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A R T I C L E I N F O A B S T R A C T

Editor: A. Schwenk The calculation of nuclear electromagnetic sum rules by directly solving for numerous eigenstates in a large 
basis is numerically challenging and has not been performed for 𝐴 > 2 nuclei. With the significant progress 
of high performance computing, we show that calculating sum rules using numerous discretized continuum 
states obtained with the ab initio no-core shell model in the harmonic oscillator basis is achievable numerically. 
Specifically, we calculate the 4He electric dipole (𝐸1) polarizability, that is an inverse energy weighted sum rule, 
employing the Daejeon16 𝑁𝑁 interaction. We demonstrate that the calculations are numerically tractable as 
the dimension of the basis increases and are convergent. Our results for the 4He electric dipole polarizability 
are consistent with the most recent experimental data and are compared with those of other theoretical studies 
employing different techniques and various interactions.
1. Introduction

Electromagnetic transitions in atomic nuclei can reveal important in-

formation about the dynamical structure of the nucleus itself [1]. Due 
to the perturbative essence of the electromagnetic interaction, calcula-

tions of these observables can be compared in a straightforward way 
to experimental data, and important features of the strongly interacting 
nuclear many-body system can be studied. Considering the transitions 
from the ground state to the low-lying and highly excited states, one 
can study the sum rules, which can be compared to experiment as well. 
A sum rule is often associated with spectral integration over a nuclear 
response function with an energy-dependent weight function, which is 
related to a reaction cross section of a nucleus due to an external probe. 
Therefore investigations of nuclear sum rules may provide important in-

formation on related reactions. A prominent example, the electric dipole 
(𝐸1) polarizability of a nucleus, which is the inverse energy weighted 
sum rule of the 𝐸1 transition and represents the response of the nucleus 
to two successive electric impulses, is crucial for nuclear photoabsorp-

tion reactions [2], Coulomb breakup reactions [3] and astrophysics [4].
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The straightforward calculation of electromagnetic sum rules re-

quires an integral over the continuum states which is computationally 
challenging. In practice, one often approximates the continuum states 
by expanding the nuclear wave functions with a complete discrete set 
of localized basis states, which are then truncated to a finite basis. By 
solving for the eigenvalue problem in this basis, one can obtain a set of 
eigenstates which can be regarded as a discretized approximation of the 
continuum. Under this assumption, the sum rule becomes a sum over 
the transition probabilities from the ground state to the discretized con-

tinuum states. The sum rule is expected to converge to the continuum 
value as the basis size increases. This expectation was numerically ver-

ified only in the case of the deuteron where the diagonalization of the 
Hamiltonian was used to calculate sum rules [1,5–8]. The calculations 
have not previously been extended to 𝐴 > 2 nuclei due to the computa-

tional costs of solving for numerous eigenstates.

Using alternative techniques, such as the Lorentz (or Stieltjes) in-

tegral transform [4,9–18] and the Lanczos sum rule method [19–24], 
which avoid solving for numerous eigenstates, has been the only viable 
way for calculating the sum rules in ab initio approaches up to now. 
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Using these alternative techniques, sum rules have been successfully 
calculated with ab initio approaches, such as hyperspherical harmon-

ics (HH) (for 4He) [11–13,20], the coupled-cluster (CC) method (for 
4,8He, 16,22O and 40,48Ca) [4,14–18,26], no-core shell model (NCSM) (for 
𝐴 ≤ 4) [21–24] and symmetry-adapted no-core shell model (SA-NCSM) 
(for 4He, 16O, 20Ne and 40Ca) [24,25]. Calculations of the sum rules 
from realistic interactions can also be obtained by equations of motion 
phonon method [27], but presently is limited by the basis truncation 
and the truncation of the multiphonon space.

