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Abstract
Phylogenetic inference based on protein sequence alignment is a widely used procedure. Numerous phylogenetic 
algorithms have been developed, most of which have many parameters and options. Choosing a program, options, 
and parameters can be a nontrivial task. No benchmark for comparison of phylogenetic programs on real protein 
sequences was publicly available. We have developed PhyloBench, a benchmark for evaluating the quality of phylo-
genetic inference, and used it to test a number of popular phylogenetic programs. PhyloBench is based on natural, 
not simulated, protein sequences of orthologous evolutionary domains. The measure of accuracy of an inferred tree 
is its distance to the corresponding species tree. A number of tree-to-tree distance measures were tested. The most 
reliable results were obtained using the Robinson–Foulds distance. Our results confirmed recent findings that dis-
tance methods are more accurate than maximum likelihood (ML) and maximum parsimony. We tested the bayesian 
program MrBayes on natural protein sequences and found that, on our datasets, it performs better than ML, but 
worse than distance methods. Of the methods we tested, the Balanced Minimum Evolution method implemented 
in FastME yielded the best results on our material. Alignments and reference species trees are available at https:// 
mouse.belozersky.msu.ru/tools/phylobench/ together with a web-interface that allows for a semi-automatic com-
parison of a user’s method with a number of popular programs.
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Introduction
There are a number of algorithms and programs available 
for inferring protein phylogeny from a multiple sequence 
alignment. Most programs allow users to select several 
parameters, with variations in programs and parameters 
often affecting the results. An evaluation of the relative ac-
curacy of programs, or the choice of options, is often based 
on simulated sequence alignments (Wu et al. 2012; Hollich 
et al. 2005). In several studies where empirical alignments 
were used, such as (Zhou et al. 2017), the evaluation was 
performed according to likelihoods of inferred trees.

There are few studies where comparisons of phylogenetic 
programs were performed on alignments of real sequences of 
orthologous proteins and the accuracy was evaluated ac-
cording to proximity to a species tree (Krivozubov and 
Spirin 2010; Gonnet 2012; Penzar et al. 2018). These studies 
provided significantly different results from those made on 
simulations. In particular, in these studies phylogenetic 

reconstructions performed with distance methods often 
turned to be more accurate than results of maximum likeli-
hood. This suggests that comparisons made with simulated 
alignments may not be relevant for real data. No benchmark 
for evaluation of phylogenetic programs on real sequences 
has, thus far, been made publicly available.

Therefore, the aim of the present work was to create a 
benchmark and workflow that allow evaluation of phylo-
genetic programs on large sets of natural protein sequence 
alignments. Our approach comprised selecting a number 
of orthologous groups (OGs) of proteins and to compare 
trees inferred from their alignments with corresponding 
species trees. To avoid problems with domain shuffling, 
we used evolutionary domains according to Pfam 
(Mistry et al. 2021) rather than full-length protein se-
quences. We prepared 12 sets of protein alignments, 60 se-
quences in each alignment, each set represents proteins 
from one large taxon (Metazoa, Actinobacteria, etc.). 
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Evaluation of phylogenetic programs were performed on 
random selections of 15, 30, and 45 proteins from each 
alignment, to avoid biases related to the same topology 
of reference (i.e. species) trees for different alignments.

Surely, a species tree not always exactly reflects the real 
phylogeny of an OG of proteins. Differences may arise due 
to horizontal gene transfer, errors in selecting orthologs, or 
incomplete linear sorting. However, we may expect that 
the differences are not large enough to prevent a fair com-
parison of phylogenetic methods. On average, discor-
dances between real protein trees and the corresponding 
species trees would increase distances from different 
phylogenetic reconstructions to the species trees in the 
same degree. Thus, the distances from the species tree to 
better reconstructions should remain, on average, less 
than the distances to worse reconstructions. Such discor-
dances cannot cause a wrong signal, they can just intro-
duce some noise making the observed signal less visible.

To test whether the mentioned noise would prevent the 
comparison of the methods, we performed computational 
experiments. Namely, we compared phylogenetic recon-
structions performed with one method but on two series 
of sequence alignments, first, intact empirical alignments, 
and second, the same alignments with one-fifth of informa-
tion removed. This test, for all alignment sets, showed stat-
istically significant advantages of reconstructions from 
intact alignments. Thus we demonstrated an applicability 
of our benchmark to comparison of phylogenetic methods. 
The same experiment was used to identify the tree-to-tree 
distance measure providing the best statistical significance 
in comparison of the reconstructions.

Using the benchmark, we compared a number of popu-
lar phylogenetic tools and their parameters. An advantage 
of distance methods was confirmed. Also, the tests of a 
bayesian method showed that a consensus of the output 
ensemble of trees is on average closer to the reference 
than the result of the ML method, while farther than the 
result of a distance method.

In the current work, we focused mainly on investigating 
the quality of phylogenetic inference based on a restricted 
phylogenetic signal, i.e. on a set of rather short homologous 
protein sequences. The issue of discordant signals due to 
horizontal gene transfer, recombination, loss of paralogs, in-
complete lineage sorting, etc. remains beyond the scope of 
this study. However, the situation where phylogenetic re-
construction has to be done on the basis of one relatively 
short alignment is fairly typical. For example, that constantly 
occurs in studies of the evolution of paralogous families. We 
hope that our benchmark would help in adequate choice of 
programs and parameters for such studies. Also, it can be 
helpful for software developers.

