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The molecular structure of 3-cyano-4-amino-1,2,5-oxadiazole-2-oxide (3-cyano-4-aminofuroxan, CAFO) 

in the gas phase is studied for the first time by gas-phase electron diffraction (GED) and quantum chemical 

calculations, and the equilibrium parameters of this molecule are determined. The data obtained are 

compared with those of related compounds analyzed by GED and single crystal X-ray diffraction. It is 

shown that the best agreement with the experiment is obtained at the B3LYP/aug-cc-pVTZ level of theory. 

The information on the molecular structure of free CAFO will be useful for the structural studies of 

compounds containing furoxan moieties. 
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Keywords: equilibrium molecular structure, 3-cyano-4-aminofuroxan, oxadiazoles, furoxans, gas-phase 
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INTRODUCTION 

1,2,5-Oxadiazoles belong to a practically important class of heterocyclic compounds being of interest for producing 

new pharmacologically active substances or energy-intensive systems. 1,2,5-Oxadiazole derivatives have a high enthalpy of 

formation and can be a promising basis for high-energy materials [1-3]. As regards their molecular structure, amino-1,2,5-

oxadiazoles are suitable precursors in the synthesis of nitro derivatives: practice shows that incorporation of a nitro group into 

the oxadiazole ring increases the density and detonation parameters of the resulting structures [4]. However, it is worth noting 

that, depending on various substituents bonded to the 1,2,5-oxadiazole moiety, the properties of the compounds can vary. 

Hence, disadvantages of some substances of this series in terms of their practical application are low thermal and chemical 

stability and high sensitivity to mechanical stresses [5]. 

3-Cyano-4-amino-1,2,5-oxadiazole-2-oxide (3-cyano-4-aminofuroxan, CAFO) is one of the key precursors of the 

furoxan series, which is widely used for the synthesis of various high-energy materials [6-10]. Despite recent significant 

progress in this area [11-14], information on the thermal and energy properties of some functionally substituted furoxans  
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remains scarce. At the same time, as complete data as possible on the diverse set of compounds under consideration and 

profound structure–property relationships are significant for a targeted and diversity-oriented synthesis of novel promising 

energy materials. 

The work aims to determine the equilibrium structure of the CAFO molecule in the absence of intermolecular 

interactions in the gas phase by gas-phase electron diffraction (GED) and quantum chemical calculations and to compare the 

GED and single crystal X-ray diffraction (XRD) results with the reported ones on the molecular structures of a number of 

related compounds. 

EXPERIMENTAL 

GED. A CAFO sample used in this work was obtained at the Laboratory of Nitrogen-Containing Compounds, 

Institute of Organic Chemistry, Russian Academy of Sciences (the sample purity is at least 99%). The spectral and analytical 

data (supplementary materials, Fig. S1, S2, S3) are fully consistent with the structure of the target compound. 1H NMR 

spectrum (DMSO-d6, 300 MHz), δH (ppm): 7.13 (s, 2H). 13C NMR spectrum (DMSO-d6, 75.5 MHz), δC (ppm): 93.5, 107.1, 

156.2. IR spectrum (FTIR), cm–1: 3387, 3313, 2240, 1691, 1591, 1568, 1487, 1164, 1000, 854. Elemental analysis, found 

(%): C 28.51, H 1.65, N 44.28, C3H2N4O2; calculated (%): C 28.58, H 1.60, N 44.44. The GED experiment was carried out 

on an EG-100M apparatus (Faculty of Chemistry, Moscow State University) for two nozzle-to-plate distances: short (SD) and 

long (LD). For each distance, a GED pattern was recorded on three plates (an accelerating voltage of 60 kV was used to 

generate the electron beam with a wavelength λ of about 0.05 Å), and the electron wavelengths were refined by the 

experiment with the standard substance (CCl4) conducted at room temperature (25 °C). Full information on the experiment is 

given in Table 1. All GED patterns were recorded on MACO EM-FILM EMS films and scanned on an Epson Perfection 

4990 scanner. The scanner was calibrated using a Standard IT8 Target (ISO 12641-1 compliant 1997) (Fuji transparency 

Individually measured Target) on a gray scale. The GED patterns were converted into the intensity curves using UNEX [15] 

(Fig. 1). 