In this letter, we demonstrate that evaluating sum rules by directly 
solving for numerous eigenstates in a large basis space is feasible for 
𝐴 > 2 nuclei with the continued major advances in high performance 
computing. Specifically, we calculate the 4He 𝐸1 polarizability by solv-

ing for its eigenstates with the ab initio NCSM in the harmonic oscillator 
(HO) basis and achieving numerically tractable results as the basis size 
increases. The 4He 𝐸1 polarizability calculated with various ab initio

approaches employing different interactions shows significant varia-

tions and the available experimental data have not provided strong 
constraints due to large experimental uncertainties (see below for de-

tails). Our calculation with the Daejeon16 nucleon-nucleon (NN) inter-

action [28] is therefore important for both theoretical and experimental 
studies of the 4He 𝐸1 polarizability in the future. This interaction is 
based on the Entem-Machleidt N3LO chiral effective field theory in-

teraction [29], softened via a similarity renormalization group (SRG) 
transformation so as to improve convergence of ab initio studies, mod-

ified off-shell to mimic three-nucleon forces and provide one of the 
best descriptions of nuclei with 𝐴 ≤ 16 [30]. Our detailed study of the 
convergence properties of 4He 𝐸1 polarizability provides a guide for 
potential applications to heavier nuclei. Our method can be extended 
straightforwardly to the calculations of sum rules involving other oper-

ators.

In the next Section, we present the theoretical framework adopted in 
this work. We show the main results in Sec. 3. Finally we give a summary 
of our conclusions and an outlook in Sec. 4.

2. Theoretical methods

The 𝐸1 polarizability of a nucleus, 𝛼𝐸 , is defined as [31]

𝛼𝐸 = 8𝜋
9

∑
𝑘

𝐵(𝐸1;𝐽0 → 𝐽𝑘)
𝐸𝑘 −𝐸0

, (1)

where 𝐸0 and 𝐸𝑘 are the energies of the ground and excited states, re-

spectively. 𝐵(𝐸1; 𝐽0→𝐽𝑘) =
∑
𝑀𝑘𝜇

|⟨𝐽0𝑀0|�̂�1𝜇|𝐽𝑘𝑀𝑘⟩|2=|⟨𝐽0||�̂�1||𝐽𝑘⟩|2∕
(2𝐽0 + 1) represents the reduced 𝐸1 transition probability with 𝐸1
operator �̂�1𝜇 =

∑𝐴

𝑖
𝑒𝑖𝑟𝑖𝑌1𝜇(𝒓𝑖). 𝐽0 (𝐽𝑘) and 𝑀0 (𝑀𝑘) are the ground 

(excited) state total angular momentum and its projection respectively.

We use the ab initio NCSM [32] to calculate the nuclear energy spec-

trum and the wave functions involved in Eq. (1). The NCSM has been 
extensively used recently in studies of 𝑠- and 𝑝-shell nuclei (see, e.g., 
Refs. [33–35]). In the NCSM, the nuclear wave functions are obtained by 
diagonalizing the chosen nuclear Hamiltonian in a truncated Slater de-

terminant HO basis characterized by the basis oscillator parameter ℏΩ. 
We use the 𝑀 scheme with conserved parity 𝜋 and projections of the 
total angular momentum 𝑀 =

∑𝐴

𝑖=1𝑚𝑖 and charge (isospin projection) 
𝑀𝑇 =

∑𝐴

𝑖=1𝑚𝑡𝑖
. The truncation of the model space is determined and 

labeled by the number of excitation quanta, 𝑁max , which corresponds 
to the total number of HO quanta relative to the minimum number of 
quanta required by the Pauli principle. We test convergence by show-

ing calculated quantities vs 𝑁max , and we report how these quantities 
approach their asymptotic values as 𝑁max increases.

In this work, we evaluate the 𝐸1 polarizability of 4He by solving for 
its eigenstates with the code MFDn using the Lanczos algorithm [36–39]. 
We perform the calculations with the Daejeon16 NN interaction [28]

and add the Coulomb interaction between the protons. The 0+ ground 
2

state is of normal parity, and is thus obtained from calculations with 
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Fig. 1. Number of 1− states in 4He up to the excitation energy of 100 MeV as a 
function of 𝑁max calculated by the NCSM using the Daejeon16 𝑁𝑁 interaction 
with the Coulomb interaction between protons.