Results and Discussion
Benchmark for Testing Phylogenetic Methods
Twelve sets of 60 living species each were selected. Two 
sets, AG and AR, represent Archaea, four sets, AC, FI, OB, 

and PB, are from different taxa of Bacteria, other six sets, 
AS, CH, EB, FB, MA, and ST, represent Eukaryota. See 
supplementary tables S1 and S2, Supplementary Material
online for characteristics of the species sets and 
the supplementary Species.xlsx, Supplementary 
Material online for the lists of species in each set.

From each species set, the maximum possible number of 
OGs of Pfam evolutionary domains were selected. In total, 
17,446 OGs were formed, with 649 representing Archaea, 
2,522 Bacteria, and 14,275 Eukaryota. Sequences of these do-
mains were aligned and used for constructing reference 
trees (see Materials and Methods). From each OG, three se-
quence subsets were randomly and independently selected; 
the first subset consisting of 15, the second of 30 and the 
third of 45 sequences. This was done to make tree topolo-
gies more diverse. Alignments of these sequence subsets 
form 36 (three sizes times 12 species sets) taxonomic sets 
of alignments. Comparison of trees inferred from these 
alignments with the reference trees can be used for estima-
tion of the quality of an inference procedure.

To make comparisons faster and to avoid a skew to-
wards eukaryotes, we extracted three sets of alignments 
from the taxonomic sets where three domains of cellular 
organisms were represented equally. We called them com-
bined sets. The main part of PhyloBench is three combined 
sets of 15-sequence, 30-sequence, and 45-sequence align-
ments, together with reference trees for them. Each com-
bined set consists of 649 archaeal, 650 bacterial, and 650 
eukaryotic alignments. These alignments and trees are 
available for download (see subsection “Online service”). 
The distributions of lengths of alignments from the 
45-sequence combined set are shown in Fig. 1.

The Robinson–Foulds Distance was Best for 
Comparison of Phylogenetic Methods
We compared 10 variants of measuring the relative accuracy 
of tree inference. There were two variants of reference trees, 
namely the taxonomy trees, which are the unresolved trees 
derived from NCBI taxonomy, and resolved species trees, 
which were constructed based on trees inferred with three 
programs on all available OGs for a given species set (see 
Materials and Methods). We tested seven tree-to-tree dis-
tance measures for the resolved trees and three measures, 
Robinson–Foulds (RF) distance (Robinson and Foulds 
1981), Quartet (Q) distance (Williams and Clifford 1971) 
and an original modified Robinson–Foulds distance (MRF) 
for measuring distances between resolved trees inferred by 
TNT from intact and damaged alignments (see Materials 
and Methods) and unresolved taxonomic trees. We did not 
test L1, L2, agreement (A) and agreement L- (AL) distances 
to unresolved taxonomic trees because it was not clear how 
to correctly generalize these measures to unresolved trees. 
For trees inferred from intact and damaged alignments, we 
calculated Z-score for differences between distances from 
both trees to the reference tree. The idea was that more sen-
sitive is the distance measure to errors in phylogenetic recon-
struction, the higher this Z-score should be.
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The results of testing the distance measures on 12 taxo-
nomic sets of 45-sequence alignments are given in the 
supplementary table S4, Supplementary Material online. 
In seven out of 12 cases, the largest median (over five var-
iants of alignment damaging) Z-score was obtained using 
the RF distance to the resolved species tree. For three 
sets, the MRF distance to the resolved species trees pro-
vided the best results, and for two sets, the best was the 
RF distance to the taxonomic tree. The results for 
15-sequence and 30-sequence alignments were close, 
namely in most cases the best was the RF distance to 
the resolved species trees.

This result suggests that the RF distance to the resolved 
species trees is typically the most sensitive to removing a 
part of information from the input data. Based on these re-
sults, we decided to use mainly this measure for compari-
son of phylogenetic methods.

Applicability of Our Species Trees to Benchmarking
For all twelve 45-sequence taxonomic sets, RF distances 
from the inferred trees to both variants of reference trees 
reliably distinguished between intact and damaged align-
ments (Z-test P < 10−5). Thus, PhyloBench is suitable for 
comparing phylogenetic algorithms. This suitability is 
also valid for the combined sets, as the reference trees 
are the same for the alignments in these sets as in the taxo-
nomic sets. The following subsections contain results of 
comparisons performed using RF distances to resolved 
species trees on three combined sets.

Comparison of Models for Maximum Likelihood
One of the parameters of maximum likelihood (ML) is the 
probability model for amino acid substitutions. As an 

implementation of ML, we used RAxML (Stamatakis 2014). 
Among variants of substitution probabilities available in 
RAxML, we compared two: the Jones–Taylor–Thornton 
(JTT) matrix (Jones et al. 1992), and the AUTO option 
(the automatic choice of a substitution matrix). Another 
tested parameter concerned the heterogeneity of substitu-
tion rates among sites of the input alignment. RAxML pro-
vides three rate heterogeneity models: first, the widely 
used Gamma distribution of rates (Gu et al. 1995), second, 
the CAT model, which consists of dividing all sites into 25 
(by default) categories with different substitution rates, 
and third, equal substitution rates among sites. Thus, six 
variants of models were tested: two variants of substitu-
tion probabilities times three rate heterogeneity models. 
Supplementary table S5, Supplementary Material online 
contains Z-scores for the pairwise comparisons of these 
six variants on three combined sets and the relative com-
putational times that were required.

