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EQUILIBRIUM MOLECULAR STRUCTURE
OF 3-CYANO-4-AMINO-1,2,5-OXADIAZOLE-
2-OXIDE IN THE GAS PHASE*

N. V. Lobanov"***, A. N. Rykov',
A.V. Stepanoval, A.A. Larin3, L. L. Fershtat3,
and I F. Shishkov'

The molecular structure of 3-cyano-4-amino-1,2,5-oxadiazole-2-oxide (3-cyano-4-aminofuroxan, CAFO)
in the gas phase is studied for the first time by gas-phase electron diffraction (GED) and quantum chemical
calculations, and the equilibrium parameters of this molecule are determined. The data obtained are
compared with those of related compounds analyzed by GED and single crystal X-ray diffraction. It is
shown that the best agreement with the experiment is obtained at the B3LYP/aug-cc-pVTZ level of theory.
The information on the molecular structure of free CAFO will be useful for the structural studies of

compounds containing furoxan moieties.
DOI: 10.1134/S0022476624080110
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INTRODUCTION

1,2,5-Oxadiazoles belong to a practically important class of heterocyclic compounds being of interest for producing
new pharmacologically active substances or energy-intensive systems. 1,2,5-Oxadiazole derivatives have a high enthalpy of
formation and can be a promising basis for high-energy materials [1-3]. As regards their molecular structure, amino-1,2,5-
oxadiazoles are suitable precursors in the synthesis of nitro derivatives: practice shows that incorporation of a nitro group into
the oxadiazole ring increases the density and detonation parameters of the resulting structures [4]. However, it is worth noting
that, depending on various substituents bonded to the 1,2,5-oxadiazole moiety, the properties of the compounds can vary.
Hence, disadvantages of some substances of this series in terms of their practical application are low thermal and chemical
stability and high sensitivity to mechanical stresses [5].

3-Cyano-4-amino-1,2,5-oxadiazole-2-oxide (3-cyano-4-aminofuroxan, CAFO) is one of the key precursors of the
furoxan series, which is widely used for the synthesis of various high-energy materials [6-10]. Despite recent significant

progress in this area [11-14], information on the thermal and energy properties of some functionally substituted furoxans
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remains scarce. At the same time, as complete data as possible on the diverse set of compounds under consideration and
profound structure—property relationships are significant for a targeted and diversity-oriented synthesis of novel promising
energy materials.

The work aims to determine the equilibrium structure of the CAFO molecule in the absence of intermolecular
interactions in the gas phase by gas-phase electron diffraction (GED) and quantum chemical calculations and to compare the
GED and single crystal X-ray diffraction (XRD) results with the reported ones on the molecular structures of a number of

related compounds.
EXPERIMENTAL

GED. A CAFO sample used in this work was obtained at the Laboratory of Nitrogen-Containing Compounds,
Institute of Organic Chemistry, Russian Academy of Sciences (the sample purity is at least 99%). The spectral and analytical
data (supplementary materials, Fig. S1, S2, S3) are fully consistent with the structure of the target compound. 'H NMR
spectrum (DMSO-ds, 300 MHz), 8y (ppm): 7.13 (s, 2H). BC NMR spectrum (DMSO-dg, 75.5 MHz), ¢ (ppm): 93.5, 107.1,
156.2. IR spectrum (FTIR), cm': 3387, 3313, 2240, 1691, 1591, 1568, 1487, 1164, 1000, 854. Elemental analysis, found
(%): C 28.51, H 1.65, N 44.28, C;H,N,0,; calculated (%): C 28.58, H 1.60, N 44.44. The GED experiment was carried out
on an EG-100M apparatus (Faculty of Chemistry, Moscow State University) for two nozzle-to-plate distances: short (SD) and
long (LD). For each distance, a GED pattern was recorded on three plates (an accelerating voltage of 60 kV was used to
generate the electron beam with a wavelength A of about 0.05 A), and the electron wavelengths were refined by the
experiment with the standard substance (CCly) conducted at room temperature (25 °C). Full information on the experiment is
given in Table 1. All GED patterns were recorded on MACO EM-FILM EMS films and scanned on an Epson Perfection
4990 scanner. The scanner was calibrated using a Standard IT8 Target (ISO 12641-1 compliant 1997) (Fuji transparency
Individually measured Target) on a gray scale. The GED patterns were converted into the intensity curves using UNEX [15]
(Fig. 1).

