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INTRODUCTION
One of the most exciting fields of modern laser

physics is self-organization in systems consisting of a
nonlinear medium and a light field. For Kerr-type non-
linearity, self-consistent solutions (solitons) of such
problems have been studied rather well. The concepts
of one- and two-component solitons as self-consistent
spatially localized solutions of many nonlinear prob-
lems have solidly clamped in quite different fields of
modern physics: fiber and nonlinear optics, physics of
one-dimensional (1D) chains and two-dimensional
(2D) atomic planes in ferromagnetics, conjugated poly-
mers, HTSCs, etc. In this way, results of recent investi-
gations of solitons multisolitons, and of soliton pairs in
photorefractive crystals (PRCs), are of great impor-
tance. Starting from the pioneer paper (M. Segev 

 

et al.

 

,
1992, 

 

Phys. Rev. Lett.

 

, 

 

68

 

, 923), related to PRCs with
drift (local) nonlinearity, bright, dark, gray, vector, vortex,
and multi solitons, and their propagation and interaction,
were intensively studied. It was shown that one can write
a stable soliton-like waveguide in PRC and capture a low-
intensity light beam (M. Morin 

 

et al.

 

, 1995, 

 

Opt. Lett.

 

, 

 

20

 

,
2066). Stable bright–bright, bright–dark, and dark–dark
pairs of incoherent spatial solitons were also observed
(Z. Chen, 

 

et al.

 

, 1996, 

 

Opt. Lett.

 

, 

 

21

 

, 1436).
Our main goal is to present some new types of stable

soliton-like laser beams in PRC with drift and diffusion
nonlinear response.

THE MODEL
Our model is based on the well-known 2D system of

material equations for the internal electric field 
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sc
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Here 

 

n

 

, 

 

N

 

d

 

, , and 

 

N

 

a

 

 are free carriers, donors, ionized
donors, and acceptors’ densities, respectively; 

 

e

 

 and 

 

µ

 

are free carriers charge and mobility; 

 

j

 

 is the current den-
sity; 

 

s

 

 is the photoionization cross section; 

 

I

 

 is the light
intensity; 

 

sI

 

0

 

 describes the dark photoionization; 

 

γ

 

R

 

 is
the two-body recombination constant; 

 

E

 

0

 

 is the external
electric field applied to PRC along the 

 

x

 

-axis; 

 

ε

 

 and 

 

Θ

 

are the dielectric constant and temperature.
Propagating light beam with the complex amplitude

 

A

 

(

 

x

 

, 

 

z

 

) and the wave number 

 

k

 

 was described by a short-
ened wave equation

with no regard for absorption. Here, 

 

δη

 

 = –(

 

r

 

eff

 

η

 

3

 

/2) 

 

×

 

E

 

sc

 

(

 

x

 

, 

 

z

 

) is the nonlinear addition to the refractive
index 

 

η

 

; 

 

r

 

eff

 

 is the electro-optical constant. Taking into
account redistribution of 

 

I

 

(

 

x

 

, 

 

z

 

) and 

 

E

 

sc

 

(

 

x

 

, 

 

z

 

), all the
equations form a full self-consistent problem.

SOLUTION OF MATERIAL EQUATIONS

We use a steady-state solution of the system of
material equations for the case 

 

N

 

a
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, and a
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E

 

/
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x
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If 

 

E

 

0

 

 ~ 10 kV/cm, 

 

Θ

 

 ~ 300 K, and the spatial scale of
changing light field is not less than the wavelength, and
only two first terms of the series, which are propor-
tional to 

 

I

 

 and 

 

∂

 

I

 

/

 

∂

 

x

 

, can be held. Furthermore, these
terms will be called the local and nonlocal components
of PRC nonlinear response. 

Relation between spatial distributions of 

 

E

 

sc

 

 and 

 

I

 

 is
much more evident in spectral representation where
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PRC plays a role of a spatial filter with the transfer
function

regarding to the spatial spectrum I(κ) of I(x). The cases
of pure drift and spatial diffusion can be described as
the limiting cases for Θ  0 and E0  0,

Both expressions can be simplified by expanding into a
power series in κ and taking into account only the terms
up to the first order.

ONE-COMPONENT SOLITONS

For Kerr-type nonlinearity, one usually looks for the
solutions as

Here, Y(x) describes the field distribution and ν deter-
mines its nonlinear phase shift. Restricting our consid-
eration to two first terms of the power series and nor-
malizing the equation, we can obtain

Here, ξ = x/x0 , ζ = z/Ld, ρ(ξ) = Y(ξ) , x0 is the spa-

tial scale of the problem, Ld = k  is the diffraction
length, R = Ld/Lr, Lr = 1/(αE0) is the nonlinear refraction
length, α = kreffη2/2 > 0, β = Ldν, γ = –2(αkE0/R) ×
[Θ /(eE0) + a(χ + 1)E0]x0 describes a nonlocality.

