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A B S T R A C T

Measles infection is a significant global public health concern, with one patient able to infect 12–18 people in a susceptible population. Mathematical modeling helps 
understand the factors influencing measles outbreaks, including vaccination levels, population density and movement patterns of the people who comprise it. Agent- 
based modeling, particularly useful in organized populations like hospitals or academic buildings, can predict the dynamics of infectious disease outbreaks. The aim 
of this work is to create an agent-based model of measles infection, which would predict the effectiveness of various anti-epidemic measures in small-group settings 
such as academic buildings. In this article, the effects of vaccination and isolation on the measles epidemic process were studied. The modeling found that com-
binations of vaccination and isolation measures are most effective, and these anti-epidemic measures allow to reduce the number of susceptible people that were 
infected from 199/199 (100 %) in the absence of measures to 73–80/199 (36.7–40.2 %).

1. Introduction

Measles infection is one of the world’s most persistent and pressing 
public health problems. One measles patient can infect an average of 
12–18 people in a fully susceptible population during normal social 
interactions [1]. Measles elimination is an achievable goal if vaccination 
coverage rates (VCR) of at least 95 % with two doses of a highly effective 
live attenuated measles-containing vaccine are achieved and maintained 
globally [1–3]. Meanwhile, since the pandemic of COVID-19, many re-
gions of the world have experienced a meaningful rise in measles inci-
dence [4].

Measles is a vaccine-preventable infection, vaccination against 
which contributes to a dramatic reduction in the spread of infection. The 
period of restrictive measures against COVID-19 has shown conclusively 
that non-specific measures aimed at preventing airborne infections also 
have an impact on the spread of measles [5]. The high infectiousness of 
the virus may contribute to the rapid development of a localized measles 
outbreak into an epidemic [6].

Frequently, measles outbreaks are reported in health care settings 
[7]. Healthcare workers, in the course of their professional activity, may 
encounter a measles patient at any period of the disease course (incu-
bation period, period of early manifestations) [8]. Researchers have 
noted that lack of vaccination among healthcare workers may be a major 
cause of measles spread among susceptible patients [8–10]. Another 
organized population in which measles infection is spread is tertiary 
students [11,12], who share the same academic building, live in dor-
mitories and have many social contacts.

Mathematical modeling of epidemic processes of vaccine-controlled 
infections has been used for many years to identify the influence of 
certain factors on the local or global epidemic process [13–15]. Many 
factors influence the outbreak of an infectious disease, including the 
level of vaccination or immunity, population density, and the age 
structure of the population. At the same time, the existence of under-
immunized clusters can lead to the formation of large measles outbreaks 
[16,17].

An agent-based modeling is a method that can be used to better 
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understand the dynamics of an infectious disease outbreak [18]. 
Agent-based models (ABMs) are particularly effective in predicting the 
deterioration of the epidemiological situation in organized groups 
within a single building, for example, among medical workers in a 
hospital setting or medical students within an academic building. The 
aim of this work is to create an agent-based model of measles infection, 
which would allow to study the effectiveness of various anti-epidemic 
measures in small-group settings such as academic buildings to pro-
vide a tool to better control and prevent measles in such populations, 
minimize the risks of outbreaks and eliminate them more quickly, in 
order to reduce the total number of cases.

2. Materials and methods

To write the model, the R programming language version 4.4.0 [19] 
was used, as well as the igraph 2.0.3 [20,21] and tidyverse 2.0.0 [22] 
libraries. For multi-threaded calculation of the model, the future 1.33.2 
[23] and furrr 0.3.1 [24] libraries were used.

2.1. Agent parameters

In epidemiological ABMs, modeling occurs at the level of individual 
agents, that is, people who can move between different loci of the 
simulated space and change their state under certain conditions. In the 
proposed model, agents have properties such as ID (agent number), the 
state of the agent, indicating whether he is susceptible to the disease, is 
already sick, has recovered or has been vaccinated, the locus in which 
the agent is currently located, the end point of his route, as well as 
various auxiliary variables that perform the functions of counters, 
logical variables and show how long the agent has been in the current 
locus, how long he has been sick, whether various anti-epidemic mea-
sures have been applied to him, etc. These properties are shown in 
Table 1. All these variables are stored in the R dataframe.