Quantum chemical calculations. The quantum chemical calculations were performed using the Gaussian09
software [16] by the DFT method with the B3LYP density functional [17, 18] and perturbation theory (MP2) [19] with
6-31G(d,p) [20], cc-pVTZ [21], and aug-cc-pVTZ [22] basis sets, and also by the CCSD(T) method [23] with the 6-31G(d,p)
basis set [20]. To determine the CAFO parameters, the geometry was fully optimized. Atomic numbering in the studied
molecule is given in Fig. 2 and the radial distribution curve is shown in Fig. 3.

The optimized orthogonal coordinates of CAFO determined at the CCSD(T)/6-31G(d.,p), B3LYP/6-31G(d,p), and
MP2/cc-pVTZ levels of theory are reported in Supplementary Materials (Tables S4, S5, and S6).

To obtain the equilibrium molecular parameters from the GED experiment, which are directly compared with those
from the quantum chemical calculations, cubic force fields at the B3LYP/6-31G(d,p) level of theory were used to determine

the perpendicular vibration corrections to internuclear distances [24], as well as vibrational amplitudes (supplementary

TABLE 1. Conditions of the GED Experiment

Parameter Short distance (SD) Long distance (LD)
Nozzle—plate distance D, Mm 193.9 362.3
Accelerating voltage U, kV 60 60
Electron beam current /, pA 3.0 2.8
Wavelength A, A 0.04914 0.04879
Nozzle temperature 7, K 375 373
Residual pressure P, Hg mm 3.0x107° 4.0x107
Exposition ¢, s 60, 50, 45 35, 35, 25
Range of scattering intensities "' 5, A™' 6.6-31.2 3.4-20.0

#
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Fig. 1. Molecular intensity curves sM(s) for the long (LD)
and short (SD) nozzle— plate distances for the CAFO
molecule. The experimental values are depicted by circles
and the theoretical sM(s) are shown by the solid line. The
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Fig. 2. Atomic numbering in the molecule
of 3-cyano-4-aminofuroxan (CAFO).
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materials, Table S7) derived from the VibModule program [25]. The NBO analysis of CAFO was carried out based on the
B3LYP/aug-cc-pVTZ method using the NBO 7.0 program [26].

RESULTS AND DISCUSSION

The validity that can be achieved by quantum chemical calculations depends on the method and the completeness of
the basis function set [27].

Table 2 lists the optimized equilibrium parameters for CAFO, which are compared with those obtained from the
theoretical calculations of 3,4-dicyanofuroxan (DCFO).

TABLE 2. Comparison of the Structural Parameters of CAFO with the Theoretical Calculations