When γ = 0, the self-consistent solution looks like
the well-known one-component bright soliton ρ(ξ) =

/cosh( ξ), but it is not the case. However,

T κ( ) E0 1 iκΘ eE0( )⁄+[ ] I0 1 iκaE0 χ 1+( )–[{⁄–=

+ aκ2Θ e⁄( ) χ 1+( ) ] }
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R I0⁄

x0
2

2β 2β

assuming γ < 1 and β = 1/2, one can find the solution in
automodel form

One can show that, in the first order on γ, K = const and

This means that the one-component solution’s “top”
moves along the parabolic trajectory ξs = –(4/15)γK2ζ2.
Figure 1 shows intensity isolines of the one-component
soliton on the (ξ, ζ)-plane.

MODULATION INSTABILITY

Another trivial solution of the problem is a plane
wave with the amplitude ρ(ξ) = ρ0 for β = ρ2. Let us
consider the stability of this solution regarding to small
(δρ0 � 1) harmonic perturbation δρ(ξ) = δρ0cos(Ωξ) at
spatial frequency Ω = κx0. Using the linearization tech-
nique developed by Bespalov and Talanov, one can
show that the perturbation amplitude will exponentially
increase with the rate

with increasing ζ. In the case of Kerr-type nonlinearity
(γ  0), the growth takes place only in the limited
band of spatial frequencies 0 < Ω < Ωb = 2ρ0, and the

maximal value of g is realized for Ω = Ωm = ρ0. The
nonlocal component extends the instability band up to
Ω  ∞. However, even when γ ≈ 1, the band width is
very close to Ωb . The modulation instability is illus-
trated by Fig. 2. 

So, in PRC, the plane waves are instable about any
small random perturbation. Propagating through PRC,
such waves split into rather thin filaments (farming).
The filaments’ average frequency and thickness are
determined by Λ = 2π /Ωm and the inverse width of the
instability band.

SPATIAL SHOCK WAVES

Let us analyze a new kind of soliton-like solution—
photorefractive spatial shock waves—on a phase por-
trait, i.e., let us use an analogy between ρ(ξ) and non-
linear oscillations in the potential

with the nonlinear damping constant described by the
term 2γρ2(dρ /dξ). Two U(ρ) minima with the coordi-

nates ρ1, 2 = ±  are focuses and a single maximum
ρ = dρ /dξ = 0 is a nodal point. Nearby the nodal point,
linearization results in equation

Its solution ρ(ξ) ∝ exp( ξ) grows with increasing ξ.
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Fig. 1. Self-bending of the one-component bright soliton in
PRC: γ = 0.1.
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Nearby the focus, the same procedure gives us the
equation

of damped oscillations of the shift u(ξ) = ρ(ξ) – ρ1, 2
from the equilibrium. Its solution looks like periodic

(γ < 2/ , ω = ) or aperiodic (γ ≥ 2/ )
going to ρ1, 2 with ξ  ∞.

The presented approximations were confirmed by a
numerical integration. The phase trajectory, shown in
Fig. 3, is a spiral, twisted to ρ1. The spatial shock wave
profile ρ(ξ) demonstrates all the main specific features
of solutions of this type. A sharp exponential front
gives way to a plateau with damped oscillations.

STEPLIKE INTENSITY PROFILE

Numerical integrating with boundary conditions,
corresponding to the spatial shock wave, has shown
that this solution is stable and that its spatial profile
does not change with propagation through PRC. So, the
spatial shock wave belongs to a new type of soliton-like
solutions with separating variables.

To illustrate the importance of such solutions, we
present here the data of computer simulation of the evo-
lution of the laser beam with the steplike spatial profile
q(ξ, 0) = (1/2)[1 + tanh(ξ)]. Figure 4 shows |q(ξ)|2 in a
number of consequent PRC crosssections for γ = 0.1.

As radiation propagates, a diffraction peak appears
on a front of the intensity distribution. Due to the local
component of nonlinearity, this peak gradually trans-
forms into a bright spatial soliton. Direction of its prop-
agation gradually shifts from the ζ-axis, due to self-
bending. As radiation moves away from the input
plane, next and next spatial solitons split from the front
of the intensity distribution. At the same time, the spa-
tial distribution of the remainder beam part always

d
2
u dξ2⁄ 2γβdu dξ⁄ 4βu+ + 0=

β 4β γβ( )2
– β

looks like a spatial shock wave. So, the elemental self-
consistent solutions of the problem give us great insight
into the main results of our computer simulation.