Neither automatic choice of substitution model nor 
taking into account rate heterogeneity showed any signifi-
cant increase of quality; otherwise, on our data both de-
monstrated even some (mostly insignificant) decrease. 
For example, we compared two models of RAxML: first, 
JTT with no rate heterogeneity (-m PROTCATJTT and -V 
in the command line of RAxML), and second, JTT with 
Gamma distributed rates (-m PROTGAMMAJTT). 
For three combined sets, the first variant was better for 
247 15-sequence alignments, 483 30-sequence alignment 
and 662 45-sequence alignments, while the second variant 
was better for 206, 407, and 602 alignments, respectively. 
Summarizing, the first variant was better in 1,392 cases 
and worse in 1,215 cases. Such results would have an ex-
tremely low probability if Gamma had any more or less sig-
nificant advantage. This was unexpected, as alignment 

Fig. 1. Box plots for the length 
distributions of the 45-sequence 
alignments from the combined 
set. Lines in boxes are for lower 
quartiles, medians, and upper 
quartiles. The whiskers mark 
maximum and minimum with-
in the 1.5 interquartile range 
from the quartiles. Outliers are 
plotted with black diamonds. 
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positions obviously differ in the rate of substitution accu-
mulations. However, the relative results of the CAT model 
tended to be better when the number of sequences in the 
input alignments increased.

Also we tested the General Time Reversible (GTR) mod-
el (PROTCATGTR and PROTGAMMAGTR in RAxML, data 
not shown). As expected, the average accuracy with GTR 
was worse than with other tested models for 15- and 
30-sequence alignments, while for 45-sequence alignments 
the accuracy was approximately the same. The computa-
tion time with GTR was 5 to 10 times longer than with JTT.

Is it Informative to Compare Likelihoods for Different 
Models?
The automatic detection of a substitution model (the AUTO 
model option in RAxML) is based on a common belief that 
for a certain alignment a model can be chosen based on the 
likelihoods that different models provide for optimal or sub- 
optimal trees. We tested the correspondence between like-
lihoods of optimized trees and their proximity to reference 
trees for two substitution models that provide similar quality 
of inference, namely WAG (Whelan and Goldman 2001) and 
JTT. The results for the 45-sequence combined set are listed 
in Table 1. The results for the 30- and 15-sequence sets were 
similar (data not shown).

The likelihoods for Table 1 were calculated for trees op-
timized with the corresponding model. Usage of the WAG 
model resulted in higher likelihoods in the vast majority of 
cases. At the same time the number of cases when the tree 
optimized with WAG is closer to the reference tree was ap-
proximately the same as the number of opposite cases. 
This result suggests that the relative quality of phylogenet-
ic inferences based on different models is not strongly con-
nected with difference in likelihoods calculated using these 
models. This may explain the relatively poor results of the 
AUTO model.

The program IQ-Tree (Nguyen et al. 2015) provides a 
possibility to choose between models having different 
numbers of free parameters, in particular between models 
with gamma distribution of substitution rates and with-
out it. The choice is performed according to Bayesian in-
formation criterion (BIC) taking into account both the 

number of parameters and likelihoods of a draft tree com-
puted with different models (refer to the paper on 
ModelFinder (Kalyaanamoorthy et al. 2017) for details). 
By default, for each alignment IQ-Tree selects between 
546 models, which differ in substitution matrices (20 var-
iants), state frequencies, and ways of modeling heterogen-
eity across sites.

We tested the default behavior of IQ-Tree on three 
combined sets and compare the results with the results 

Table 1. The number of 45-sequence alignments from the combined set 
with relations between tree likelihoods and tree qualities for the JTT and 
WAG models

JTT likelihood higher WAG likelihood higher

JTT bettera 169 466
Equalb 148 565
WAG betterc 127 474

Substitution rates were equal among sites. aThe row “JTT better” contains the 
number of alignments for which the tree inferred with the JTT model was closer 
to the reference tree in comparison to the tree inferred using the WAG model. 
bThe row “Equal” contains the number of alignments for which two trees either 
coincided or had equal RF distances to the reference tree. cThe row “WAG better” 
contains the number of alignments for which the tree inferred with the WAG 
model was closer to the reference tree.

Fig. 2. Average quality of phylogenetic inference by MrBayes in com-
parison to RAxML, in dependence on MCMC trajectory length. The 
vertical axis corresponds to average Robinson–Foulds distances from 
MrBayes and RAxML trees to the resolved species trees. The error 
bars reflect standard errors of the average differences between 
two distances from the reference, the distance to a RAxML tree 
and the distance to a MrBayes tree. Calculations were performed 
on the combined sets of alignments of 15 (a), 30 (b), and 45 (c) 
sequences.
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of different variants of RAxML. The results are available in 
supplementary table S6, Supplementary Material online. 
For the 15-sequence and 30-sequence sets, IQ-Tree with 
defaults was significantly worse than RAxML with the fixed 
(JTT) substitution matrix and no rate heterogeneity. For 
the 45-sequence set the superiority of RAxML was not sig-
nificant (Z = 1.3). This result suggests that even simultan-
eous choice of substitution model and rate heterogeneity 
model according to BIC does not guarantee an improve-
ment in accuracy.

The reasons for these experimental facts are not clear. 
We hypothesize that the main source of even worse results 
of an automatic choice of a model was in the Li–Gascuel 
model (LG) (Le and Gascuel 2008). This model very often 
provides the best likelihood, while on our datasets it 
showed slightly inferior results compared to JTT or 
WAG. For example, see supplementary table S9, 
Supplementary Material online with results of FastME; 
when used in RAxML, the relative results of JTT and LG 
were similar.