for DCFO (bond lengths in A, bond angles in degrees, Ry in percents)
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GED"! B3LYP
Parameter (CAFO) /cc-pVTZ 16-31G(d,p) /ec-pVTZ /aug-cc-pVTZ
(DCFO) [26] (CAFO) (CAFO) (CAFO)
re(0O1-N2) 1.415(12) 1.472 1.425 1.420 1.419
re(N2=C3) 1.340(4) 1.340 1.347 1.342 1.341
ro(C3-C4) 1.430(6) 1.425 1.432 1.428 1.428
re(C4=N5) 1.306(2) 1.306 1314 1.306 1.306
ro(O1-N5) 1.390(3) 1.346 1.392 1.389 1.390
re(N2-06) 1.207(3) 1.195 1213 1.205 1.206
ro(C3-C7) 1.403(2) 1.405 1.407 1.403 1.403
r«(C7=N8) 1.153(3) 1.152 1.164 1.154 1.153
r.(N9-H10) 1.002(12) - 1.010 1.006 1.006
Z(01-N2-C3) 106.7(3) 105.2 106.6 106.6 106.7
Z(N2-C3-C4) 106.9(3) 106.9 106.8 106.9 106.9
Z(C3-C4-N5) 110.92) 111.4 110.0 110.9 110.9
Z(0O1-N5-C4) 106.7(2) 107.6 106.5 106.7 106.7
Z(N2-01-N5) 108.8(3) 108.9 109.0 108.9 108.9
Z(01-N2-06) 119.2(3) 119.0 119.2 119.2 119.2
Z(C3-N2-06) 134.0(4) 135.8 134.2 134.2 134.1
Z(N2-C3-C7) 123.4(5) 122.2 123.2 123.3 123.4
Z(C4-C3-C7) 129.8(2) 130.9 130.0 129.8 129.7
Z(C3-C7-N8) 176.4(6) 179.0 176.5 176.3 176.2
Z(C4-N9-H10) 117.5(8) - 117.0 117.2 117.7
Z(H10-N9-H11) 115.5(3) - 115.0 115.1 115.5
D(01-N2-C3-C4) -0.3(2)" 0.0 -0.2 -0.2 -0.1
D(N2-O1-N5-C4) -0.7(2)" 0.0 -0.9 0.8 -0.7
D(C3-C4-N5-01) 0.5(1)" 0.0 0.7 0.7 0.6
D(C4-N9-H10-H11) 142.7(5)"” - 140.3 141.5 143.8
RLD 3.1
R:SD 5.5
Ry total 4.3
MP2 CCSD(T)
Parameter /ce-pVTZ /6-31G(d,p) /cc-pVTZ /aug-cc-pVTZ | /6-31G(d,p) | /6-31G(dp)
(DCFO) [26] (CAFO) (CAFO) (CAFO) (DCFO) [26] (CAFO)
1 2 3 4 5 6 7
ro(O1-N2) 1.552" 1.459 1.435 1.435 1.455 1.423
re(N2=C3) 1.354 1.354 1.349 1.348 1.344 1.338
ro(C3-C4) 1.403 1.415 1.411 1.411 1.422 1.430
ro(C4=N5) 1.337 1.326 1319 1.320 1314 1310
ro(O1-N5) 1314 1.364 1.356 1.358 1.361 1.387
re(N2-06) 1.194 1.225 1.214 1.217 1.202 1.215
r(C3-C7) 1.408 1.412 1.406 1.406 1.416 1.421



TABLE 2. (Cont.)

1 2 3 4 5 6 7

r.(C7=Ng) 1.174 1.185 1.174 1.174 1.164 1.167
r(N9-H10) - 1.010 1.008 1.009 - 1.009
Z(01-N2-C3) 102.1 104.9 105.3 105.4 105.8 106.8
Z(N2-C3-C4) 109.0 108.0 107.7 107.7 - 106.8
Z(C3-C4-N5) 111.6 110.6 110.2 110.2 - 110.9
Z(01-N5-C4) 108.2 107.4 107.5 107.4 - 106.5
Z(N2-O1-N5) 109.0 109.1 109.3 109.3 109.0 108.9
Z(01-N2-06) 119.9 119.4 119.4 119.4 118.9 118.9
Z(C3-N2-06) 138.0 135.7 1353 135.3 - 134.4
Z(N2-C3-C7) 120.3 121.2 121.9 122.0 121.9 122.4
Z(C4-C3-C7) 130.6 130.8 130.4 130.3 - 130.8
Z(C3-C7-N8) 179.7 177.4 177.0 176.7 179.0 176.9
Z(C4-N9-H10) - 114.1 114.2 114.8 - 114.6
Z(H10-N9-H11) - 111.8 112.2 112.8 - 112.4
D(0O1-N2-C3-C4) 0.0 -1.5 —0.4 0.4 0.0 0.7
D(N2-O1-N5-C4) 0.0 -0.9 -0.9 -0.8 - -0.7

D(C3—C4-N5-01) 0.0 0.0 0.6 0.6 - 0.3
- 128.5 129.8 131.9 - 130.6

D(C4-N9-H10-H11)

I Errors were determined as 36-LSM; i.e., they are equal to the triple standard deviation by LSM.