TWO-COMPONENT SOLITONS

Let us try now to find two-component solutions with
separating variables,

A x z,( ) Y1 x( ) iν1z–( )exp Y2 x( ) iν2z–( ).exp+=
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Fig. 2. Harmonic perturbation gain vs. its normalized spatial
frequency: Kerr-type nonlinearity (dashed line) and PRC
with R = 1, γ = 1 (solid line).
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Here, Y1, 2(x) and ν1, 2 define the incoherent compo-
nents’ spatial profiles and nonlinear phase shifts. Such
a form of solution results in the normalized system of
equations:

where β1, 2 = Ldν1, 2, “±” correspond to self-focusing
and defocusing cases.

As previously, one may use an analogy between
ρ1, 2(ξ) character and nonlinear oscillations of two cou-
pled oscillators in the potential

When β1 = β2 = β, two-component solitons look like
stable pairs of two mutually incoherent bright (self-
focusing case),

or dark (self-defocusing case)

one-component solitons. When β1 > β2, stable pairs can
be formed by incoherent bright and dark soliton both in
the self-focusing case,

d
2ρ1 2, dξ2⁄ 2 ρ1

2 ρ2
2

+( ) β1 2,–[ ]ρ1 2,± 0,=

U ρ1 ρ2,( ) 1 2⁄( ) ρ1
2 ρ2

2
+( )± β1ρ1

2 β2ρ2
2

+( ).+−=

ρ1 2β 2βξ( )cosh⁄[ ] α( ),cos=

ρ2 2β 2βξ( )cosh⁄[ ] α( ),sin=

ρ1 β 2βξ( ) α( ),costanh=

ρ2 β 2βξ( ) α( ),sintanh=

ρ1 2β1 β2–± 2 β1 β2–( )ξ[ ],cosh⁄=

ρ2 β2 2 β1 β2–( )ξ[ ],tanh±=

and in the self-defocusing case

Such two-component solitons’ trajectories start
(ξ  –∞) from one of the point of unstable equilib-
rium and come (ξ  +∞) to the symmetrically
located point (Fig. 5).

In the self-focusing case, we succeeded in finding the
quite new two-component solution with a limited energy.
Its trajectory starts from and returns to the same point
(0, 0) on the plane (ρ1, ρ2). For β1 = 4β2, this new two-
component solution can be written as

Figure 6 illustrates spatial profiles of symmetrical and
asymmetrical components of new soliton and its stable
propagation through PRC with the length of about 5 cm.
Figure 7 demonstrates the decay of the components
without nonlinear interaction. Figure 8 illustrates the
stability of the new soliton’s spatial structure on pertur-
bations of input profiles of both components by a Gaus-
sian noise. Increase of the noise level results in the soli-
ton decay (Fig. 9). Figures 10 and 11 prove its stability
regarding collisions with the same two-component and
one-component bright solitons.

Computer simulation enables us to follow the two-
component soliton’s spatial structure with changing
β1/β2 and to confirms its stability.
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Fig. 5. U(ρ1, ρ2) for defocusing (left figure) and self-focusing (right figure) cases; β1 = 1, β2 = 0.25, two-component solitons’ tra-
jectories are shown by solid lines.
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MULTICOMPONENT SOLITONS

Now we will consider much more complicated mul-
ticomponent solitons, composed by more than two inco-
herent self-consistent light components. All such com-
ponents have a limited energy and spatially localized
profiles of eigent high-order modes of their common
nonlinear waveguide, written in PRC. In the case of a
two-component soliton, the nonlinear waveguide profile
is determined by the following spatial distribution of η:

Here, ∆ηmax = 6β2 and ξ0 = 1/ . Let us suppose that
all the solutions of a new class write a nonlinear
waveguide with an analogous spatial profile. However,
we will consider ∆ηmax and ξ0 as parameters that have
to be determined. Then, at the first step, our problem

∆η ∆ηmax ξ ξ0⁄( ).cosh
2⁄∝

2β2

can be reduced to calculating eigent modes of an opti-
cal waveguide with the specified spatial profile. At the
second step, we require that the nonlinear waveguide,
written in PRC by the soliton components, should have,
namely, the used η profile. This requirement separates
self-consistent solutions from all the solutions, which
were found on the first step, and enables us to deter-
mine the constants of corresponding expansion in a
basis of the waveguide eigenfunctions.