The model implements three stages of the disease: I1 ‒ incubation 
period, I2 ‒ end of the incubation period and onset of the disease 
(prodromal period), I3 ‒ disease period. From stage I2 onwards, the 
infected agent is capable of infecting other agents. At stage I3, the pa-
tient has obvious symptoms (in the case of measles, a rash) and is iso-
lated (Fig. 1).

When the model is launched, a dataframe with agents is generated 
each time. In it, depending on the ratio of vaccinated and susceptible 
defined in the model parameters, agents are assigned a status (S or V, 
and the first agent is assigned I2 to be the patient zero). If infection is 
successful, the agent moves to stage I1, and then, as time passes, to 
stages I2 and I3. Moreover, if vaccination measures are turned on in the 
model, then in the case of successful vaccination, the agent can move to 
the V state from the S state.

In addition, from the vector of all rooms, each agent is randomly 
assigned the end point of his route. Agents are assigned a length of in-
cubation period (time_incubation) and time until immunity occurs after 
vaccination (time_immunity). The values for each agent are taken from 
the corresponding distributions specified by the model parameters.

2.2. Model parameters

The model has various parameters that can be set before running the 
model (Table 2). These parameters include number of agents in popu-
lation, proportion of vaccinated agents, duration of stage I1, I2 and I3 in 
minutes, the probability of transition from state S to I (i.e., the proba-
bility of infection) in 1 min, time before acquiring post-vaccination 
immunity (transition from state S to V), duration of isolation, intro-
duction of anti-epidemic measures: isolation and vaccination on the 
scale of a room, floor or building.

Baseline vaccination rate and duration of isolation are designated in 
SanPiN 3.3686–21 ″Sanitary and epidemiological requirements for the 
prevention of infectious diseases" [25].

The value for the probability of infection in 1 min (S2I) was calcu-
lated from the basic reproduction number (R₀). The most commonly 
cited R₀ value range for measles is 12–18 [1]. For modeling, the average 
value from this range was chosen ‒ 15. With a contact number of 15, a 
sick person in a non-immune population during his infectious period 
infects an average of 15 people [32,33]. Taking the infectious period for 
measles to be 8 days (4 days before through 4 days after rash onset) [27], 
we find that on average it infects 15/8 = 1.875 people per day. Since not 
every successful delivery of the virus leads to infection, but only 90 % 
(one person infected by measles can infect 9 out of 10 of their unvac-
cinated close contacts) [34], then 1.875/0.9 ≈ 2.083 truly successful 
transmissions of the pathogen occur per day. In our model, the tick 
(iteration) time is 1 min, and there are 1440 min in a day. If we accept 
the model assumption of uniform every minute release of the pathogen, 
then 2.083 successful transmissions of the pathogen occur in 1440 min. 
Thus, the probability of successful transmission per minute is 
2.083/1440 ≈ 0.00145.

The value for the time to achieve immunity after vaccination 

Table 1 
Agent properties used in the model.

Variable name Description Value type

agent_id Agent ID, denoted by a number in 
order.

Numeric, from 1 to 
number of all agents in 
population

state The state of the agent, indicating 
whether he is susceptible to the 
disease, is already sick, has 
recovered or has been vaccinated.

S ‒ susceptible 
I1, I2, I3 ‒ infected 
(different stages of 
infection) 
R ‒ recovered 
V ‒ vaccinated

time_I The counter for the time that the 
agent spent at the current stage of 
the disease. The agent progresses 
to the next stage when the counter 
exceeds the value specified in the 
parameters for the duration of this 
stage.

Numeric

time_incubation Duration of the incubation period 
(I1) for each agent.

