in the task set generally have different periods, the static scheduling algo-

rithms operate with jobs (instances of the tasks). For each periodic task there is a set of jobs. 
Deadline interval for a job is defined by the task period and number of task iteration which 
corresponds to the job. For instance, if T is the task period, i is the number of task iteration 
(numbering starts from 1), then the deadline interval for the job is  TiTi *;*)1(  . The num-

ber of jobs for a task during one scheduling interval equals  Tl /int . 

For chains of jobs with synchronous data dependencies, finish deadlines of jobs can be re-
fined: a job must finish (and produce its output messages) early enough to allow the depend-
ent jobs to finish within their deadlines at least in the best case, when these jobs are started as 
soon as possible. 

3 THE PROBLEM OF COMPUTATIONS SCHEDULING IN IMA SYSTEMS 

3.1 Problem statement 

The computations scheduling problem for IMA systems is stated as follows. 
Input data: 
Description of the IMA system: 
 set of computational modules in the IMA system; 

 for each module: number and types of processors; 

 set of processor types; 

 for each processor type: number of cores (all cores of the same processor are uniform), 
window initialization duration, context switch duration; 

 for each processor core: upper limit on utilization. 

Description of the workload (tasks, messages): 
 set of tasks; 

 for each task: period, worst case (maximum) execution time for every processor type, ini-
tial priority; 

 set of partitions; 

 for each partition: set of tasks belonging to the partition (these sets do not intersect), set 
of processor cores to which the partition can be assigned; 

 optional, for some partitions: fixed assignment to processor cores (essential for incremen-
tal development of an IMA system); 



Vasily V. Balashov, Vadim A. Balakhanov and Valery A. Kostenko 

 set of messages; 

 for each message: sender task, receiver task, size (bytes); 

 for each message between tasks from different partitions: maximum duration of transfer 
through the network, maximum duration of transfer through memory. 

Note: initial priorities for the tasks of a partition may be defined only for some of the tasks 
and are not necessarily unique within the partition. These priorities define only a partial order-
ing of the tasks. During schedule construction, final unique priorities are calculated for all the 
tasks of the partition. Final priorities define the complete ordering of tasks within the partition. 

Output data (solution): 
 assignment of partitions to processor cores; 

 for each module: set of execution windows; 

 for each window: start time; finish time; partition, the tasks of which are executed in the 
window (there can be windows without partitions, e.g. on cores to which no partitions are 
assigned); 

 for each task: its final priority. 

Criterion to be minimized: total size of messages transferred through the network during 
the scheduling interval. 

Note: the reason for choosing this criterion is that the size of messages is an additive char-
acteristic of network load. To the opposite, the message transfer durations are not additive as 
the virtual channels in the network generally have different throughput limits, so a message of 
the same size has long transfer duration for a “slow” virtual channel and short transfer dura-
tion for a “fast” virtual channel. 

The chosen criterion can be minimized by assigning intensely interacting (via message 
transfer) partitions to the cores of same modules, while meeting the limits on core utilization. 

Balancing the utilization between processor cores can be achieved by setting proper limits 
on utilization for the processor cores. Introducing “balanced utilization” as the second criteri-
on, analyzing and solving the resulting bi-criteria problem can be considered future work.  

We do not present the strictly formal statement of the scheduling problem here, as it re-
quires an extensive set of notations to represent all the involved objects and constraints on 
these objects. 

3.2 Constraints on the solution 

A correct solution for the scheduling problem must meet a number of constraints, including: 
 constraints on execution windows: 

- the set of execution windows must be the same for all cores of the same module; 
- execution windows for a specific processor core must not overlap; 
- no more than one partition can be bound to any window; 

 constraints on partitions assignment to processor cores: 

- each partition must be assigned to no more than one processor core; 
- each partition can be assigned only to processor cores which are permitted for this 

partition in the input data set; 
- for each core, the specific upper limit on utilization must not be exceeded; 

 constraints on final priorities: 

- for each partition, final priorities of its tasks must be unique; 



Vasily V. Balashov, Vadim A. Balakhanov and Valery A. Kostenko 

 constraints on the sequence of jobs execution: 

- each job must start and finish within its deadline interval; 
- a job within a window can start (or resume) its execution no earlier than 

<beginning of the window> + <window initialization duration>; 
- if the partition bound to the current window is different than the partition bound to 

the previous window on the same core, than a job within the current window can start 
(or resume) its execution no earlier than  
<beginning of the window> + <window initialization duration> + 
  + <context switch duration>; 

- a job cannot start if any of its synchronous input messages have not yet arrived; 
- jobs which are ready to start execute according to their priorities, with preemption 

enabled. 
The latter group of constraints applies to the schedule of jobs execution. This schedule is 

not a part of the solution, as the IMA system constructs it in runtime and does not take it as 
input data. So, to check the correctness of the solution, one has to simulate the IMA system 
run (from the dynamic scheduler’s point of view) and construct the schedule of jobs execution 
for the duration of a single scheduling interval. To check the pessimistic case, all job execu-
tion times are considered worst-case during the simulation. 