Phylogenetic Inference with MCMC: Evidence in 
Favor of the Existence of an Optimal Trajectory 
Length
The MrBayes (Ronquist et al. 2012) program uses the 
Metropolis–Hastings algorithm, a type of Monte-Carlo 
Markov Chain (MCMC) search in the tree space with 
the a posterior probability of trees as the objective func-
tion. The program outputs both the tree with the max-
imum a posterior probability (the MAP tree) and the 
ensemble of trees from the MCMC trajectory with their 
a posterior probabilities. We used the ASTRAL (Zhang 
et al. 2018) consensus of the ensemble as an alternative re-
sult of MrBayes.

One of the main parameters of the program is the trajec-
tory length, i.e. the number of iterations of the MCMC 
search. We investigated the dependence of the average 
quality of two trees, the MAP tree and the consensus 
tree, on the number of iterations. Figure 2 shows the results 
of these investigations in comparison with the results of 
RAxML. Here we used the Jones model in MrBayes and 
the JTT model in RAxML (“Jones” and “JTT” are actually 
two names of the same model), with no rate heterogeneity.

MAP trees were, on average, more distant from refer-
ences than consensus trees for any number of iterations, 
and the difference was reliable in all cases. For 30-sequence 
and 45-sequence alignments, the average RF distance 
from the references to the MAP trees decreased with an 
increasing number of iterations. For consensus trees, there 
were optimal numbers of iterations. For example, for 
45-sequence alignments, the consensus tree at 4,000 itera-
tions was closer to the reference than the consensus tree at 
32,000 iterations in 741 cases out of 1,949 and was more 
distant in 554 cases, Z = −5.51 (the full table of Z-scores 
see in supplementary table S7, Supplementary Material
online). This optimal trajectory length increased with 
alignment size. The effect of decreasing quality when 

trajectory length became greater than its optimum may 
be a result of some kind of overfitting.

For alignments of 30 or 45 sequences, the average dis-
tance from the reference trees to the MrBayes MAP trees 
for any number of iterations was greater than the distance 
to the RAxML trees. However, for 15 sequences, the 
MrBayes MAP trees were, on average, closer to the refer-
ences than the RAxML trees. The advantage of MrBayes 
over RAxML when using the same model of amino acid 
substitutions can be explained by the influence of the prior 
distribution of branch lengths, which is implemented in 
MrBayes. However, this requires confirmation, as 
MrBayes has plenty of parameters, the testing of which is 
beyond the scope of this work.

Models for Balanced Minimum Evolution
In the program FastME, several distance-oriented phylo-
genetic methods are implemented. Also FastME can com-
pute several sequence-to-sequence distance measures to 
produce a distance matrix, which is the input for all dis-
tance methods. We compared these methods with each 
other using the default distance measure based on the 
LG substitution model (Le and Gascuel 2008). The results 
can be seen in supplementary table S8, Supplementary 
Material online. On all three combined sets, the best aver-
age quality was shown by the subtree pruning and regraft-
ing (SPR) search with the Balanced Minimum Evolution 
(BME) criterion of tree quality.

We used the latter distance method to compare five 
sequence-to-sequence distance measures: the p-distance, 
which is the fraction of different letters in two sequences, 
and likelihood measures based on two substitution mod-
els, JTT (the oldest one), and LG (the default one), with 
and without using gamma distribution of substitution 
rates. The results are shown in supplementary Table S9, 
Supplementary Material online.

We observed a slight advantage of the JTT model over 
the default LG model. More impressive was the observed 
disadvantage of using the gamma distribution. On 
45-sequences alignments, the average distance from trees 
builded with LG model without gamma was 0.6023 and 
with gamma was 0.6114, Z-score was 11.8. For 
15-sequence alignments even using p-distance led to 
slightly better results than using the likelihood measures 
with gamma distribution of rates. The observed phenom-
enon may be explained with the results of the paper 
(Guindon and Gascuel 2002). In that work it was shown 
that, for simulated alignments, the optimal gamma shape 
parameter for computing sequence-to-sequence distances 
was much larger than the real one, i.e. the parameter used 
for the simulations. Also, from the results of that work it 
follows that even infinite value of gamma shape parameter 
(which means no rate heterogeneity between sites) led to 
better results of distance methods than the real value, if 
the evolution was simulated with low deviation from mo-
lecular clock (see the right half of Fig. 1 in Guindon and 
Gascuel 2002).
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Comparison of Six Methods with Optimized 
Parameters
We compared six programs: RAxML, MrBayes, FastME, 
TNT (implementing MP), TREE-PUZZLE (implementing 
the Quartet Puzzle algorithm), and PQ (implementing 
the PQ algorithm) on three combined sets. For RAxML, 
MrBayes, and FastME, we used the parameters that 
showed best results on our datasets (see previous sec-
tions). For RAxML, we used the JTT model with no rate 
heterogeneity. For MrBayes, we used the ASTRAL consen-
sus of trajectory, with trajectory length set to 1,000 for the 
15-sequence set, 2,000 for the 30-sequence set, and 4,000 
for the 45-sequence set. For FastME, we used the JTT mod-
el without rate heterogeneity for sequence-to-sequence 
distances, BME criterion, and the SPR search. The para-
meters for TNT, TREE-PUZZLE, and PQ are described in 
the Supplementary Material online. The results are listed 
in supplementary tables S10 and S11, Supplementary 
Material online; in the supplementary table S10, 
Supplementary Material online Z-scores were computed 
for the RF distances to unresolved taxonomic trees and 
in supplementary table S11, Supplementary Material on-
line for the RF distances to the resolved species trees. 
Average distances from trees inferred by these programs 
to the resolved species trees are illustrated in Fig. 3.