Numeric

locus The name of the locus in which the 
agent is currently located.

String with name of locus 
from graph of possible 
transitions (see further)

time_locus The counter for the time that the 
agent spent in the current locus. 
Used to determine the time before 
transition to the next locus in the 
route.

Numeric

number_locus The number in order of the locus in 
the agent’s route on which the 
agent is currently located.

Numeric, from 1 to length 
of agents route

vaccination Whether the agent was vaccinated 
during anti-epidemic measures (in 
case the model is run with the 
vaccination).

Logical

time_vaccination The counter for the time elapsed 
since vaccination. It is used so that 
after a certain time 
(time_immunity), the agent goes 
into state V, thus developing post- 
vaccination immunity.

Numeric

time_immunity Determines the amount of time for 
susceptible (S) agent’s transition 
to immunized state (V) after 
vaccination.

Numeric

isolation Whether the agent was isolated 
during anti-epidemic measures (in 
case the model is run with the 
isolation).

Logical

time_isolation The counter for the time elapsed 
since isolation.

Numeric

endpoint The name of the final locus (room) 
to which the agent comes.

String with name of locus 
from graph of possible 
transitions (see further)
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individually for each agent in the model and is described by a normal 
distribution. Normal distribution parameters were calculated based on 
data from Ref. [28]. In this study the postvaccination IgM positivity rates 
were 2 % at 1 week, 61 % at 2 weeks from which the values for μ and σ 
were calculated.

Sources on the effectiveness of the MMR vaccine for post-exposure 
prophylaxis suggest different numerical values for this parameter 
[29–31]. For modeling purposes, the mean value was taken.

2.3. Model and simulation procedure

Time in the model is represented by so-called ticks. One tick is 
equivalent to 1 min of real time. The simulated space in the model is 
represented in the form of a dataframe with all possible transitions be-
tween loci, in which there are columns “source” and “target”. The value 
in the source column indicates the name of a specific locus, and the value 
in target is the locus to which agent can go from source. At the same 
time, transitions between loci are non-directed, i.e. transition is possible 
both from source locus to a target locus, and in the opposite direction 
(Fig. 2).

To determine agent routes, this dataframe is subsequently converted 
into a graph using the igraph library for R. In this case, the loci become 
the vertices of the graph, and the transitions between them become its 
edges. Agent routes are set in such a way that the agent from the initial 
locus O enters the building, visits the wardrobe, reaches the assigned 
room (endpoint), and then he would have done the same route in reverse 
and would have ended up in O locus. A route for each agent is generated 
before running the model according to its endpoint. All routes for each 
agent are stored in the list of vectors with the names of the vertices that 
the agent passes on its path in the order from the starting locus through 
the end point and back to the starting locus. Each agent has its own 
vector in this list.

To determine the time intervals that the agent will spend in each of 
the loci, another list is created in the model, but not with the names of 

the vertices, but with the corresponding number of ticks in minutes that 
the agent will be in the loci. At the same time, the amount of time for the 
entire agent’s route is 1440 min = 24 h = 1 day. In this model, the 
default is that the agent must arrive at the classroom at 8:15, the class 
time is 90 min, and he spends 5 min at each intermediate locus. Based on 
these conditions, as well as the length of the agent’s route, the time in 
each locus of the path is calculated, which is recorded in the vector for 
this agent in the corresponding place in the list. This list stores the 
default time, which corresponds to the time when the agent would arrive 
minute by minute at the start of the session. However, the model adds a 
random deviation delta, which determines within what limits (from 
-delta to delta) the agent can arrive early or late. By default, delta = 20 
min. Also, if agents are more than 5 min late, they can speed up in each 
intermediate locus by 1 or 2 min to get to the endpoint room faster. If 
earlier by more than 5 min, they may linger in the intermediate locus 
from 0 to 2 min. After classes end 90 min later (at 9:45), they can also be 
delayed from 0 to 2 min. At the same time, the value of the time spent in 
O before and after classes is also adjusted according to random changes 
made to the time intervals. During the operation of the main cycle of the 
model, at the end of each day, according to a special condition, based on 
the default time in the loci for each agent, a new list is generated with 
the time in the loci with random changes for the next day.