"2 Initial approximation was determined at the B3LYP/6-31G(d,p) level of theory.

3 The authors pay attention to the overestimated value in the calculation of the MP2/cc-pVTZ O1-N2 bond to
1.552 A compared to 1.459(4) A and 1.415(12) A for DCFO and CAFO, respectively. Apparently, this calculation method
gives an overestimated result for these objects.

Table 2 demonstrates some differences between our calculated geometric parameters for the two compounds under
consideration. It can be assumed that amino group substitution for one of the cyano groups in DCFO markedly affects the
molecular electron density distribution, and hence, the bond lengths and angles. For CAFO in the MP2/cc-pVTZ
approximation, the calculated lengths of some bonds between heteroatoms in the molecular ring increased compared to the
respective B3LYP/cc-pVTZ data, except for the ».(O1-N5) bond whose length decreased. The results of the analogous
CCSD(T)/6-31G(d.p) calculation show a similar trend, although to a slightly lesser extent [28].

Table 2 evidences that the CCSD(T)/6-31G(d,p) level of theory is in good agreement with the experimental data and
generally reproduces the GED results within the experimental error range, yet the r.(C3—C7) bond length is overestimated by
approximately 0.02 A. The MP2 results are beyond the experimental error; the bond lengths are overestimated on average by
0.01 A, and for r,(O1-N5) the final MP2/aug-cc-pVTZ result is underestimated by 0.03 A. The B3LYP functional provides
the best agreement (especially, the aug-cc-pVTZ basis set), almost always falling into the experimental error range. It can be
noted that the results at the B3LYP/6-31G(d,p) level of theory, if they do not coincide with the experimental molecular
parameters, almost always exceed them approximately by the same value of 0.003-0.008 A for bond lengths and by 0.2-0.7°
for bond angles (Table 2). Moreover, this method gives good values within the GED error range when determining the bond
angles.

Having analyzed the considered methods, it can be assumed that the values closest to the experiment can be obtained
at the B3LYP/aug-cc-pVTZ level of theory; and slightly worse, in the B3LYP/6-31G(d.p) approximation.

The work also compares the CAFO structural parameters with the geometry of structurally similar compounds
(DCFO, 3-methyl-4-nitrofuroxan, and 4-methyl-3-nitrofuroxan), which were determined by GED in [29, 30]. The results are
presented in Table 3.

The largest differences are observed for 7,(O1-N2) (about 0.04 A) and r(O1-N5) (approximately 0.03 A) bonds.
The other values for the CAFO-DCFO pair differ by no more than 0.01 A. This may be due to the presence of an additional

cyano group—an electron density acceptor that pulls part of the electron cloud onto itself. This distorts the oxadiazole ring,
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TABLE 3. Comparison of the Structural Parameters of 3-Cyano-4-Aminofuroxan, Dicyanofuroxan,
3-Methyl-4-Nitrofuroxan, and 4-Methyl-3-Nitrofuroxan

Parameter”! CAFO GED® | DCFO GED [29] 3-methyl—4—ngrg]ﬁ1roxan GED 4—methyl-3-négr8]furoxan GED
ro(O1-N2) 1.415(12) 1.459(5) 1.462(9) 1.382(6)
ro{(N2=C3) 1.340(3) 1.331(3) 1.333(9) 1.307(6)
ro(C3-C4) 1.430(6) 1.419(2) 1.414(9) 1.422(6)
ro(C4=N5) 1.306(2) 1.299(3) 1.304(9) 1.340(6)
ro(O1-N5) 1.390(3) 1.367(5) 1.354(9) 1.429(6)
r{(N2-06) 1.207(3) 1.199(4) 1.215(9) 1.205(6)
ro(C3-C7) 1.403(2) 1.399(2) 1.488(9) 1.488(6)