Figure 4 illustrates the distributions of the distances to 
the resolved species trees for the 45-sequence combined 
set for three most contrasting programs, FastME (demon-
strated the best results on our data), TNT (worse results), 
and MrBayes (medium results).

Distributions in Fig. 4 seem rather similar. The main 
cause of this is that the distance between inferred and ref-
erence trees depends much more on the input alignment 
than on the inference method. For example, the Pearson 
correlation between distances from FastME trees to refer-
ences and from TNT trees to references is about 0.9. At the 
same time, mean differences between trees inferred with 
any two of the four methods, TNT, RAxML, MrBayes, and 

FastME, significantly differ from zero, see supplementary 
tables S10 and S11, Supplementary Material online. Results 
of PQ and TREE-PUZZLE are mainly close to the results of 
FastME.

On three combined sets, FastME, with the selected op-
tions, was in average more accurate than MrBayes, RAxML, 
and TNT; on 45-sequence alignments also than PQ and 
TREE-PUZZLE. It‘s noteworthy that even when using p-dis-
tances, FastME performed better than RAxML with its best 
options. Thus, on the 45-sequence combined set, FastME 
using SPR search, the BME criterion, and p-distance pro-
duced a tree closer to the reference than the RAxML 
tree in 989 cases and outputted a more distant tree in 
657 cases, with Z = −5.87. However, the superiority of 
FastME observed on randomly chosen OGs was not ob-
served on some specially selected subsets, see the next 
subsection.

The superiority of distance methods over ML on natural 
sequences has long been shown (Krivozubov and Spirin 
2010; Gonnet 2012; Penzar et al. 2018). In particular, 
Gonnet (2012)’s article, being based on a substantial 
amount of data and published in a popular open access 
journal, presumably should close the problem. 
Nevertheless, this article has only been cited 20 times in 
11 years (according to Google Scholar), and the majority 
of researchers continue to consider ML as the most accurate 
method and distance methods to be of little use for phylo-
genetic reconstruction. There may be several reasons for 
this. First, the ML principle appears to be the most theor-
etically reasonable. Second, there may be some inertia re-
garding change: many researchers learned about the 
superiority of ML when first encountering phylogenetic 
inference. Moreover, on simulated alignments, distance 
methods usually perform worse than ML and, at times, 
even worse than MP. The reasons for the obtained differ-
ences in quality between ML and distance methods, 
which use the same evolutionary models for calculating 
distances, remain unclear.

Fig. 3. Bar plots of average RF distances from inferred trees to re-
solved species trees for the six methods on three combined sets.

Fig. 4. Density plots of RF distances from trees inferred with three 
programs to resolved species trees. Input alignments were from 
the combined set of 45-sequence alignments.
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One possible explanation for the conflicting results on 
simulated and real alignments is in nonrealistic methods 
of simulations. This possibility is supported by the opinion 
of A. Stamatakis, who writes in the RAxML manual 
(https://sco.h-its.org/exelixis/resource/download/ 
NewManual.pdf, p. 60): 

Q: Why has the performance of RAxML mainly been assessed using real-world 

data? A: Personal opinion: Despite the unquestionable need for simulated data 

and trees to verify and test the performance of current ML algorithms the cur-

rent methods available for generation of simulated alignments are not very real-

istic. 〈…〉 Typically, search algorithms execute significantly less (factor 5–10) 

topological moves on simulated data until convergence as opposed to real 

data, i.e. the number of successful Nearest Neighbor Interchanges (NNIs) or sub-

tree rearrangements is lower.

However, Guindon and Gascuel (2002) observed that 
on alignments simulated with certain parameters, namely 
a high variability of substitution rates among sites and ap-
proximate molecular clock, distance methods also outper-
form maximum likelihood.

We have compared a bayesian method with other 
methods on natural data for the first time. In the men-
tioned above article Gonnet (2012), bayesian methods 
were deliberately left uninvestigated. The author explains 
this as follows (page 19): 

Bayesian methods for tree building have not been included in this study be-

cause they do not follow the PTMS [phylogenetic tree reconstruction from 

molecular sequences] definition. In principle, a bayesian tree building meth-

od produces a probability distribution over all trees given the corresponding 

priors. If the priors are ignored and only the tree with highest probability is 

selected, then this is ML, not bayesian. Approaches which build consensus 

trees from several of the most probable trees produce multifurcating trees 

which contain less information and hence are not comparable to fully de-

termined trees. Any prior which contains information about the tree which 

is not extracted from the sequences themselves will violate our assumptions 

for PTMS.

These reasons are dubious. Firstly, priors are not only for 
topologies, but also for branch lengths. In particular, in 
MrBayes the default is an exponential distribution with a 
mean of 10 as a prior for the tree length (i.e. for the sum 
of all branch lengths) with partitioning of the tree length 
to branch lengths according to the Dirichlet distribution 
with all parameters equal to 1 (Rannala et al. 2012). The a 
posterior probability is calculated taking branch lengths 
into account and, therefore, its maximum can be achieved 
at a different topology than the ML, so priors for branch 
lengths can affect the choice of topology. Secondly, it is pos-
sible to build a resolved consensus of an ensemble of trees, 
for example, with ASTRAL, which does not produce multi-
furcating trees. On our benchmark the ASTRAL consensus 
gives, on average, better results compared to ML (see Fig. 2).