4 RELATED WORK 

4.1 Scheduling tools and algorithms for systems with time-partitioned scheduling 

There are a number of papers describing scheduling tools and/or algorithms targeted at sys-
tems with time-partitioned scheduling, which operate more or less close to the ARINC 653 
standard. However the scheduling problems formulated in these papers substantially differ 
from the one described above. 

In the paper [2] tasks are not considered as separate entities. The workload is defined as a 
set of partitions. Each partition has a period, and execution windows for the partition occur in 
the schedule with this period. No data dependencies between partitions are taken in account. 
The scheduling problem is formulated as a constraint satisfaction problem and a constraint 
logic programming approach is used to solve it. 

The level of detail for the target system description in [2] is not suitable for the scheduling 
problem stated in Section 3.1. Lack of support for data dependencies makes the scheduling 
approach proposed in [2] even less usable for real IMA systems. 

In [3] the target system is represented in more detail. A set of tasks for the system is de-
fined, with priority, period, execution time, deadline interval and release jitter for each task. 
Data dependencies between tasks are not explicitly specified; the authors suggest that dead-
line intervals should be constructed to reflect the dependencies. For each partition, its share in 
CPU utilization is specified, as well as its period. The periods are aliquant, i.e. for each pair of 
periods one of them is a multiple of the other. The set of execution windows is constructed 
according to Earliest Deadline First discipline (the algorithm is not explicitly described). 

The scheduling problem stated in [3] assumes more regular operation of the target system 
than the problem considered in our paper (e.g. aliquant periods). Lack of explicit considera-
tion of inter-task dependencies makes the scheduling approach proposed in [3] hard to apply 
to the problem stated in Section 3.1; in fact, to determine the deadline intervals which take 
data dependencies in account, a significant sub-problem of the scheduling problem needs to 
be solved. In our paper we propose an algorithm which concurrently constructs a schedule of 



Vasily V. Balashov, Vadim A. Balakhanov and Valery A. Kostenko 

tasks execution, refines the deadlines of remaining tasks according to data dependencies, and 
builds the set of execution windows. 

It should also be noted that in [3] the priorities of the tasks are given as input data, and no 
approach to priority assignment is proposed. 

In [4] an original scheduling approach is presented, in which the tasks are treated as parts 
of “end-to-end flows” (ETEF) which are sequences of tasks. Such flow is the main subject for 
scheduling; deadlines are defined for ETEFs instead of tasks. The Xoncrete tool described in 
[4] calculates “best” periods for ETEFs in order to minimize their least common multiple (i.e. 
the duration of the scheduling interval). The periods of tasks are derived from the calculated 
periods of ETEFs. 

The scheduling approach proposed in [4] is not suitable for solving the problem stated in 
Section 3.1, as the tasks periods are fixed in the input data for this problem. No details on the 
algorithm for construction of execution windows are provided in [4]. 

The scheduling algorithm proposed in [5] is based on ant colony approach. This algorithm 
assumes a fixed binding of tasks to execution windows. Such assumption is not valid for the 
IMA system scheduling logic described in Section 2.4: in our case, the actual subset of parti-
tion’s tasks to be executed in a given window depends on execution timings of previous tasks 
during a specific run of the IMA system. The assumption mentioned above is crucial for the 
logic of algorithm proposed in [5] and there is no easy way to evolve this algorithm to support 
IMA systems for which this assumption is invalid. 

4.2 Schedulability analysis tools 

The tools RAPID RMA [9], Cheddar [10], MAST [11] provide support for real-time 
scheduling analysis. These tools support complex dependencies between tasks, as well as sev-
eral scheduling disciplines. Support for time-partitioned scheduling, including ARINC 653 
compliant version, is either available in current version of the tools, or can be added via 
plugins. 

The tools mentioned above can serve as independent verification tools for the schedules of 
task execution windows constructed by the algorithms and a tool system described in this pa-
per. Integration with one of these tools can be considered future work. 