Z(01-N2-C3) 106.7(3) 105.0(4) 107.2(5) 107.5(3)
Z(N2-C3-C4) 106.9(3) 107.1(6) 104.6(5) 109.2(3)
Z(C3-C4-N5) 110.92) 111.7(3) 113.9(5) 109.2(3)
Z(01-N5-C4) 106.7(2) 107.9(3) 106.1(10) 104.7(4)
Z(N2-0O1-N5) 108.8(3) 108.8(3) 108.1(10) 109.4(5)
Z(01-N2-06) 119.2(3) 119.3(6) 118.1(6) 118.6(3)

123.4(5) 122.6(3) 121.2(5) 121.1(3)

Z(N2-C3-C7)

I The bond lengths are in A, the bond angles are in degrees.

which is manifested in a change in bond lengths, although the considered angles formed by atoms of the compounds often
coincide or differ by no more than 1° (except for Z(O1-N2-C3)).
The NBO analysis based on the B3LYP/aug-cc-pVTZ method showed that amino group substitution for the cyano

group disturbs the general conjugation of the w electron system. Consequently, the Wiberg indices decrease for all bonds

approximately by 4-7%, except the index of the bond between the cyano carbon atom and the carbon atom in the oxadiazole

ring, which increased by 5% (Fig. 4). It is also clear that a greater effective charge is concentrated on heteroatoms.

In addition, we compared the C=N bond lengths in the CAFO and DCFO molecules and in a series of

cyanopyridines, for which the structural data were obtained by two experimental methods: GED and single crystal XRD

(Table 4).
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Fig. 4. Wiberg indices and the effective atomic charges in the molecules of furoxan
(a), DCFO (b), and CAFO (c).
TABLE 4. Comparison of the Bond Lengths (A) C=N in the CAFO-DCFO-2-Cyanopyridine-3-
Cyanopyridine—4-Cyanopyridine Series
CAFO DCFO 2-cyanopyridine 3-cyanopyridine 4-cyanopyridine
GED (GED) [29] [31] [32] [33]
r(C7=N8) | r(C7=N8) | r.(C9=N10) GED XRD GED XRD GED XRD
1.153(3) 1.164(3) 1.162(3) 1.158(5) | 1.1452(8) | 1.157(2) | 1.1499(12) | 1.159(3) | 1.1370(8)
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It can be seen that the experimental C=N bond length for CAFO slightly differs from that in the other molecules by
approximately 1-1.5%, although this value falls within the acceptable range observed in the series of compounds under

consideration.
CONCLUSIONS

The molecular structure of CAFO in the gas phase was studied for the first time by GED and quantum chemical
calculations, and its equilibrium parameters were determined. The data obtained were compared with the analogous data for
the related compounds analyzed by GED and single crystal XRD. It was demonstrated that the best agreement with the
experiment was obtained at the B3LYP/aug-cc-pVTZ level of theory.

It was shown that the presence of only one cyano group as a substituent compared to DCFO distorted the geometry
of the studied molecule: the 7(O1-N2) bond shortens by 0.045 A and #(O1-N5) elongates by 0.02 A, the O1-N2—C3 bond
angle increases by 1.7°.

The NBO analysis at the B3LYP/aug-cc-pVTZ level of theory shows that the cyano group is an electron density
acceptor and, therefore, concentrates part of the electron cloud on itself. Unlike DCFO, CAFO is to a lesser extent a coupled
7 electron system, hence, a larger effective charge is concentrated on more electronegative atoms (Fig. 4).

Furthermore, differences were found between the CAFO molecular structure and the structures of related 3-methyl-
4-nitrofuroxan and 4-methyl-3-nitrofuroxan: r,(O1-N2) and r,(O1-N5) bond lengths differ on average by +0.04 A,
suggesting a strong effect of nitro groups on the five-membered ring geometry. The comparison of bond lengths and bond
angles generally reveals the discrepancy: the CAFO parameters differ on average by 0.03 A of the respective pair of 3-
methyl-4-nitrofuroxan and 4-methyl-3-nitrofuroxan parameters.

The information obtained on the molecular structure of free CAFO will be useful for the structural studies of

compounds containing furoxan moieties.
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