Impact of Input Data Properties
Quality of phylogenetic methods may depend on features 
of input data. To investigate this, for each alignment of the 
combined sets we have calculated the following properties: 

alignment length, average p-distance between sequences, 
average distance from the predicted root to leaves through 
the RAxML tree (TH), RAxML tree length (TL), and the ra-
tio TL to TH (TL/TH). See details of calculating TH and TL 
in Materials and Methods. The ratio TL/M should be 
relatively large in case when most branching events oc-
curred near the root, and relatively small when there are 
many recent branching close to leaves. See these values 
in the supplementary file Combined_alignments_ 
info.xlsx, Supplementary Material online.

For each property and each of the six programs (PQ, 
FastME, TREE-PUZZLE, MrBayes, RAxML, TNT), we calcu-
lated the Pearson correlations between the property values 
and the RF distances between inferred trees and references, 
see supplementary table S12, Supplementary Material on-
line. Alignment length predictably showed negative correla-
tions with the distances in range −0.30 to −0.16 for all six 
programs. TL and TL/TH demonstrated positive correla-
tions, 0.15 to 0.17 for TL and 0.17 to 0.27 for TL/TH.

To study impact of the properties on relative quality of 
different programs we have prepared four additional sets 
of alignments. First two sets consisted of 1,000 most long 
and 1,000 most short eukaryotic 45-sequence alignments. 
First set alignments contained 488 to 2,410 columns, se-
cond set alignments contained 21 to 64 columns. Mean 
RF distances to references for trees generated by the six 
programs on these two sets are illustrated on Fig. 5a, 
Z-scores for pairwise program comparisons see in 
supplementary table S13, Supplementary Material online.

Another two prepared sets consisted of 15-sequence 
alignments from the combined set whose evolution was 
“shallow branching” for one set and “deeply branching” 
for another set, see Materials and Methods. The results of 
the six programs on these sets are illustrated at Fig. 5b
and supplementary table S14, Supplementary Material
online.

Relative quality of the methods were indeed sufficiently 
different between sets of alignments with contrasting char-
acteristics. In particular, differences in quality between 
FastME, MrBayes, and RAxML became neglected on deeply 
branching alignments, while became more pronounced on 
shallow branching alignments. For TNT an opposite trend 
was observed. In particular, TNT performed considerably 
worse on deep trees, which is consistent with the classical 
Felsenstein results on parsimony methods (Felsenstein 
1978).

The most impressing contrast with the combined sets, 
composed of OGs randomly selected from the total 
pool, was the performance of RAxML on long alignments. 
Namely, RAxML showed the best results on long align-
ments, outperforming other five programs. These results 
suggest that dependence of relative quality of methods 
on features of alignments requires careful consideration. 
The obvious restrictions of the current version of 
PhyloBench are the predominance of short protein se-
quences and that all alignments consist of relatively small 
numbers of sequences. Relative quality of phylogenetic 
programs may depend on both dimensions of the input 

PhyloBench: A Benchmark for Phylogenetics · https://doi.org/10.1093/molbev/msae084 MBE

7

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/41/6/m
sae084/7690921 by M

oscow
 State U

niversity (Econom
ics D

ept) user on 21 August 2024

https://sco.h-its.org/exelixis/resource/download/NewManual.pdf
https://sco.h-its.org/exelixis/resource/download/NewManual.pdf
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae084#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae084#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae084#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae084#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msae084#supplementary-data


alignment. In our further work, we intend to overcome 
these restrictions forming larger sets of OGs and using full- 
length proteins instead of evolutionary domains.

We also performed comparisons of the six programs 
separately on three subsets of each combined set, namely 
on 649 archaeal alignments, 650 bacterial alignments, and 
650 eukaryotic alignments, see supplementary tables S15, 
S16, and S17, Supplementary Material online. The only ob-
servation that we derived is that TREE-PUZZLE and PQ 
performed relatively worse on our eukaryotic alignments, 
while relative quality of four other methods were approxi-
mately the same for all three subsets and for all three align-
ment sizes.

Online Service
The online service provides three datasets of align-
ments for download: the 15-sequence, 30-sequence, 
and 45-sequence combined sets. The user can reconstruct 
the phylogeny of each alignment from any dataset by the 
user’s method of interest. They can then upload the ob-
tained set of trees to the service and choose one from se-
ven distance measures and one from three variants of 
reference trees. Distances from the user’s trees to the ref-
erence trees will be computed and compared with similar 
distances from the trees built with the six methods, PQ, 
FastME, TREE-PUZZLE, MrBayes, RAxML, and TNT, all 
with optimized parameters. The service output is a table 
containing the numbers of wins, draws, and losses of the 
user’s method compared to the six reference methods, 
as well as Z-scores for the differences of the distances. 
The service is available at https://mouse.belozersky.msu. 
ru/tools/phylobench/. Alignments and reference trees for 
36 taxonomic sets are available for download, too.