The main cycle of the model corresponds to one tick, which corre-
sponds to 1 min in the simulated world. The main cycle of the model 
continues as long as there are agents in the state I1, I2 or I3. This cycle 
includes the following operations: checking the infection, incrementing 
the counters for the time of infection, vaccination and isolation, and, if 
they are exceeded, making a corresponding change in the status of this 
agent/agents, checking the movement, checking the end of the day, as 
well as operations related to anti-epidemic measures.

The infection test for a specific agent works as follows: all loci except 
O are checked for the presence of agents with status I2 or I3. If such 
agents are present in a given locus, then all agents with S status located 
in the same locus are selected. They are being tested for infection 

Fig. 1. The stages of disease used in the model. TI1 ‒ length of incubation period. TS2V ‒ length of period to build up immunity.
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possibility. The condition for performing the check is that the value of a 
uniformly distributed random variable from 0 to 1 will be less than the 
S2I model parameter multiplied by the number of infecting agents (I2 or 
I3) in a given locus. If the condition is met, the agent becomes ill and is 
assigned the status I1.

The movement check condition tests all agents sequentially. If an 
agent’s time spent in a locus is equal to that recorded in the list with 
times in all loci, the number of the locus in the agent’s path is increased 
by 1. The time counter in the locus is reset to 0, and the name of the next 
locus (with an index increased by 1) from the routes list is written to the 
agent’s current locus. Thus the agent moves to the next locus.

The end of day check is carried out when the number of ticks passed 
is equal to 1440 times the number of days that have passed since the 
model was launched. During this check, new timings are generated for 
the agents’ route for the next day, and a status transition from I2 to I3 
and I3 to R also occurs to allow agents to return to classes the next day 
after recovery. Also at the end of the day, the conditions for the action of 
measures are checked depending on the detection of agents with 
symptoms of the disease (in state I3), i.e., whether the agents will be 
vaccinated and/or whether they will be subject to isolation the next day.

In this model, vaccination measures are introduced when an agent is 

identified in state I3, and all agents with the same end room as I3 agent, 
or agents on the same floor where I3 agent’s end room was, or all agents 
in the building will be vaccinated (depending from the choice of pa-
rameters). Isolation measures work the same way. When isolation or 
vaccination measures are applied to an agent, his corresponding logical 
variables are set to TRUE. In the case of vaccination, the time countdown 
is started using the time_vaccination variable, and when the value is 
greater than time_immunity, the agent’s status changes from S to V (if he 
has not been infected before). When isolation is introduced, the agent 
does not leave the O locus the next day and spends there time indicated 
by the TI parameter.

3. Results

In order to determine the effectiveness of anti-epidemic measures, 
the model was run 100 times for each of the measures/combinations of 
measures. The effectiveness of measures was obtained by dividing the 
number of disease cases by the number of susceptible agents and sub-
tracting from 1, i.e., the higher the value, the more cases of the infection 
were prevented (Fig. 3). 

Effectiveness=1 −
N(R) − 1

N0(S)
,

where N(R) is the final number of all recovered agents (from which one 
patient zero is subtracted) and N0(S) is the initial number of susceptible 
agents (was 199 in our model setup).

Median values for the duration of the infection outbreak (that is, the 
number of ticks until there are no agents left in I1, I2 and I3 states) are 
also presented (Table 3).

4. Discussion

The most effective of all options for anti-epidemic measures was the 
combination of vaccination for all agents in the building and isolation on 
the floors, where infected agents were identified. The median number of 
infection cases was 77.5 with 95 % CI [73, 80] from 199 susceptible 
agents.