even 𝑁max (𝑁max = 2, 4, 6, ⋯). According to the 𝐸1 selection rules, only 
1− excited states are allowed excited states in Eq. (1). The 1− excited 
states are of non-normal parity, and are thus obtained from calculations 
with odd 𝑁max (𝑁max = 3, 5, 7, ⋯). Within the 𝑀 scheme, we can obtain 
the desired 1− states with 𝑀 = 1. With a straightforward calculation 
we would obtain numerous unneeded states with 𝐽 ≥ 2 at the same 
time. For example, we obtain 2346 states (including 1−, 2−, ⋯) below 
the excitation energy of 100 MeV at 𝑁max = 11 with ℏΩ = 20 MeV and 
𝑀 = 1, whereas only 370 are our desired 1− states. In order to remove 
these unneeded states and conserve computational resources, we add 
the following Lagrange multiplier term to the Hamiltonian [40]

𝐻𝐽2 = 𝜆
(
𝑱 2 − 2

)
, (2)

with the total angular momentum vector given by 𝑱 =
∑𝐴

𝑖=1 𝒋𝑖. For ex-

ample, the 2− (3−) states are shifted upwards in energy by this term by 
100 (250) MeV if we set 𝜆 = 25 MeV. We show in Fig. 1 that the num-

ber of 1− states below 100 MeV excitation energy increases rapidly with 
𝑁max, especially at low ℏΩ values. Therefore one of the challenges in 
calculating the 𝐸1 polarizability of 4He is obtaining necessary 1− states. 
We employ the Lanczos method with a sufficient number of Lanczos it-
erations to converge all 1− states up to 100 MeV of excitation. We then 
calculate the 𝐸1 transition matrix elements from the ground state to 
these 1− states and the resulting 𝐸1 polarizability.

We adopt the Lawson method [40,41] to ensure that only states 
which are free from spurious center of mass (CoM) excitation, that is, 
which share the same 0𝑠 CoM wave function, remain in the calculated 
spectrum. The CoM wave function does not contribute to the 𝐸1 transi-

tion matrix elements due to the angular momentum and parity selection 
rules on the CoM degree of freedom, as shown in Ref. [42].

One should note that the continuum states obtained with the NCSM 
in the above manner are viewed as a discretized approximation of the 
continuum. These discretized states become more dense in the contin-

uum as the basis size increases [20].

3. Results and discussion

In Fig. 2 (a) we present the 𝐸1 polarizability, 𝛼𝐸 , of 4He as a function 
of the cutoff in the excitation energy (i.e., the running sum) for various 
𝑁max with the same ℏΩ = 17.5 MeV. We present in our figures the results 
marked by 𝑁max which is used to calculate the excited 1− states while 
the ground state is calculated with 𝑁max − 1. We find in Fig. 2 (a) that 
𝛼𝐸 at first increases rapidly with energy cutoff, for low cutoff energies. 
However, the growth of 𝛼𝐸 slows drastically above roughly 75 MeV, in 
particular, at 𝑁max ≥ 7. The rather small differences of the results for 
𝑁max = 11−15 at 𝐸𝑥 = 100 MeV indicate the approximate convergence 
of the NCSM calculations with respect to the basis truncation.

We show in Fig. 2 (b) the calculated contributions of different energy 

intervals below 100 MeV excitation energy to the 𝐸1 polarizability of 
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Fig. 2. (a) 𝐸1 polarizability of 4He as a function of the excitation energy 𝐸𝑥 calculated within the NCSM at 𝑁max = 3−15 with ℏΩ = 17.5 MeV. The inset shows the 
expanded view of the energy interval from 70 to 100 MeV for the 𝑁max ≥ 5 results. (b) Contributions of different energy intervals to the 𝐸1 polarizability of 4He at 
𝑁max = 15 with ℏΩ = 17.5 MeV. Bins filled with hatch lines represent the results calculated with the NCSM and the four solid dots indicate the amplitude of each 
bin. The solid curve is obtained by exponential fitting to the four solid dots. The bins without hatch lines represent the contributions of 100 − 120 and 120 − 140
MeV intervals extrapolated with the solid curve.
Fig. 3. Electric dipole polarizability of 4He as a function of 𝑁max for various ℏΩ
values. The solid dot with an error bar represents the converged result with an 
estimated uncertainty. Two experimental data along with their quoted uncer-

tainties (solid squares) from Refs. [43–45] are shown for comparison.