Conclusion
We have developed PhyloBench, a benchmark for evaluat-
ing the quality of phylogenetic programs. Twelve sets, each 

comprising 60 living species, were selected, and phylogen-
etic trees of these species were used as references. OGs 
were generated from the Pfam evolutionary domains pre-
sent in the proteins of these species. This enabled a com-
parison of programs by their performance on OGs in 
regard to distances between the inferred and reference 
trees. To avoid possible bias related to the topology of 
the same species tree, we suggest making comparisons 
not on the 60-sequence alignments, but on alignments 
of randomly chosen subsets of 15, 30, and 45 sequences 
from each OG. Our benchmark differs from analogs by two 
main features: first, it is based on real protein sequences 
and second, the measure of accuracy of an inferred tree is 
its distance to a reference tree. The applicability of the bench-
mark was confirmed by comparisons of phylogenetic infer-
ences based on damaged alignments with inferences based 
on intact alignments. A number of comparisons of existing 
phylogenetic tools were performed. In particular, we tested 
a bayesian program for the first time, and the tests confirmed 
that distance methods are superior to ML, which, in turn, is 
superior to MP. On our benchmark, the bayesian program 
MrBayes showed better quality than ML but worse quality 
than distance methods. The programs TREE-PUZZLE and 
PQ performed better compared to MrBayes but, on our 
45-sequence alignment dataset, worse compared to the dis-
tance method showed the best quality, which is BME. A 
web-interface providing access to the benchmark is available.

Future Plans
Future plans can be divided into two directions: first, fur-
ther development of the benchmark itself, and second, re-
search that can be performed using the current version of 
the benchmark.

It seems natural to create an analogous benchmark for 
nucleotide alignments. The easiest way would be to take 
DNA sequences that encode proteins from PhyloBench. 
However, it would be not an optimal solution, because 
these proteins are too distant from each other. In our 

Fig. 5. Bar plots of RF distances from inferred trees to resolved species trees for the six methods on: a) sets of long and short 45-sequence align-
ments; b) shallow branching and deeply branching sets of 15-sequence alignments.
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opinion, a nucleotide phylogenetic benchmark should 
consist of either noncoding RNA sequences or DNA seg-
ments under neutral evolution (such as intergenic tran-
scribed spacers) from closely related species. One more 
possibility is to use genes of almost identical proteins of 
closely related species, in this case, the phylogenetic signal 
would be in synonymous sites, which are also under (al-
most) no selection pressure. For all these variants selection 
of an appropriate number of alignments will be significantly 
more complicated than for proteins.

Another way of future development of the benchmark 
is using full-length protein sequences instead of sequences 
of protein domains. Interdomain regions may show differ-
ent evolutionary patterns compared to domains. We have 
performed an attempt to use such sequences in Sigorskikh 
et al. (2022) and we will continue this work.

A number of studies can be conducted based even on 
the current version of the benchmark. First of all, the de-
pendence of the relative quality of phylogenetic methods 
on different features of the input alignment should be in-
vestigated in much more details.

Another promising direction could be to investigate the 
quality of consensus making programs, such as ASTRAL 
and its analogs, in comparison with each other and with 
using supermatrices.

Materials and Methods
Algorithm for Selecting Orthologous Groups
Twelve sets of 60 living species each were selected. A de-
tailed description of the selection procedure is in the 
supplementary text, Supplementary Material online. The 
lists of species are in the supplementary file, Species. 
xlsx, Supplementary Material online.

OGs were composed for each species set from each 
Pfam family that was represented by protein domains in 
every species of the set. Each composed OG contained 
exactly one protein domain sequence from each species. 
OGs were composed with the following simplified proced-
ure. Fix a Pfam family and a set of species such that in each 
of these species there is a protein with a domain from the 
chosen Pfam family. then: 

• Select a species M with the smallest number of se-
quences from the Pfam family.

• For each sequence x from M:
• found best bidirectional hits (BBHs) in other 

species;
• if there are BBHs for x in all other species from the 

set, then form an OG consisting of these BBHs to-
gether with x, else skip x.

BBHs were found using the program blastp from the 
BLAST+ (Altschul et al. 1997) package version 2.7.1+, 
with the following parameters: word size 2, window size 
0 (which means 1-hit algorithm), word score threshold 7, 
switch off compositional based statistics and all filters, 
other parameters by default. A sequence x from M and a 
sequence y from another species N were regarded forming 

a BBH, if the alignment score of x with y is not less than all 
other alignment scores of x with sequences from N or of y 
with sequences from M. OGs that contained less than 45 
pairwise different sequences were removed.

Alignments
From each OG, three subsets of 15, 30, and 45 pairwise dif-
ferent sequences were randomly and independently se-
lected. Each subset was aligned using MUSCLE v3.8.1551 
(Edgar 2004) with the default settings. Alignments with 
less than ten non-conserved columns without gaps were 
removed. Thus, for each species set, we constructed a set 
of OGs and three “taxonomic” sets of alignments with 
15, 30, and 45 sequences in each alignment.

Combined Sets of Alignments
The combined sets of alignments were based on all 649 ar-
chaeal OGs, 650 randomly chosen bacterial OGs and 650 
randomly chosen eukaryotic OGs (see details of the ran-
dom choice in the supplementary text, Supplementary 
Material online). The corresponding 15, 30, and 45 se-
quence alignments formed three combined sets of 1,949 
alignments each.

Phylogenetic Programs
In this study, we used the following phylogenetic programs: 
TNT (Goloboff and Catalano 2016), RAxML (Stamatakis 
2014), MrBayes (Ronquist et al. 2012), PQ (Penzar et al. 
2018), TREE-PUZZLE (Schmidt et al. 2002), FastME (Lefort 
et al. 2015), and IQ-Tree (Nguyen et al. 2015). A description 
of the used versions and options are in the supplementary 
text, Supplementary Material online. We intentionally lim-
ited ourselves to comparing only those methods that pro-
duced fully resolved trees. To obtain resolved trees in all 
cases, we use ASTRAL (Zhang et al. 2018) to make consen-
sus trees from ensembles of trees outputted by 
TREE-PUZZLE and MrBayes. Recognizing that unresolved 
trees are more sensible than fully resolved trees if the origin-
al data is insufficient to resolve some nodes, we intend to 
investigate this issue in future work.