This confirms the importance of measles vaccination, especially in 
the focus of infection, as stated by many researchers [35,36]. However, 
the long time required for immunity formation after vaccination, the 
non-100 % effectiveness of vaccines, and the long incubation period of 
measles (up to 21 days) reduce efficiency post-exposure vaccination, so 
measles outbreak may continue even after vaccination measures were 
applied. Isolation and quarantine measures for measles infection allow 
to immediately prevent the spread of infection without waiting for the 
formation of post-vaccination immunity in a sufficient proportion of the 
population. In addition, other studies confirm that isolation and sepa-
ration measures not only for infected people and their contacts, but also 
for all unvaccinated people, are very effective in suppressing a measles 
outbreak, especially in undervaccinated populations [37]. According to 
our modeling, the most appropriate and rational intervention for mea-
sles infection outbreak is isolation and post-exposure vaccination.

In addition, the modeling results showed that if quarantine is 
introduced only for agents who were in the same room with the infected, 
the duration of the measles outbreak increases (median duration 74 days 
with room-by-room isolation versus 44 days with no measures). This is 
because insufficient containment measures result in the rate of spread of 
the virus decreasing, but all infected agents are not subject to isolation 
and the outbreak cannot be eliminated. A sign of this is that new cases of 
infection continue to appear after the peak has passed. In addition, it is 
noteworthy that the addition of vaccination in this case reduces the 
duration of the outbreak, as well as the incidence of disease (median 
duration 74 days versus 45 days with vaccination).

Highly contagious airborne infections (such as measles, flu, COVID- 
19 and other infections) require special attention from organizations 

Table 2 
Model parameters.

Parameter name Description Default 
value

References

n_pop Number of agents in population 4000 –
VR Baseline vaccination rate, 

proportion of vaccinated agents 
at the start of the model

0.95 [25]

I1_meanlog Mean value μ of log-normal 
distribution describing duration 
of disease stage I1 in minutes. I1 
duration selected individually 
for each agent.

2.3 [26]

I1_sdlog Standard deviation σ of log- 
normal distribution describing 
duration of disease stage I1 in 
minutes. I1 duration selected 
individually for each agent.

0.2 [26]

I2 Duration of disease stage I2 in 
minutes

5760 [27]

I3 Duration of disease stage I3 in 
minutes

5760 [27]

S2I The probability of transition 
from state S to I (i.e., the 
probability of infection) in 1 min

0.00145 [1]

S2V_mean Mean value μ of normal 
distribution describing duration 
of period to build up immunity. 
S2V selected individually for 
each agent.

19050 [28]

S2V_sd Standard deviation σ of normal 
distribution describing duration 
of the period to build up 
immunity. S2V selected 
individually for each agent.

4370 [28]

VE Vaccination efficacy: the 
proportion of agents subject to 
vaccination in which the vaccine 
will work.

0.94 [29–31]

TI Duration of isolation 30240 [25]
m_vaccination_all Measures: vaccination of all 

agents in the building
FALSE –

m_vaccination_floor Measures: vaccination of all 
agents on the floor

FALSE –

m_vaccination_room Measures: vaccination of all 
agents in the room

FALSE –

m_isolation_room Measures: isolation of all agents 
in the room

FALSE –

m_isolation_floor Measures: isolation of all agents 
on the floor

FALSE –

iters Number of model runs 100 –
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Fig. 2. The scheme of moving agents in the model.

Fig. 3. Median values for effectiveness of anti-epidemic measures with 95 % confidence intervals.
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responsible for combating infectious diseases [38]. Local outbreaks of 
such infections, if there are a sufficient number of susceptible in-
dividuals, very quickly become widespread. Experience in combating 
epidemics shows that in countries with higher healthcare expenditures 
(medical technologies, human resources and the hospital admission 
capacity, the organization of vaccination campaigns, etc.), systemic 
vulnerability to crisis is reduced [39,40]. It should be emphasized that 
the main way to combat such infections was and remains high-quality, 
mass vaccination [41–47].