5 PROPOSED SCHEDULING ALGORIGHMS  

5.1 Problem decomposition 

The problem stated in Section 3 can be solved in two steps: 
1. Assigning the partitions to processor cores of the modules. On this step, the traffic on 

the network is to be minimized (it should be noted that message transfer between partitions on 
the same module does not utilize the network). For each processor core, a specific upper limit 
on utilization must not be violated. 

2. Constructing the sets of execution windows for all processor cores of the IMA system. 
On this step, final priorities of the tasks must also be determined. 

The assignment of partitions to processor cores is a part of data necessary for scheduling of 
execution windows. Therefore we propose to perform the steps 1 and 2 sequentially. More 
sophisticated approaches exist, e.g. an iterative one where unsuccessful execution of step 2 
provides some feedback to the next iteration of step 1. Exploration of such approaches is con-
sidered future work. 



Vasily V. Balashov, Vadim A. Balakhanov and Valery A. Kostenko 

5.2 Algorithm for assigning the partitions to processor cores 

This algorithm assigns partitions to processor cores of the computational modules of the 
IMA system. 

The algorithm minimizes the criterion introduced in Section 3.1, i.e. the total size of mes-
sages transferred through the network through the duration of the scheduling interval. Mini-
mization of the criterion is achieved through assignment of intensely interacting (via message 
transfer) partitions to the cores of same modules, while meeting the limits on core utilization. 
The algorithm implements greedy strategy. 

The following notations are used to describe the algorithm. 
  qpvC ,  – total size of messages transferred between the partitions p and q through the 

duration of scheduling interval; 

  pvC  – total size of messages sent and received by the partition p through the duration 
of the scheduling interval; 

  QpvC ,  – total size of messages transferred between the partition p and partitions from 

the set Q through the duration of the scheduling interval; 

  mpvС ,ˆ  – total size of messages transferred between the partition p and partitions not 

assigned to the module m through the duration of the scheduling interval; 

 P – set of all partitions; 

 'P  – set of partitions already assigned to processor cores. At the start of the algorithm, 
this set is non-empty if for some partitions the assignment to processor cores is fixed in 
the input data. 

The scheme of the algorithm is as follows. 
1) choose a partition for assignment from the set '\ PP : 

if 'P  is empty, or   0', PpvC  for all partitions '\ PPq  

then choose the partition p with maximum value of  pvC ; 

else choose the partition p with maximum value of  ', PpvC ; 

2) sort the modules by increase of  mpvС ,ˆ ; 

3) in a loop through the modules: 
a) if the current module m includes a core to which the partition p can be assigned 

without exceeding the utilization limit, then assign p to this core (if there are 
several such cores on the module, choose a core with maximum remaining mar-
gin to the utilization limit); go to step 4; 

// in case the is no such core in the current module 
b) if the partitions on the current module m can be reassigned to cores of m so that 

one of the cores is sufficiently offloaded to assign p to it without exceeding the 
utilization limit,  
then perform the reassignment; assign p to that core; go to step 4; 
Note: partitions for which the assignment to the cores is fixed in the input data 
can not be reassigned. 

// in case the partition cannot be assigned to a core of the current module 
c) continue the loop; 

4) if no core was chosen on step 3, then stop (unsuccessful completion); 



Vasily V. Balashov, Vadim A. Balakhanov and Valery A. Kostenko 

5) if the set 'P  is not empty, go to step 1, else stop. 
 
Choice of this greedy scheme is motivated by the following factors: 
 low computational complexity even for large numbers of partitions and cores; 

 good results on available data for IMA systems (see Section 5.4 for details); 

 ability to modify a partially defined assignment of partitions on step 3, allowing to de-
crease the risk of construction of a suboptimal solution because of decisions made on the 
early steps of algorithm’s execution (this risk is typical for a “pure” greedy scheme). 

This algorithm is finite, because on every iteration of the loop it either assigns a partition to 
a core (the number of partitions is finite), or stops. 

Computational complexity of this algorithm depends on the numbers of partitions ( PN ), 

modules ( MN ), cores ( CN ), tasks ( taskN ) and messages ( msgN ). 

The order of the algorithm’s complexity is: PN *( PN * MN + CN ) + msgN + taskN . 