Species Trees
The species tree for each species set was obtained from the 
NCBI Taxonomy database (Federhen 2012) of the 2021 
March 12 version. These trees were not completely re-
solved (i.e. not binary or some nodes had more than two 
descendants). A completely resolved tree of 60 taxa should 
contain 57 inner branches, while the obtained trees con-
tain 16 to 43 inner branches, see supplementary table S3, 
Supplementary Material online. To form binary trees, add-
itional branches were obtained as follows. For each OG, all 
60 its sequences were aligned. If the obtained alignment 
contained 10 or more nonconserved columns without 
gaps, then three trees were inferred from this alignment 
with TNT, RAxML, and FastME. For this task, we took 
the default options of these programs. Since RAxML 
does not provide a default model, we chose the model 
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PROTGAMMAAUTO, which seemed to be the most nat-
ural choice. For each species set, the completely resolved 
species tree was the ASTRAL consensus of all inferred trees 
of the set, with constraints derived from NCBI Taxonomy.

Tree-to-tree Distance Measures
The following seven measures were tested: Robinson– 
Foulds (RF) distance (Robinson and Foulds 1981), a modi-
fied Robinson–Foulds distance (MRF), L1-distance 
(Williams and Clifford 1971), L2-distance (Penny et al. 
1982), Quartet (Q) distance (Estabrook et al. 1985), 
Agreement (A) distance (Gordon 1980), and Agreement 
L-distance (AL) (Goddard et al. 1994). A short description 
of these measures is in the supplementary text, 
Supplementary Material online.

Comparison of Phylogenetic Methods
Each pairwise comparison was performed as follows. Given 
a set of n multiple sequence alignments (e.g. one of the 
combined sets), two trees were built from each alignment 
with two methods being compared. Let si be the distance 
from the reference tree to the tree built from the ith align-
ment with one method, ri be the distance to the tree built 
from the same alignment with another method, and SE be 
the standard error of the set of differences {si − ri}. The 
main measure for the comparison of the methods is then:

Z =


i (si − ri)/n
SE

(1) 

i.e. the Z-score for the average difference between two dis-
tances. Note that if n is large enough, then the Z-score un-
der the null hypothesis (that is the same accuracy of the 
two methods) is distributed according to the standard 
normal distribution, thus Z-scores can be easily converted 
to p-values.

Damaged Alignments
To test reference trees and distance measures, the following 
procedure was applied to each taxonomic alignment set: 

1) each alignment was damaged by replacing one-fifth 
of columns with columns containing the letter “A” in 
all sequences;

2) the phylogeny was inferred with the program TNT 
from both intact and damaged alignments;

3) all distance measures from the two obtained trees to 
the species tree were computed.

The procedure was repeated five times, first replacing the 
1st, 6th, 11th, etc. columns of each alignment, then the 
2nd, 7th, 12th, etc.

Comparison of Tree-to-tree Distance Measures
With each measure we compared phylogenetic inference 
based on intact alignments against one based on damaged 
alignments, with the program TNT with default options. 
For each of five variants of damage the Z-score was 

computed with the formula (1), where reconstructions 
from the intact alignments, from one hand, and from 
the damaged alignments, from the other hand, stay for 
two compared methods. Next, the median of these five 
Z-scores was computed.

The just described procedure was performed with ri and 
si computed with all seven tree-to-tree distance measures 
of distances between the inferred and the resolved species 
tree, e.g. the ASTRAL consensus of inferred trees with taxo-
nomic constraints. Additionally, in the same manner we 
tested RF, MRF, and Q measures of distances to the unre-
solved taxonomic trees. The distance measure providing 
the largest median Z-score for most taxonomic sets was re-
garded as the best. This procedure allowed us to choose 
the measure that is the most sensitive to errors in phylo-
genetic reconstruction.

Simultaneously, this procedure validated the applicabil-
ity of species trees for benchmarking phylogenetic meth-
ods. A species tree was regarded as satisfactory, if these 
Z-scores were large enough (all greater than 1.65, which 
means confidence level of 0.05).

Calculation of Alignment Properties
IQ-Tree outputs several characteristics for each input 
alignment, including its length (i.e. the number of col-
umns) and other characteristics such as the number of dis-
tinct patterns, parsimony-informative sites, singleton sites, 
and constant sites. Also, we computed numbers of col-
umns with gaps, the average p-distance between se-
quences and three characteristics derived from the 
RAxML tree inferred from the alignment. RAxML was 
used with JTT model and no rate heterogeneity. The three 
characteristics were tree height (TH), tree length (TL), and 
their ratio (TL/TH). To compute TH each tree was rooted 
with the option “-f I” of RAxML (see RAxML Manual for 
details). For each leaf, its distance to the root was com-
puted as the sum of lengths of branches composing the 
path from the root to the leaf. TH is the mean value of 
the obtained root-to-length distances. TL was computed 
as the total sum of tree branches. Properties of all align-
ments of the combined sets are available in the 
supplementary file Combined_alignments_info. 
xlsx, Supplementary Material online.

Selection of Deeply Branching and Shallow Branching 
Sets
From each 60-sequence family of the combined set, two 
15-sequence subsets were selected. The first one called 
“deeply branching” was composed from 15 sequences 
most distant (according to p-distance) from each other. 
The second one called “shallow branching” consists of 
three most distant sequences and 12 sequences most close 
to any of the three.

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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