For measles infection, maintaining high annual vaccination coverage 
of those eligible for vaccination is extremely important. An increase in 
the proportion of susceptible individuals leads to an increase in the 
number of cases [16]. Duplicating vaccination with non-specific 
methods of combating infectious disease outbreaks (isolation, isola-
tion) is an appropriate strategy, the effectiveness of which has been 
demonstrated in our model and in models of other researchers [37].

Mathematical modeling of infectious processes has been carried out 
by many authors [41,48,49], and different approaches were used and 
different variables were set. There are a number of ABMs of infectious 
diseases, which also, like the proposed model, allow us to simulate the 
infectious process in small groups and populations and, in addition, 
support the ability to study the effects of various anti-epidemic measures 
and interventions.

One notable example is the SIM-D model which simulates the spread 

of infectious diseases such as COVID-19, flu, malaria, dengue, mumps, 
and rubella [50]. This model captures human-to-human interactions, 
population dynamics, and disease transmissibility. SIM-D model is 
similar to that proposed in this article in the types of interventions it 
uses, which are also isolation and vaccination. However, the imple-
mentation of these measures in terms of the behavior and state of agents 
differs from our model. When isolated, agents in the SIM-D model 
reduced their activity outside the home and interaction with other 
agents, but not completely, up to 10 % of the time. When vaccination 
measures were introduced, 50 % of the population received the vaccine, 
and among those vaccinated, the susceptibility to infection decreased by 
9 times. In the SIM-D model, unlike our model, there was no period 
between vaccination and the immunity appearance.

Another ABM that has common features with that described in this 
work is a model by Bonačić Marinović et al. that evaluates the effec-
tiveness and timing of vaccination in a school setting during a measles 
outbreak [26]. Both models have a partially similar set of parameters for 
measles infection; in addition, both models simulate the effect of 
vaccination to control a measles outbreak in a small group setting. 
However, our model places more emphasis on understanding the spatial 
and temporal dynamics of infection spread within small groups with 
detailed spatial interactions and movement patterns of individuals, 
while the other model specifically aims to simulate different vaccination 
delay scenarios and their impacts on outbreak size. In our model, there is 
no delay in vaccination, and agents receive the vaccine the day after the 
case is identified. However, different scales of vaccination of contact 
persons have been implemented: in the same classroom with the sick 
person, on the same floor or in the entire building. In addition, our 
model implements the possibility of quarantine not only for a patient 
with obvious symptoms, but also for those in contact with him, which 
allows us to study a variety of anti-epidemic measures and their 
combinations.

Our study has several limitations that should be acknowledged. The 
model relies heavily on parameters obtained from existing publications 
rather than real-world data. This makes a model with this set of pa-
rameters suitable for a fairly general case of a measles outbreak, but may 
not be accurate enough to model an outbreak under specific conditions. 
However, calibrating the parameters and validating the model using 
outbreak data from specific settings would improve the accuracy of the 
proposed model for measles outbreak prediction.

In addition, to the limitations of the model can be added the fact that 
the movements of agents in the simulated space follow a certain route, 
and although they have random deviations in time, they do not allow a 
random change of route. Therefore, this model is more consistent with a 
setting with an organized population, where there is a certain schedule.

Modeling environmental and spatial factors also has certain con-
ventions. It is known that the dynamics of the epidemic process will 
depend, among other things, on social and natural factors [51,52]. The 
minimum spatial unit in the model is a single room, and such granularity 
of spatial modeling may be insufficient to capture detailed local trans-
mission dynamics, especially in heterogeneous environments.

In addition, a feature of this model is that transmission of infection 
occurs only inside the building, and in the O locus there is no spread of 
infection and any interaction of agents. Therefore, a description of the 
transmission of infection between agents from the model outside the 
building or to other persons outside the model population is not 
included in the model.

5. Conclusion

Our study demonstrated the feasibility of agent-based modeling of a 
measles outbreak in a small population of medical students. The study 
also predicts the effectiveness of basic anti-epidemic measures.