An alternative for the algorithm described above can be an algorithm based on the contain-
er scheme. The problem of assignment of partitions to processor cores can be considered as a 
problem of packing objects into containers. The containers correspond to cores; container’s 
remaining capacity is the utilization margin of the core, i.e. the difference between the utiliza-
tion limit and the current utilization. The objects correspond to partitions; object’s volume is 
the partition’s contribution to the core utilization; object’s cost is the part of traffic which be-
comes “internal” for the module when the object is placed in the container (i.e. the partition is 
assigned to a core). 

This statement of the packing problem substantially differs from the traditional statement 
(with fixed volumes and costs of objects): 
 object’s volume depends on the choice of container, as the task execution times differ 

among processor types; 

 object’s cost depends on which other objects are packed in the same container. 

Therefore, the existing algorithms for solving the container packing problem require modi-
fications in order to solve the described problem. Solving of the partitions assignment prob-
lem as a container packing problem can be considered future work. 

5.3 Algorithm for construction of the set of execution windows 

The input data set for this algorithm is the input data set for the scheduling problem (see 
Section 3.1) plus the assignment of partitions to processor cores. 

The general idea of the algorithm is to construct a temporary multi-processor static sched-
ule of jobs execution (jobs schedule) for the duration of the scheduling interval and, in paral-
lel, determine the bounds of the execution windows and the final priorities of the tasks. 

The jobs schedule is constructed concurrently for all processor cores of the IMA system. 
For each i-th core (in a continuous numbering of all processor cores), a “current time” counter 

it  is maintained. Each it  starts from 0 and can only grow through the algorithm’s execution. 

Jobs for the i-th core can only be scheduled at it  or later. 

A job for i-th core (i.e. belonging to a partition assigned to this core) is considered ready if: 
 it  belongs to the job’s deadline interval; 

 all synchronous messages for this job have arrived. 



Vasily V. Balashov, Vadim A. Balakhanov and Valery A. Kostenko 

On each iteration the algorithm processes the core with minimum it . For this core the algo-

rithm chooses a job fitting the following conditions: 
 the job is ready; 

 if initial priority is defined for the job: there is no other ready job with higher initial pri-
ority from the same partition; 

 if initial priority is not defined for the job: there is no other ready job without initial pri-
ority from the same partition, such that the first job of its task precedes the first job of the 
task to which the job under consideration belongs. 

If there are several jobs fitting these conditions, the algorithm chooses one of them which 
has the minimum finish deadline. 

If a job is chosen, the algorithm schedules it on the current core. If the job belongs to a dif-
ferent partition than the previous job scheduled for the same core, a new window is opened 
(the current window is closed), and the job starts in it after the duration of window initializa-
tion and context switch. On all other cores of the same module, new windows are also opened 
(and current ones are closed), but no context switch is performed. Finish times of jobs in the 
middle of which a window change occurs are increased by window initialization duration. It 
should be noted that window initialization without a context switch is a cheap operation in 
IMA systems. 

After a job is scheduled, arrival times for all its output messages are calculated (start dead-
lines of the dependent jobs are corrected accordingly); it  is shifted to the job’s finish time, 

and the algorithm starts a new iteration. 
If no job is chosen and scheduled on an iteration (this means that no jobs are ready for the 

i-th core), the algorithm shifts it  to the minimum time at which a ready job will be available 

at any core, plus one minimum time increment if that job is from another core. 
The jobs that failed to be scheduled within their deadline intervals are moved to the set of 

unscheduled jobs. 
After the jobs schedule is constructed, final priorities for the jobs are calculated inde-

pendently for all partitions. The scheme for final priorities calculation is as follows: 
1) tasks without initial priorities are ordered based on the order of first occurrences of the-

se tasks’ jobs in the jobs schedule; 

2) tasks with initial priorities are ordered based on the values of the initial priorities; if ini-
tial priorities of some tasks are equal, these tasks are ordered based on the order of 
first occurrences of these tasks’ jobs in the jobs schedule; 

3) orderings 1) and 2) are merged to produce a total ordering of tasks; final priorities are 
assigned according to this ordering. 

This algorithm is finite, because on every iteration it increases the current time counter it  

for one core (the increment is no less than a certain minimum), and the maximum value for it  

is finite, namely intl . 

Computational complexity of this algorithm depends on the numbers of partitions ( PN ), 

modules ( MN ), cores ( CN ), tasks ( taskN ), messages ( msgN ) and jobs ( jobN ). 

The order of the algorithm’s complexity is: jobN *( 2
taskN + CN * CNln + taskN ). 

