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For distribution of normalized random means based on samples with random size we give asymptotic expansions
with Student or Laplace limit laws. Samples of random size and non-normal limit laws occur e.g. in insurance,
economics, biology and for modeling city-size growth or high-frequency stock index returns, see [1], [2].

Let X1, X2, . . . be i. i. d. random variables (r.v.) with E |X1|5 < ∞, E (X1) = µ, 0 < Var(X1) = σ−2,

skewness λ3 = σ3 E (X1 − µ)
3

and kurtosis λ4 = σ4 E (X1 − µ)
4

and suppose that r.v. X1 admits Cramér’s condition:
lim sup|t|→∞

∣∣EeitX1
∣∣ < 1. We denote the mean Tm = (X1 + · · ·+Xm) /m , m = 1, 2, ... Then one has

supx |P(σ
√
m(Tm − µ) ≤ x)− Φm,2(x)| ≤ C1m

−3/2,

where Φm,2(x) is the second order Edgeworth expansion with normal limit law.
Consider now a random mean TNn with a random sample size Nn = Nn(r) of observations X1, X2, ... and Nn is

independent of them, where Nn(r) is a negative binomial distributed (shifted by 1) r.v. such that

P(Nn(r) = i) = Γ(i+ r − 1)((i− 1)! Γ(r))−1 (1/n)
r

(1− 1/n)
i−1

, r > 0, i, n ∈ N := {1, 2, ...}.

Let g(n) = E
(
Nn(r)

)
= r(n− 1) + 1, then P(Nn(r)/E(Nn(r)) ≤ x) tends to the gamma distribution Gr,r(x) having

density gr,r(x) = rr xr−1e−rx/Γ(r) and the limit distribution of P
(
σ
√
g(n)(TNn(r) − µ) ≤ x

)
is the Student t - law

S2r(x) with density s2r(x) = Γ(r + 1/2)(
√

2rπ Γ(r))−1
(
1 + x2/(2r)

)−(r+1/2)
, see [1] or [2] and references therein.

Lemma. Suppose r ≥ 1. For x > 0 and all n ≥ 2 there exists a real number C2(r) > 0 such that
supx≥0

∣∣P(Nn(r) ≤ g(n)x)−Gr,r(x) + gr,r(x)
(
(x− 1)(r − 2)− 2Q1(g(n)x)

)
/(2r(n− 1))

∣∣ ≤ C2(r)n−min{r,2},

where Q1(y) = 1/2− (y − [y]) and [y] is the integer part of y with y − 1 < [y] ≤ y.

Using Theorem 3.1 of [1] and the second order Edgeworth type expansions of Tm and Nn(r) we get new expansion
for the random mean TNn(r) with r > 1, which allows also to obtain the Cornish-Fisher expansion, see [3]. For
shortage of space the results are given only for r = 2.

Theorem. Let r = 2. Under the mentioned conditions there exists a constant C > 0 such that

sup
x

∣∣∣∣P (σ√2n− 1(TNn − µ) ≤ x
)
− S4(x) +

(
A1(x) 1√

2n− 1
+A2(x) 1

2n− 1

)
s4(x)

∣∣∣∣ ≤ C n−3/2.

with A1(x) = λ3

(
x2 − 2

)
/9 and A2(x) = x

(
10λ2

3/(9 (4 + x2))− λ4/6
)
.

Let xα and uα be α-quantiles of σ
√
g(n) (TNn − µ) and the Student t-distribution S4(x), respectively. Then

xα = uα −A1(uα) 1√
2n− 1

+

(
s′4(uα)
2s4(uα)

A2
1(uα) +A′1(uα)A1(uα)−A2(uα)

)
1

2n− 1 +O
(
n−3/2

)
, n→∞.

Similar results are obtained for the case, when the random size Nn is the maximum of n i.i.d. discrete Pareto
r. v. In this case the Laplace law is the limit distribution of the normalized random mean TNn .
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We study the optimal strategy for a sailboat to reach an upwind island under the hypothesis that the wind
direction fluctuates according to a Brownian motion. The problem is singular because we assume that there is no
loss of time when tacking. We exhibit the optimal strategy. The proof of optimality, since the HJB equation does not
admit a closed form solution, involves an intricate estimate of derivatives of the value function. Finally we explicitly
provide the asymptotic behavior of the value function and we give some new insights on the stochastic flow of a
reflected SDE.
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Concentration inequalities are a powerful tool to control the tail probability that a random variable X exceeds
some prescribed value t. They are a crucial step in deriving many results in numerous fields such as statistics, learning
theory, discrete mathematics, statistical mechanics, information theory or convex geometry. The purpose of this talk
is to present Bernstein type inequality for unbounded classes of functions F and Hoeffding type functional inequality
for Harris recurrent Markov chains. To avoid some complicated mixing conditions, we make use of the well-known
regeneration properties of Markov chains. It is noteworthy that when deriving exponential inequalities for Markov
chains (or any other process with some dependence structure) one can not expect to recover fully the classical results
from the i.i.d. case. The goal is then to get some counterparts of the inequalities for i.i.d. random variables with
some extra terms that appear in the bound as a consequence of a Markovian structure of the considered process.
Our inequalities allow to obtain fast rates of convergence in mathematical statistics. Moreover, all constants involved
in our bounds of the considered inequalities are given in an explicit form which can be advantageous in practical
considerations. Firstly, we present the theory for regenerative Markov chains, next we show how to generalize these
results and establish exponential bounds for Harris recurrent case.
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