4He (bins filled with hatch lines). We observe an overall decrease of the 
contributions of the 1− states with the increase of the excitation energy. 
The bin of 80 − 100 MeV contributes less than 10−3 fm3. The computa-

tional cost depends strongly on the number of Lanczos iterations which 
determines the truncation to the excitation energy. It becomes computa-

tionally prohibitive to account for excitation energies above some point 
dictated by available computational resources. We therefore truncate 
the excitation energy at 100 MeV in the following calculations and esti-

mate the uncertainty caused by this truncation.

In Fig. 3 we show the calculated 𝐸1 polarizability of 4He as a func-

tion of the truncation parameter 𝑁max for various ℏΩ values. The num-

ber of the 1− states increases sharply with decreasing ℏΩ at the same 
𝑁max as shown in Fig. 1. In order to limit the computational costs, we 
3

restrict the NCSM calculations up to 𝑁max = 15 in this work. We obtain 
all the results in Fig. 3 by retaining 1− states up to 100 MeV excitation 
energy.

We observe in Fig. 3 that, as 𝑁max increases, different basis oscil-

lator parameters ℏΩ result in different convergence patterns which are 
especially visible for small 𝑁max values. We find that the results with 
moderate ℏΩ = 15−20 MeV in Fig. 3 show the most rapid convergence 
at small 𝑁max. The results for all ℏΩ values tend to the same asymp-

totic value as 𝑁max increases. In particular, the results with ℏΩ = 15
and 17.5 MeV show apparent convergence with some small oscillations, 
which indicates that calculating the 𝐸1 polarizability by directly solving 
for nuclear eigenstates in a large HO basis is numerically achievable.

We use the result at 𝑁max = 15 with ℏΩ = 17.5 MeV, i.e., 𝛼𝐸 = 0.0782
fm3, as our prediction to the 𝐸1 polarizability of 4He considering the 
contribution of the energy interval 0−100 MeV. The uncertainty for 
calculating nuclear 𝐸1 polarizability by direct Hamiltonian diagonal-

ization is restricted mainly by two aspects, i.e., the truncation of the 
excitation energy and limited basis size.

In order to estimate the uncertainty stemming from the excitation en-

ergy truncation, we fit the amplitudes (represented by four solid dots) of 
the four bins filled with hatch lines in Fig. 2 (b) with an exponential func-

tion, and extrapolate the fitting results up to the two intervals 100 −120
and 120 − 140 MeV (bins without hatch lines). Since the fitting results 
(solid curve in Fig. 2 (b)) coincide well with the four solid dots, we 
could estimate the uncertainty induced by the excitation energy trun-

cation with the extrapolated results. We approximate this uncertainty 
with the extrapolated contributions above 100 MeV, i.e., 0.0003 fm−3. 
One should note that the quality of the exponential fit depends on the 
𝑁max and ℏΩ values, as well as on the bin size; the above extrapolation 
is evaluated only for 𝑁max = 15 with ℏΩ = 17.5 MeV with the bin size 
of 20 MeV as shown in Fig. 2 (b).

We estimate the uncertainty due to basis truncation with the differ-

ence of the results for ℏΩ = 17.5 and 25 MeV at the same 𝑁max = 15
in Fig. 3, i.e., 0.0003 fm3. The 𝐸1 polarizability of 4He obtained with 
the Daejeon16 interaction in this work is therefore 0.0782+0.0006−0.0003 fm3. 
Since the uncertainty due to the energy truncation can only be posi-

tive, the upper error bar is obtained simply with the sum of the above 

two uncertainties while the lower error bar is contributed only by the 
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Table 1
4He 𝐸1 polarizability. Our result in comparison with experi-

mental data and those obtained by various ab initio approaches 
employing different techniques and various internucleon inter-

action models.