Quantum chemical calculations. The quantum chemical calculations were performed using the Gaussian09 

software [16] by the DFT method with the B3LYP density functional [17, 18] and perturbation theory (MP2) [19] with  

6-31G(d,p) [20], cc-pVTZ [21], and aug-cc-pVTZ [22] basis sets, and also by the CCSD(T) method [23] with the 6-31G(d,p) 

basis set [20]. To determine the CAFO parameters, the geometry was fully optimized. Atomic numbering in the studied 

molecule is given in Fig. 2 and the radial distribution curve is shown in Fig. 3. 

The optimized orthogonal coordinates of CAFO determined at the CCSD(T)/6-31G(d,p), B3LYP/6-31G(d,p), and 

MP2/cc-pVTZ levels of theory are reported in Supplementary Materials (Tables S4, S5, and S6). 

To obtain the equilibrium molecular parameters from the GED experiment, which are directly compared with those 

from the quantum chemical calculations, cubic force fields at the B3LYP/6-31G(d,p) level of theory were used to determine 

the perpendicular vibration corrections to internuclear distances [24], as well as vibrational amplitudes (supplementary  

 

TABLE 1. Conditions of the GED Experiment 

Parameter Short distance (SD) Long distance (LD) 
Nozzle–plate distance D, Mm 193.9 362.3 
Accelerating voltage U, kV 60 60 
Electron beam current I, μA 3.0 2.8 

Wavelength λ, Å 0.04914 0.04879 
Nozzle temperature T, K 375 373 

Residual pressure P, Hg mm 3.0×10–5 4.0×10–5 
Exposition t, s 60,  50,  45 35,  35,  25 

Range of scattering intensities #1 s, Å–1 6.6-31.2 3.4-20.0 
 

 

 

#1 s = 4πλ–1sin(θ/2), where θ is the scattering angle; λ is he electron wavelength; a step on the scale s is 0.2 Å–1. 
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materials, Table S7) derived from the VibModule program [25]. The NBO analysis of CAFO was carried out based on the 

B3LYP/aug-cc-pVTZ method using the NBO 7.0 program [26]. 

RESULTS AND DISCUSSION 

The validity that can be achieved by quantum chemical calculations depends on the method and the completeness of 

the basis function set [27]. 

Table 2 lists the optimized equilibrium parameters for CAFO, which are compared with those obtained from the 

theoretical calculations of 3,4-dicyanofuroxan (DCFO). 

 

TABLE 2. Comparison of the Structural Parameters of CAFO with the Theoretical Calculations  
for DCFO (bond lengths in Å, bond angles in degrees, Rf in percents) 

Parameter 
GED#1  

(CAFO) 

B3LYP 
/cc-pVTZ  

(DCFO) [26] 
/6-31G(d,p) 

(CAFO) 
/cc-pVTZ  
(CAFO) 

/aug-cc-pVTZ  
(CAFO) 

re(O1–N2) 1.415(12) 1.472 1.425 1.420 1.419 
re(N2=C3) 1.340(4) 1.340 1.347 1.342 1.341 
re(C3–C4) 1.430(6) 1.425 1.432 1.428 1.428 
re(C4=N5) 1.306(2) 1.306 1.314 1.306 1.306 
re(O1–N5) 1.390(3) 1.346 1.392 1.389 1.390 
re(N2–O6) 1.207(3) 1.195 1.213 1.205 1.206 
re(C3–C7) 1.403(2) 1.405 1.407 1.403 1.403 
re(C7≡N8) 1.153(3) 1.152 1.164 1.154 1.153 

re(N9–H10) 1.002(12) – 1.010 1.006 1.006 
∠(O1–N2–C3) 106.7(3) 105.2 106.6 106.6 106.7 
∠(N2–C3–C4) 106.9(3) 106.9 106.8 106.9 106.9 
∠(C3–C4–N5) 110.9(2) 111.4 110.0 110.9 110.9 
∠(O1–N5–C4) 106.7(2) 107.6 106.5 106.7 106.7 
∠(N2–O1–N5) 108.8(3) 108.9 109.0 108.9 108.9 
∠(O1–N2–O6) 119.2(3) 119.0 119.2 119.2 119.2 
∠(C3–N2–O6) 134.0(4) 135.8 134.2 134.2 134.1 
∠(N2–C3–C7) 123.4(5) 122.2 123.2 123.3 123.4 
∠(C4–C3–C7) 129.8(2) 130.9 130.0 129.8 129.7 
∠(C3–C7–N8) 176.4(6) 179.0 176.5 176.3 176.2 
∠(C4–N9–H10) 117.5(8) – 117.0 117.2 117.7 
∠(H10–N9–H11) 115.5(3) – 115.0 115.1 115.5 