The algorithm described above does not take any measures against creating series of “too 
small” windows in case context switches on different cores of one module densely follow 



Vasily V. Balashov, Vadim A. Balakhanov and Valery A. Kostenko 

each other in some time frame. To avoid creating series of small windows, as well as to make 
the set of windows more regular, an additional constraint can be introduced that window open 
and close times must be multiples of a given value. 

We suppose that the IMA system scheduler which executes the task set according to the 
constructed set of windows and assignment of task priorities will operate so that the dynami-
cally constructed jobs schedule will be close to the one constructed a priori by the algorithm 
described above. To check this, a verification procedure is always run after the scheduling 
algorithm. This procedure simulates the tasks execution and message transfer in the IMA sys-
tem (only timings and scheduling logic are simulated), and checks that all tasks meet their 
deadlines. A similar approach for solution verification is used in [12]. 

5.4 Experimental evaluation of the scheduling algorithms 

The proposed scheduling algorithms were evaluated from the following points of view: 
 practical applicability to a real IMA system; 

 quality of the partition assignment algorithm results. 

Note: of the two proposed algorithms, only the partition assignment algorithm has an ex-
plicitly defined optimized criterion and thus the quality of its results can be evaluated. By 
quality of a solution we mean the deviation of the solution from the optimum one by value of 
the optimized criterion. The second algorithm’s aim is to produce a solution that meets all the 
imposed constraints. 

To check practical applicability, the algorithms were executed on a full task set for a real 
IMA system. This data set includes 9 partitions with a total of 164 periodic tasks. The tasks 
produce 163 messages. The frequencies (and thus periods) of the tasks are generally not ali-
quant, e.g. there are tasks with frequencies of 12.5 Hz and 10 Hz. Highest frequency of a task 
is 100 Hz, and the lowest frequency is 1 Hz. 

The IMA system contains 3 modules with several processor cores on each module. The 
pair of proposed algorithms successfully assigned the partitions to cores, produced the set of 
execution windows and set of tasks’ priorities. The verification procedure confirmed that all 
the jobs meet their deadlines on a simulated IMA system. 

Total execution time of two algorithms and the verification procedure was less than one 
minute on an AMD E-450 1.5 GHz processor. 

To check the quality of the partition assignment algorithm results, the real task set was 
simplified to enable running an exact algorithm based on branch-and-bound scheme in rea-
sonable time (approximately 10 minutes; the greedy algorithm finishes in less than 1 second). 
The number of partitions was reduced to 5, and the number of modules to 2. The task execu-
tion times were randomly modified (+/- 50% to the original time) in order to produce three 
test task sets. The processor types on module 1 and module 2 were made different, with dif-
ferent task execution times. 

For each set of workload (partitions, tasks, messages), experiments were run with different 
limits on core utilization, e.g. for the first data set: 0.6/0.6 (for each core of module 1 and each 
core of module 2 respectively), 0.5/0.5, 0.6/0.4, 0.5/0.4. 

In 10 of 12 experiments, the greedy algorithm produced the same solution as the exact one, 
i.e. the optimum solution. 

In one experiment, the minimized criterion (see Section 3.1) on the solution from the 
greedy algorithm was 20% greater (worse) than on the optimum solution. 

In another one experiment, the greedy algorithm failed to find a solution, meanwhile the 
exact algorithm found one. Detailed examination revealed that due to strict limit on core utili-
zation in this experiment, the optimum solution was the only existing correct solution. The 



Vasily V. Balashov, Vadim A. Balakhanov and Valery A. Kostenko 

solution partially constructed by the greedy algorithm completely matched the exact solution 
except for assignment of one partition to a “wrong” module. In practice, slight relaxation of 
core utilization limit (+2% on one core of that module) enabled the greedy algorithm to pro-
duce a solution which is close to the optimum one. 

6 TOOL SYSTEM FOR COMPUTATIONS SCHEDULING IN IMA SYSTEMS 

The algorithms proposed in this paper are implemented in a tool system for scheduling of 
computation in IMA systems. The tool system has a modular structure (see Figure 1) derived 
from the architecture of the system for scheduling of data exchange on channels with central-
ized control [13]. The system is accepted for experimental operation by one of the leading 
Russian aircraft design companies. 

 

 
Figure 1: Structure of the tool system. 