Theo./Exp. Interaction 𝛼𝐸 (fm3)

NCSM

[This work]

NN (Daejeon16) 0.0782+0.0006−0.0003

HH [11] NN (AV18) + 3N (UIX) 0.0655(4)
HH [12] NN (MT-I/III) 0.076
HH [13] [NN (N3LO) + 3N (N2LO)]OLS 0.0694
NCSM [22] [NN (N3LO) + 3N (N2LO)]OLS 0.0683(14)
NCSM [23] [NN (N3LO) + 3N (N2LO)]1.8

[NN (N3LO) + 3N (N2LO)]3.0

0.07093(5)
0.06861(5)

NCSM [24] NN (N3LO) 0.084(3)
SA-NCSM [24] NN (N3LO) 0.077(3)
NCSM 
SA-NCSM [24]

NN (NNLOopt ) 0.0680

CC [16] NN + 3N (NNLOsat ) 0.0735(1)

Exp. [43,44] - 0.072(4)
Exp. [45] - 0.076(8)

basis truncation. We show our converged result with the estimated un-

certainty in Fig. 3. All the calculated results at 𝑁max = 15 fall into our 
estimated uncertainty region with the only exception of the result for 
ℏΩ = 30 MeV, which indicates that we have achieved good convergence 
and our estimation to the theoretical uncertainty is reasonable. We ob-

serve in Fig. 3 that our predicted 𝐸1 polarizability of 4He is consistent 
with the most recent experimental data [45].

We present our results in Table 1 and compare with some alternative 
ab initio calculations of the 4He 𝐸1 polarizability. We also present two 
experimental data along with their quoted uncertainties from Refs. [43–

45] for comparison. The ab initio calculations we quote in Table 1 for 
comparison use the following NN and three-nucleon (3N) interactions: 
NN (AV18) [46], 3N (UIX) [47], NN (MT-I/III) [48], NN (N3LO) [29], 
3N (N2LO) [49], NN (NNLOopt ) [50] and NN+3N (NNLOsat ) [51]. The 
subscript OLS denotes that the results in Refs. [13,22] are obtained with 
a Okubo-Lee-Suzuki renormalization [52–54] of internucleon interac-

tions. A SRG-evolved NN+3N Hamiltonian and a self-consistent SRG-

evolved 𝐸1 operator are used in Ref. [23]. The subscripts 1.8 and 3.0 in 
Table 1 denote the SRG-evolved scale parameters in fm [23]. The NCSM 
approach was also used in Refs. [22–24] to calculate the 4He polariz-

ability. Besides the different Hamiltonians adopted, one of the major 
differences between our calculation and Refs. [22–24] is that we solve 
for numerous eigenstates which is avoided by Refs. [22–24]. We can see 
in Table 1 significant differences for 4He 𝐸1 polarizabilities calculated 
with various internucleon interaction models, ranging from 0.0655(4)
to 0.084(3) fm3. From the results shown in Table 1, we infer that the 
nuclear 𝐸1 polarizability may provide important constraints on nuclear 
interactions. These results provide motivation for further improvements 
of both theoretical calculations and experimental measurements, such 
as the photoabsorption reactions and the Coulomb breakup reactions.

4. Conclusions and outlook

In conclusion, we calculated the electric dipole (𝐸1) polarizability 
of 4He through directly solving for its numerous eigenstates by means of 
the ab initio NCSM in the HO basis. We performed calculations with the 
realistic Daejeon16 𝑁𝑁 interaction. We considered the 𝐸1 transitions 
from the ground state to all calculated 1− states below an excitation 
energy of 100 MeV. In order to retain only 1− states and exclude the 
unneeded states with higher angular momentum, we added an angular 
momentum Lagrange multiplier term to the Hamiltonian. The running 
sum exhibits a good convergence pattern as the cutoff of excitation 
energy increases. The 𝐸1 polarizability of 4He converges to the third 
significant figure as the basis size increases. Our predicted 𝐸1 polar-
4

izability of 4He, 0.0782+0.0006−0.0003 fm3, is consistent with the most recent 
Physics Letters B 855 (2024) 138857

experimental data. We expect that direct calculations may also be appli-

cable to other sum rules in nuclei. The results obtained with this method 
can also be used to benchmark evaluations of nuclear sum rules with 
other techniques.

Our study provides motivation for similar calculations in heavier nu-

clei. For instance, the ab initio calculations of the 𝐸1 polarizability of 
the two-neutron halo nucleus 6He, may strongly constrain the measure-

ment of its 𝐸1 response function which disagrees significantly among 
different experiments [55–57]. Although the theoretical uncertainties of 
calculations in heavier nuclei will be larger, the results with estimated 
uncertainties could nevertheless provide useful predictions for experi-

ment and theoretical comparisons.
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