D(O1–N2–C3–C4) –0.3(2)#2 0.0 –0.2 –0.2 –0.1 
D(N2–O1–N5–C4) –0.7(2)#2 0.0 –0.9 –0.8 –0.7 
D(C3–C4–N5–O1) 0.5(1)#2 0.0 0.7 0.7 0.6 

D(C4–N9–H10–H11) 142.7(5)#2 – 140.3 141.5 143.8 
Rf LD 3.1     
Rf SD 5.5     

Rf total 4.3     

Parameter 
MP2 CCSD(T) 

/cc-pVTZ  
(DCFO) [26] 

/6-31G(d,p) 
(CAFO) 

/cc-pVTZ 
(CAFO) 

/aug-cc-pVTZ 
(CAFO) 

/6-31G(d,p) 
(DCFO) [26] 

/6-31G(d,p) 
(CAFO) 

1 2 3 4 5 6 7 
re(O1–N2) 1.552#3 1.459 1.435 1.435 1.455 1.423 
re(N2=C3) 1.354 1.354 1.349 1.348 1.344 1.338 
re(C3–C4) 1.403 1.415 1.411 1.411 1.422 1.430 
re(C4=N5) 1.337 1.326 1.319 1.320 1.314 1.310 
re(O1–N5) 1.314 1.364 1.356 1.358 1.361 1.387 
re(N2–O6) 1.194 1.225 1.214 1.217 1.202 1.215 
re(C3–C7) 1.408 1.412 1.406 1.406 1.416 1.421 
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TABLE 2. (Cont.) 
1 2 3 4 5 6 7 

re(C7≡N8) 1.174 1.185 1.174 1.174 1.164 1.167 
re(N9–H10) – 1.010 1.008 1.009 – 1.009 

∠(O1–N2–C3) 102.1 104.9 105.3 105.4 105.8 106.8 
∠(N2–C3–C4) 109.0 108.0 107.7 107.7 – 106.8 
∠(C3–C4–N5) 111.6 110.6 110.2 110.2 – 110.9 
∠(O1–N5–C4) 108.2 107.4 107.5 107.4 – 106.5 
∠(N2–O1–N5) 109.0 109.1 109.3 109.3 109.0 108.9 
∠(O1–N2–O6) 119.9 119.4 119.4 119.4 118.9 118.9 
∠(C3–N2–O6) 138.0 135.7 135.3 135.3 – 134.4 
∠(N2–C3–C7) 120.3 121.2 121.9 122.0 121.9 122.4 
∠(C4–C3–C7) 130.6 130.8 130.4 130.3 – 130.8 
∠(C3–C7–N8) 179.7 177.4 177.0 176.7 179.0 176.9 
∠(C4–N9–H10) – 114.1 114.2 114.8 – 114.6 
∠(H10–N9–H11) – 111.8 112.2 112.8 – 112.4 

D(O1–N2–C3–C4) 0.0 –1.5 –0.4 –0.4 0.0 –0.7 
D(N2–O1–N5–C4) 0.0 –0.9 –0.9 –0.8 – –0.7 
D(C3–C4–N5–O1) 0.0 0.0 0.6 0.6 – 0.3 

D(C4–N9–H10–H11) – 128.5 129.8 131.9 – 130.6 
 

 

 

#1 Errors were determined as 3σ-LSM; i.e., they are equal to the triple standard deviation by LSM. 
#2 Initial approximation was determined at the B3LYP/6-31G(d,p) level of theory. 
#3 The authors pay attention to the overestimated value in the calculation of the MP2/cc-pVTZ O1-N2 bond to 

1.552 Å compared to 1.459(4) Å and 1.415(12) Å for DCFO and CAFO, respectively. Apparently, this calculation method 
gives an overestimated result for these objects. 