A character of multicomponent solutions is signifi-
cantly simplified for special discrete relations between
∆ηmax and ξ0. In such cases, the system, which must be
solved, can be written in the form

d
2ρi
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Fig. 6. Spatial profiles (a) |ρ1(ξ)|2 and (b) |ρ2(ξ)|2 of two-
component soliton and its stable propagation along the
ζ-axis, β1 = 1, β2 = 0.25.
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(b) |ρ2(ξ)|2 of two-component soliton without cross-modu-
lation coupling: β1 = 1, β2 = 0.25.
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where n = 1, 2, … and i = 1, 2, …, n. The condition of self-

consistent multicomponent soliton [ , , …, ]
can be determined as

Let us write only some solutions of this class for n = 1,
2, and 3:

ρ1
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⎧

The first solution is nothing more than a one-compo-
nent bright soliton, the second one corresponds to the
two-component soliton, and the third one is a next-
order soliton-like solution. Figure 12 illustrates the spa-
tial profiles of all its components and their stable prop-
agation through PRC.
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Fig. 8. Stability of spatial profiles (a) |ρ1(ξ)|2 and (b) |ρ2(ξ)|2 of
two-component soliton. The components are perturbed by a
10% Gaussian noise; β1 = 1, β2 = 0.25.

Fig. 9. Decay of two-component soliton. Light field compo-
nents (a) |ρ1(ξ)| and (b) |ρ2(ξ)| are perturbed by a 20% Gaus-
sian noise; β1 = 1, β2 = 0.25.
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CONCLUSIONS AND FINAL REMARKS

Starting from a quite realistic model of PRC nonlin-
ear response, we have particularized the broad physical
outlines of modulation instability (fanning) and self-
bending of spatial solitons.

As far as we know, we are the first to have obtained
the solutions that look like spatial shock waves in PRC.
We have shown that such elemental solutions are stable
and can be clearly followed from the evolution of input
radiation with unspecified spatial profile.

We have found new multicomponent solitons, corre-
sponding to stable propagation of two and more self-con-
sistent mutually incoherent spatially localized light beams
with limited energy. Such solitons open new possibilities in
the changing relation between the maximal change of PRC
refractive index and written nonlinear waveguide width.

Multicomponent soliton-like solutions of nonlinear
Schrödinger equation should be of a very general char-
acter, because this equation properly takes into account
the first (cubic) term in the expansion of nonlinear force
in a standard wave equation. Of great importance, also,
is a spatial–temporal analogy, which enables one to
extend all the main specific features of spatial solitons
on the time axis. In many cases, by this equation, one
can describe stable propagation of spatially localized
wave packets of electronic wave functions.

One can neglect the interference of soliton compo-
nents in some cases. First, namely such a situation
occurs in media with a rather slow rise time of nonlin-
ear response and different soliton components carrier
frequencies. Second, two-component solitons can be
formed by cross-polarized light beams. Figure 13 illus-
trates an experiment where intensity of a pulse (two-
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Fig. 10. Stability of spatial profiles (a) |ρ1(ξ)|2 and

(b) |ρ2(ξ)|2 of two-component soliton. Crossing with the
same two-component soliton; β1 = 1, β2 = 0.25.

Fig. 11. Stability of spatial profiles (a) |ρ1(ξ)|2 and

(b) |ρ2(ξ)|2 (right figure) of two-component soliton. Cross-
ing with bright one-component soliton; β1 = 1, β2 = 0.25.
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component soliton) propagating through a single-mode
waveguide is measured by a photodetector with a polar-
izer.

Multicomponent solutions of the nonlinear
Schrödinger equation may be important in the physics

of ferromagnetics, conjugated polymers, and HTSCs.
Here, an idea about incoherent (by a fast phase relax-
ation and different carrier frequencies), but bounded
and stable, electronic wave packets, propagating along
1D atomic chains or 2D isolated atomic planes, can be
very fruitful. Formation of incoherent wave packets
from coherent superconducting pairs may explain our
recent experiment with cooled Y–Ba–Cu–O films,
where we observed an energy gap during 3-ns time-
delay after excitation by a picosecond pulse with pho-
ton energy of ~2 eV (A.N. Zherikhin, et al., 1994,
Physica C, 221, 311).

ACKNOWLEDGMENTS

This work received financial support from the Rus-
sian Foundation for Basic Research (project no. 96-2-
16238) and the State Scientific Program “Fundamental
Metrology.”

10

5

0

10

–10

0
ξ

ζ

(a)

10

5

0

10

–10

0
ξ

ζ

(b)

10

5

0

10

–10

0
ξ

ζ

(c)

Fig. 12. Spatial profiles | (ξ)|2 (upper left figure), | (ξ)|2 (upper right figure), and | (ξ)|2 (center figure) of three-compo-

nent soliton and its propagation along the ζ-axis; β0 = 1.

ρ1
3( ) ρ2

3( ) ρ3
3( )

1.5
1.0

0.5
0

–0.5

–1.0

–1.5
–10 –5 0

5 10

ξ

Φ

Fig. 13. Intensity profile of two-component soliton laser
pulse, propagating through a single-mode waveguide. Φ is
the angle of polarizer orientation.