7 CONCLUSIONS AND FUTURE WORK 

In this paper a problem statement and algorithms were presented for scheduling of computa-
tions in integrated modular avionics (IMA) systems based on switched network with support 
virtual channels. Besides construction of a set of task execution windows, the proposed algo-
rithms perform assignment of partitions to processor cores (with network load minimization) 
and determine the priorities for the scheduled tasks. The algorithms are implemented in a tool 
system which is accepted for experimental operation. 
The problem statement and the proposed algorithms deal with more detailed and realistic 
specification of an IMA system and its workload than the existing algorithms described in the 
overview of related work. 
Future work on the computations scheduling algorithms and tools for IMA systems includes: 
 exploration of the scheduling problem stated as a bi-criteria problem with “balanced core 

utilization” as the second optimized criterion; 



Vasily V. Balashov, Vadim A. Balakhanov and Valery A. Kostenko 

 exploration of iterative approaches in which an unsuccessful schedule construction at-
tempt provides feedback for correcting the assignment of partitions to processor cores; 

 formulation of the partitions to cores assignment problem as a container packing problem 
and development of container packing algorithms to solve this problem; 

 development of scheduling algorithms for IMA systems based on a shared common bus  
[14], in which case message transfers may cause conflicts on the bus; 

 integration of the scheduling tool system with an existing IMA system simulation tool to 
provide independent verification of constructed schedules; 

 improving the tool system and algorithms according to feedback from experimental op-
eration. 

REFERENCES  

[1] “ARINC 653 – An Avionics Standard for Safe, Partitioned Systems”. Wind River Sys-
tems / IEEE Seminar. August 2008. [http://www.computersociety.it/wp-
content/uploads/2008/08/ieee-cc-arinc653_final.pdf] 

[2] Goltz, H.-J., Pieth, N. A Tool for Generating Partition Schedules of Multiprocessor Sys-
tems. Proc. 23rd Workshop on (Constraint) Logic Programming, Potsdam, Germany, 
2009. 

[3] Easwaran A., Lee I., Sokolsky O., Vestal S. A Compositional Framework for Avionics 
(ARINC 653) Systems. Proc. IEEE Real-Time Computing Systems and Applications 
2009, Beijing, Aug 24-26, 2009. 

[4] Brocal V., Masmano M., Ripoll I. et al. Xoncrete: a Scheduling Tool for Partitioned Re-
al-Time Systems. Proc. ERTSS-2010, Toulouse, France, 2010. 

[5] Kostenko V. A., Plakunov A. V. An Algorithm for Constructing Single Machine 
Schedules Based on Ant Colony Approach. Journal of Computer and Systems Sciences 
International, 52 (6), 928–937, 2013. 

[6] Road vehicles – Controller area network (CAN) – Part 1: Data link layer and physical 
signaling. ISO 11898-1:2003 Standard, ISO, 2003. 

[7] Bauer H., Scharbarg J. L., Fraboul C. Applying and optimizing trajectory approach for 
performance evaluation of AFDX avionics network. Proc. Emerging Technologies & 
Factory Automation, 1-8, 2009. 

[8] Gutiérrez J. J., Palencia J. C., Harbour M. G. Response time analysis in AFDX net-
works with sub-virtual links and prioritized switches. Proc. JTR’12, 2012. 

[9] RAPID RMA: The Art of Modeling Real-Time Systems. Obtained through Internet: 
http://www.tripac.com/rapid-rma, [accessed 10.04.2014] 

[10] The Cheddar project: a free real time scheduling analyzer.  Obtained through Internet: 
http://beru.univ-brest.fr/~singhoff/cheddar, [accessed 10.04.2014] 

[11] MAST: Modeling and Analysis Suite for Real-Time Applications. 
 Obtained through Internet: http://mast.unican.es/, [accessed 10.04.2014] 



Vasily V. Balashov, Vadim A. Balakhanov and Valery A. Kostenko 

[12] Kostenko V.A. Scheduling Algorithms for Real-Time Computing Systems Admitting 
Simulation Models. Programming and Computer Software, 39 (5), 255–267, 2013. 

[13] Balashov V. V., Balakhanov V. A., Kostenko V. A., Smeliansky R. L., Kokarev V .A., 
Shestov P. E. A technology for scheduling of data exchange over bus with centralized 
control in onboard avionics systems. Proc. Institute of Mechanical Engineering, Part G: 
Journal of Aerospace Engineering, 224 (9), 993–1004, 2010. 

[14] KSHES// Shestov P. E., Kostenko V. A., Balashov V. V. Scheduling Problems In Em-
bedded Real-time Systems. Proc. 11th IFAC/IEEE International Conference on Pro-
grammable Devices and Embedded Systems (PDeS 2012), 302–306, 2012. 

 

 