The modeling showed that a combination of quarantine measures, 
such as isolation of sick and contact persons, with post-exposure vacci-
nation was the most efficient in reducing the number of people infected 

Table 3 
Modeling results for anti-epidemic measures.

Measure name Median value of the 
anti-epidemic 
measures 
effectiveness

Lower 
95 % CI

Upper 
95 % CI

Duration of the 
infection 
outbreak; days

Lack of 
measures

0 0 0 44

Vaccination in 
the room

0 0 0 44

Vaccination on 
the floor

0.060 0.055 0.065 44

Vaccination of 
all

0.249 0.226 0.276 43

Isolation on the 
floor

0.550 0.528 0.568 38

Vaccination in 
the room +
Isolation on 
the floor

0.550 0.533 0.563 38

Vaccination on 
the floor 
+

Isolation on 
the floor

0.578 0.548 0.608 38

Vaccination of 
all 
+

Isolation on 
the floor

0.611 0.598 0.633 38

Isolation in the 
room

0.008 0.005 0.010 74

Vaccination in 
the room 
+

Isolation in 
the room

0.040 0.035 0.040 45

Vaccination on 
the floor 
+

Isolation in 
the room

0.090 0.085 0.101 45

Vaccination of 
all 
+

Isolation in 
the room

0.284 0.256 0.307 45
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and the duration of a measles outbreak.
In addition, according to our modeling, an insufficient scale of anti- 

epidemic measures reduces the rate of the virus spread in the group, but 
is not able to promptly eliminate an outbreak of infection.

The resulting model makes it possible to conduct scenario analysis to 
study various measles control strategies in small groups and predict the 
effectiveness of measures to prevent the spread of measles and reduce 
morbidity.
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[26] Bonačić Marinović AA, Swaan C, Wichmann O, van Steenbergen J, Kretzschmar M. 
Effectiveness and timing of vaccination during school measles outbreak. Emerg 
Infect Dis 2012;18:1405–13. https://doi.org/10.3201/eid1809.111578.

[27] Pinkbook: measles. CDC; 2022. https://www.cdc.gov/vaccines/pubs/pinkbook/ 
meas.html. [Accessed 2 July 2024].

[28] Helfand RF, Kebede S, Gary HE, Beyene H, Bellini WJ. Timing of development of 
measles-specific immunoglobulin M and G after primary measles vaccination. Clin 
Diagn Lab Immunol 1999;6:178–80.

[29] Jean Baptiste AE, Wagai J, Luce R, Masresha B, Klinkenberg D, Veldhuijzen I, 
Oteri J, Dieng B, Ikeonu OC, Meleh S, Musa A, Braka F, Hahné S, Sanders EAM, 
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Estimation of measles vaccine efficacy and critical vaccination coverage in a highly 
vaccinated population. J R Soc Interface 2010;7:1537–44. https://doi.org/ 
10.1098/rsif.2010.0086.

[32] Delamater PL, Street EJ, Leslie TF, Yang YT, Jacobsen KH. Complexity of the basic 
reproduction number (R0). Emerg Infect Dis 2019;25:1–4. https://doi.org/ 
10.3201/eid2501.171901.

[33] Jones JH. Notes on R0, calif. Dep. Anthropol Sci 2007;323:1–19.
[34] World Health Organization, Measles Fact Sheet, (n.d.). https://www.who.int/ 

news-room/fact-sheets/detail/measles (accessed July 3, 2024).
[35] Sheppeard V, Forssman B, Ferson MJ, Moreira C, Campbell-Lloyd S, Dwyer DE, 

McAnulty JM. The effectiveness of prophylaxis for measles contacts in NSW. New 
South Wales Public Health Bull 2009;20:81–5. https://doi.org/10.1071/NB08014.

[36] Aslan Tuncay S, Akkoc G, Yilmaz S, Parlak B, Canizci Erdemli P, Dizi Işık A, 
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