 

Table 2 demonstrates some differences between our calculated geometric parameters for the two compounds under 

consideration. It can be assumed that amino group substitution for one of the cyano groups in DCFO markedly affects the 

molecular electron density distribution, and hence, the bond lengths and angles. For CAFO in the MP2/cc-pVTZ 

approximation, the calculated lengths of some bonds between heteroatoms in the molecular ring increased compared to the 

respective B3LYP/cc-pVTZ data, except for the re(O1–N5) bond whose length decreased. The results of the analogous 

CCSD(T)/6-31G(d,p) calculation show a similar trend, although to a slightly lesser extent [28]. 

Table 2 evidences that the CCSD(T)/6-31G(d,p) level of theory is in good agreement with the experimental data and 

generally reproduces the GED results within the experimental error range, yet the re(C3–C7) bond length is overestimated by 

approximately 0.02 Å. The MP2 results are beyond the experimental error; the bond lengths are overestimated on average by 

0.01 Å, and for re(O1–N5) the final MP2/aug-cc-pVTZ result is underestimated by 0.03 Å. The B3LYP functional provides 

the best agreement (especially, the aug-cc-pVTZ basis set), almost always falling into the experimental error range. It can be 

noted that the results at the B3LYP/6-31G(d,p) level of theory, if they do not coincide with the experimental molecular 

parameters, almost always exceed them approximately by the same value of 0.003-0.008 Å for bond lengths and by 0.2-0.7° 

for bond angles (Table 2). Moreover, this method gives good values within the GED error range when determining the bond 

angles. 

Having analyzed the considered methods, it can be assumed that the values closest to the experiment can be obtained 

at the B3LYP/aug-cc-pVTZ level of theory; and slightly worse, in the B3LYP/6-31G(d,p) approximation. 

The work also compares the CAFO structural parameters with the geometry of structurally similar compounds 

(DCFO, 3-methyl-4-nitrofuroxan, and 4-methyl-3-nitrofuroxan), which were determined by GED in [29, 30]. The results are 

presented in Table 3. 

The largest differences are observed for re(O1–N2) (about 0.04 Å) and re(O1–N5) (approximately 0.03 Å) bonds. 

The other values for the CAFO–DCFO pair differ by no more than 0.01 Å. This may be due to the presence of an additional 

cyano group–an electron density acceptor that pulls part of the electron cloud onto itself. This distorts the oxadiazole ring,  
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It can be seen that the experimental C≡N bond length for CAFO slightly differs from that in the other molecules by 

approximately 1-1.5%, although this value falls within the acceptable range observed in the series of compounds under 

consideration. 

CONCLUSIONS 

The molecular structure of CAFO in the gas phase was studied for the first time by GED and quantum chemical 

calculations, and its equilibrium parameters were determined. The data obtained were compared with the analogous data for 

the related compounds analyzed by GED and single crystal XRD. It was demonstrated that the best agreement with the 

experiment was obtained at the B3LYP/aug-cc-pVTZ level of theory. 

It was shown that the presence of only one cyano group as a substituent compared to DCFO distorted the geometry 

of the studied molecule: the re(O1–N2) bond shortens by 0.045 Å and r(O1–N5) elongates by 0.02 Å, the O1–N2–C3 bond 

angle increases by 1.7°. 

The NBO analysis at the B3LYP/aug-cc-pVTZ level of theory shows that the cyano group is an electron density 

acceptor and, therefore, concentrates part of the electron cloud on itself. Unlike DCFO, CAFO is to a lesser extent a coupled 

π electron system, hence, a larger effective charge is concentrated on more electronegative atoms (Fig. 4). 

Furthermore, differences were found between the CAFO molecular structure and the structures of related 3-methyl-

4-nitrofuroxan and 4-methyl-3-nitrofuroxan: re(O1–N2) and re(O1–N5) bond lengths differ on average by ±0.04 Å, 

suggesting a strong effect of nitro groups on the five-membered ring geometry. The comparison of bond lengths and bond 

angles generally reveals the discrepancy: the CAFO parameters differ on average by 0.03 Å of the respective pair of 3-

methyl-4-nitrofuroxan and 4-methyl-3-nitrofuroxan parameters. 

The information obtained on the molecular structure of free CAFO will be useful for the structural studies of 

compounds containing furoxan moieties. 
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